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Mathematical Logic 

The rules of mathematical logic specify methods of 

reasoning mathematical statements. Greek philosopher, 

Aristotle, was the pioneer of logical reasoning. Logical 

reasoning provides the theoretical base for many areas of 

mathematics and consequently computer science. It has 

many practical applications in computer science like 

design of computing machines, artificial intelligence, 

definition of data structures for programming languages 

etc. 

2.1 Propositional Calculus 

Propositional Logic is concerned with statements to 

which the truth values, “true” and “false”, can be 

assigned. The purpose is to analyze these statements 

either individually or in a composite manner. 

Definition.   

In logic, a proposition (or a statement) is a meaningful 

declarative sentence that is either true or false, but not 

both.  
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The truth value of a proposition is True "T or 1" if it is a 

true proposition and false "F or 0" if it is a false 

proposition. Letters 𝑝, 𝑞, 𝑟 , … are used to denote 

proposition and are called propositional variables. 

* The following propositions are true  

  (i) A triangle has three sides. 

  (ii) 7 is odd. 

  (iii) 2 divides 24. 

* The following propositions are false:  

   (i) 5 + 3 = 9. 

   (ii) Makkah is the capital of Saudi Arabia. 

   (iii) 2 divides 7.  

* The following are not proposition: 

   (1) Who are you?   

            Not declarative sentences  

   (2) Help yourself! 

            Not declarative sentence. 

   (3)  𝑢 − 2 = 1 

          Neither true nor false. 

   (4) 𝑢 − 𝑣 = 𝑤. 

          Neither true nor false. 
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   (5) Broccoli tastes good. 

Meaningful declarative sentences, but is not proposition 

but rather matters of opinion or taste. 

Definition.   

A formula (or a compound proposition) A formula is 

formed from existing propositions using connectives. 

Definition.   

Since we need to know the truth value of a proposition in 

all possible scenarios, we consider all the possible 

combinations of the propositions which are joined 

together by Logical Connectives to form the given 

compound proposition. This compilation of all possible 

scenarios in a tabular format is called a truth table.  

In particular, truth tables can be used to tell whether a 

propositional expression is true or false for all legitimate 

input values. Practically, a truth table is composed of one 

column for each input variable (for example, p and q), 

and one final column for all of the possible results of the 

logical operation that the table is meant to represent (for 

example, 𝑝 → 𝑞). Each row of the truth table therefore 

contains one possible configuration of the input variables 
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(for instance, p is true (written 1 or T) q is false (written 0 

or F)), and the result of the operation for those values. 

 Logical Connectives  

Connectives are either unary operations like logical 

identity and logical negation, or binary operations like 

logical conjunction, logical disjunction and logical 

implication. 

Definition. (Logical identity and logical Negation).  

Let 𝑝 be a proposition.  

● Logical identity 

Logical identity is an operation on one logical value, 

typically the value of a proposition that produces a value 

of true if its operand is true and a value of false if its 

operand is false. The truth table for the logical identity 

operator is as follows: 

Logical Identity 

𝑝 𝑝 

Operand Value 

1 1 

0 0 

http://en.wikipedia.org/wiki/Identity_function
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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● Logical negation 

Logical negation is an operation on one logical value, 

typically the value of a proposition, which produces a 

value of true if its operand is false and a value of false if 

its operand is true.  

The truth table for logical negation (written as ¬p or ~p) 

is as follows: 

Logical negation 

𝑝 ¬𝑝 

1 0 

0 1 

Example.  

The negation of the proposition "The sun shines on the 

screen" is  "The sun does not shine on the screen".∎ 

We will now introduce the logical connectives (binary 

operations) that are used to form formulas.  

Definition. (Logical Conjunction" ∧ ")  

Logical conjunction is an operation on two logical 

values, typically the values of two propositions, that 

produces a value of true if both of its operands are true.  

http://en.wikipedia.org/wiki/Logical_negation
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Logical_negation
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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The truth table for p AND q (written as p ∧ q) is as 

follows: 

Logical Conjunction 

𝑝 𝑞 𝑝 ∧ 𝑞  

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Example.  

Let p be the proposition “It is sunny today” and q be the 

proposition “The sun shines on the screen”. Then the 

conjunction of these propositions, 𝑝 ∧  𝑞 , is the 

proposition “It is sunny today and the sun shines on the 

screen”. This proposition is true when the day is sunny 

and the sun shines on the screen. It is false otherwise.  ∎ 

Definition. (Logical Disjunction" ∨ ")  

Logical disjunction is an operation on two logical 

values, typically the values of two propositions, that 

produces a value of true if at least one of its operands is 

true.  

 

http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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The truth table for p OR q (written as 𝑝 ∨  𝑞) is as 

follows: 

Logical disjunction 

𝑝 𝑞 𝑝 ∨ 𝑞  

1 1 1 

1 0 1 

0 1 1 

0 0 0 

Example.  

The disjunction of the propositions p and q where p and q 

are the same propositions as in the above example, 𝑝 ∨ 𝑞, 

is the proposition “It is sunny today or the sun shines on 

the screen”. This proposition is true on any day that is 

either sunny day or the sun shines on the screen 

(including both). It is only false on days that are not 

sunny and when it also does not shine on the screen. ∎ 

Definition.  

(“Logical Implication” or “Conditional Statement” " → ")  

Logical implication is associated with an operation on 

two logical values, typically the values of two 

propositions, that produces a value of false just in the 

singular case the first operand is true and the second 

operand is false.  

http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition


- 141 - 
 

The truth table associated with the Logical implication if 

p then q (symbolized as 𝑝 →  𝑞) is as  

Logical implication 

 

 

 

 

It may also be useful to note that 𝑝 →  𝑞 and ¬𝑝 ∨  𝑞 

have the same truth table. A variety of terminology is 

used to express 𝑝 → 𝑞. Some of them are: “if p, then q”, 

“p implies q”, “if p, q” ,   “p only if q”, “p is sufficient for 

q”,    “a sufficient condition for q is p”,  “q if p”,  “q 

whenever p”,  “q when p” ,  “q is necessary for p”   

“a necessary condition for p is q” , “q follows from p”  

and "q unless ¬𝑝. 

Example.  

Let p the proposition "Aly study well" and q the 

proposition "Aly will be a Computer Science student". 

Then the formula  𝑝 → 𝑞 -as a formula in English- is "If 

Aly study well, then he will be a Computer Science 

student ". ∎ 

𝑝 𝑞 𝑝 ⟶ 𝑞 

1 1 1 

1 0 0 

0 1 1 

0 0 1 
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Definition. (Converse, Contra-positive and Inverse)  

There are some related conditional statements that can be 

formed from 𝑝 → 𝑞. The conditional statement 𝑞 → 𝑝 is 

called the converse of 𝑝 → 𝑞. The contra-positive of 

𝑝 → 𝑞 is the conditional statement ¬𝑞 → ¬𝑝.   

The statement   ¬𝑝 → ¬𝑞 is called the inverse of 𝑝 → 𝑞. 

The contra-positive, ¬𝑞 → ¬𝑝, of a conditional statement  

𝑝 → 𝑞 has the same truth value as 𝑝 → 𝑞.  

On the other hand, neither the converse,  𝑞 → 𝑝, nor the 

inverse ¬𝑝 → ¬𝑞, has the same truth value as 𝑝 → 𝑞 for 

all possible truth values of p and q.  

Example.  

What are the contra-positive, the converse, and the 

inverse of the conditional statement “The home team 

wins whenever it is raining”. 

Solution. 

Because “q whenever p” is one of the ways to express the 

conditional statement 𝑝 → 𝑞, the original statement can 

be rewritten as “If it is raining, then the home team wins”. 
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Consequently, the contra-positive of this conditional 

statement is “If the home team does not win, then it is not 

raining”.  

The converse is “If the home team wins, then it is 

raining”. 

The inverse “If it is not raining, then the home team does 

not win”. Only the contrapositive is equivalent to the 

original statement. ∎ 
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We now introduce another way to combine propositions.  

Definition. (Biconditional " ").  

Biconditional (also known as logical equality) is an 

operation on two logical values, typically the values of 

two propositions, that produces a value of true if both 

operands are false or both operands are true. 

The truth table for p XNOR q (written as 𝑝 ↔  𝑞) is as 

follows: 

Logical Equality 

 

 

 

 

So 𝑝 ↔ 𝑞 is true if p and q have the same truth value 

(both true or both false), and false if they have different 

truth values. There are some other ways to express 𝑝 ↔ 𝑞  

“p is necessary and sufficient for q”;   “p iff q” where 

“iff” is the abbreviation for “if and only if” and  " if p 

then q and conversely ". 

 

𝑝 𝑞 𝑝 ↔ 𝑞 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

http://en.wikipedia.org/wiki/Logical_equality
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Truth_value
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Example.  

Let p be the statement “You can pass the exam.” and let q 

be the statement “You study well”. Then 𝑝 ↔ 𝑞 is the 

statement “You can pass the exam if and only if you 

study well”. ∎ 

Remark.  

The previous operators (¬, ∧, ∨, →, ↔) are the 

common operators which we will focus on. 

Definition. (Exclusive Or" ⊕ ").  

Truth table for Exclusive Or " ⊕ " 
 

Logical Equality 

 
 
 
 
 
 
 

Actually, this operator can be expressed by using other 

operators: 

𝑝 ⊕ 𝑞 is the same as ¬ (𝑝 ↔  𝑞). 

⊕ is used often in CSE. So we have a symbol for it. 

 

𝑝 𝑞 𝑝 ⊕ 𝑞 

1 1 0 

1 0 1 

0 1 1 

0 0 0 
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● Order of precedence 

As a way of reducing the number of necessary 

parentheses, one may introduce precedence rules for 

operators. ¬ has higher precedence than  ∧, ∧ higher than 

∨, and ∨ higher than →.  

Here is a table that shows a commonly used precedence 

of logical operators. 

The order of precedence determines which connective is 

the "main connective" when interpreting a formula. 

 

Example. 

¬𝑝 ∧ 𝑞 means (¬𝑝) ∧ 𝑞; 

𝑝 ∧ 𝑞 ⟶ 𝑟 means (𝑝 ∧ 𝑞) ⟶ 𝑟; 

 𝑝 ∨ 𝑞 ∧ ¬𝑟 → 𝑠 is short for [𝑝 ∨ (𝑞 ∧ (¬𝑟))] → 𝑠.   

When in doubt, use parenthesis. ∎ 

 

http://en.wikipedia.org/wiki/Order_of_operations
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Example.  

Find the truth table for the following formula: "If you 

studied discrete Mathematics well and did not neglect 

studying logic, you would gain high marks in the exam". 

Solution. 

Suppose that 

 𝑝: studied discrete Mathematics well; 

𝑞: neglect studying logic; 

𝑟: gain high mark in the exam. 

The formula is 𝑝 ∧ ¬𝑞 ⟶ 𝑟 

𝑝 𝑞 𝑟 ¬𝑞 𝑝 ∧ ¬𝑞 𝑝 ∧ ¬𝑞 ⟶ 𝑟 

1 1 1 0 0 1 

1 1 0 0 0 1 

1 0 1 1 1 1 

1 0 0 1 1 0 

0 1 1 0 0 1 

0 1 0 0 0 1 

0 0 1 1 0 1 

0 0 0 1 0 1 

∎ 
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● Tautologies and Contradictions    

Definition.  

A formula that is always true, no matter what the truth 

values of the propositions that occur in it, is called a 

tautology.   

A formula that is always false is called contradiction.  

A formula that is neither a tautology nor a contradiction 

is called a contingency.  

Example. 

We can construct examples of tautologies and 

contradictions using just one proposition. Consider the 

truth tables of 𝑝 ∨ ¬p and 𝑝 ∧ ¬p. Since 𝑝 ∨ ¬p is always 

true, it is a tautology. Since 𝑝 ∧ ¬p  is always false, it is a 

contradiction. 

Example of a tautology and a contradiction 

p ¬p 𝑝 ∨ ¬p 𝑝 ∧ ¬p 

1 0 1 0 

0 1 1 0 

∎ 
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● Logical Equivalence 

Definition.  

Two formulas p and q are logically equivalent, denoted 

by 𝑝 ≡  𝑞, if and only if they have the same truth values 

for all possible combination of truth values for the 

propositional variables. Also,  

Definition.  

Two formulas p and q are called logically equivalent if 

𝑝 ↔ 𝑞 is a tautology. 

 

Example. 

The formulas 𝑝 → 𝑞 and ¬𝑝 ∨ 𝑞 are logically equivalent. 

  𝑝 𝑞 ¬p 𝑝 → 𝑞 ¬𝑝 ∨ 𝑞 

1 1 0 1 1 

1 0 0 0 0 

0 1 1 1 1 

0 0 1 1 1 

∎ 
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Example.  

The formulas ¬(𝑝 ∨  𝑞) and ¬𝑝 ∧  ¬𝑞 are logically 

equivalent. 

  𝑝 𝑞 ¬p ¬𝑞 𝑝 ∨ 𝑞 ¬(𝑝 ∨ 𝑞) ¬𝑝 ∧ ¬𝑞 

1 1 0 0 1 0 0 

1 0 0 1 1 0 0 

0 1 1 0 1 0 0 

0 0 1 1 0 1 1 

Since the truth values of the formulas ¬(𝑝 ∨  𝑞)  and 

¬𝑝 ∧ ¬𝑞 agree for all possible combinations of the truth 

values of 𝑝 and 𝑞, it follows that ¬(𝑝 ∨  𝑞) ↔ ¬𝑝 ∧ ¬𝑞  

is a tautology and these formulas are logically equivalent. 

Similarly, we can prove that ¬(𝑝 ∧  𝑞) ≡ ¬𝑝 ∨ ¬𝑞.■ 

 

 

 

 

 

 

 



- 151 - 
 

Theorem. (Algebraic properties of connectives)  

(1) Commutative rules:  

(a)  𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝,    (b) 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ p. 

(2) Associative rules:  

     (a) (𝑝 ∧ 𝑞) ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟), 

     (b)  (𝑝 ∨ 𝑞) ∨ 𝑟 ≡ 𝑝 ∨ (𝑞 ∨ 𝑟). 

(3) Distributive rules:  

(a)  𝑝 ∧ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟),  

(b)   𝑝 ∨ (𝑞 ∧ 𝑟) ≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟). 

(4) Identity rules: 

(a)  𝑝 ∨ 0 ≡ 𝑝,       (b)  𝑝 ∧ 1 ≡ 𝑝 

(5) Negation rules: 

       𝑝 ∧ ¬𝑝 ≡ 0  and  𝑝 ∨ ¬𝑝 ≡ 1 .  

(6) Double negation rule:   

       ¬(¬𝑝)  ≡ 𝑝. 

(7) Idempotent rules:   

     𝑝 ∨ 𝑝 ≡ 𝑝  and  𝑝 ∧ 𝑝 ≡ 𝑝 .  

(8)   De Morgan's rules:   

      (a)  ¬(𝑝 ∧ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞 , 

      (b) ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞. 
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(9) Universal rules: 

     𝑝 ∧ 0 ≡ 0      and   𝑝 ∨ 1 = 1. 

(10) Absorption rules: 

       (a) 𝑝 ∨ (𝑝 ∧ 𝑞) ≡ 𝑝,        

       (b) 𝑝 ∧ (𝑝 ∨ 𝑞) ≡ 𝑝. 

(11) Alternative proof rule: 

  (a) 𝑝 ⟶ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ ¬𝑞) ⟶ 𝑟 ≡ (𝑝 ∧ ¬𝑟) ⟶ 𝑞. 

   (b) 𝑝 ∨ 𝑞 ⟶ 𝑟 ≡ (𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟). 

(12) Conditional rules:  

   (a) 𝑝 ⟶ 𝑞 ≡ ¬𝑝 ∨ 𝑞    

   (b) ¬(𝑝 ⟶ 𝑞) ≡ 𝑝 ∧ ¬𝑞. 

(13) Biconditional rules: 

          (a) 𝑝 ↔ 𝑞 ≡ (𝑝 ⟶ 𝑞) ∧ (𝑞 ⟶ 𝑝) 

          (b) 𝑝 ↔ 𝑞 ≡ (𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ ¬𝑞) 

          (c) 𝑝 ↔ 𝑞 ≡ (¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬q) 

(14) Rules of contrapositive: 

                        𝑝 ⟶ 𝑞 ≡ ¬ 𝑞 ⟶ ¬𝑝 

(15) Exportation – importation rule: 

                  𝑝 ⟶ (𝑞 ⟶ 𝑟) ≡ 𝑝 ∧ 𝑞 ⟶ 𝑟 

Proof.  Exercise. ◄ 
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Example.   

Use the algebraic properties of connectives to prove: 

(a) ¬(𝑝 ∧ (¬𝑝 ∨ 𝑞)) ≡ ¬𝑝 ∨ ¬𝑞; 

(b) [(𝑝 ∨ 𝑞) ∧ (𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟)] ⟶ 𝑟 is a tautology. 

Solution. 

(a) Exercise. 

(b)  [(𝑝 ∨ q) ∧ ((𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟))] ⟶ 𝑟 

     ≡ [(𝑝 ∨ 𝑞) ∧ ((𝑝 ∨ 𝑞) ⟶ 𝑟)] → 𝑟  

Alternative proof rule 

          ≡ [(𝑝 ∨ q) ∧ (¬(𝑝 ∨ 𝑞) ∨ r)] ⟶ 𝑟  

Conditional rule         

        ≡ [((𝑝 ∨ 𝑞) ∧ (¬(𝑝 ∨ 𝑞))) ∨ ((𝑝 ∨ 𝑞) ∧ 𝑟)] ⟶ 𝑟     

 Distributive rule 

          ≡ [0 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑟)] ⟶ 𝑟   Negation rule                  

          ≡ [(𝑝 ∨ 𝑞) ∧ 𝑟] ⟶ 𝑟     Identity rule 

          ≡ ¬[(𝑝 ∨ 𝑞) ∧ 𝑟] ∨ 𝑟     Conditional rule 

          ≡ [¬(𝑝 ∨ 𝑞) ∨ ¬𝑟] ∨ 𝑟  De Morgan's rule 

          ≡ ¬(𝑝 ∨ 𝑞) ∨ [¬r ∨ 𝑟]   Associative rule 

          ≡ ¬(𝑝 ∨ 𝑞) ∨ 1              Negation rule 

          ≡ 1                                 Idempotent rules. ■  
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Exercise Set (2.1)  

1- Which of the following are propositions? 

(a) Buy Premium Bonds! 

(b) The Apple Macintosh is a 16-bit computer. 

(c) There is a largest even number. 

(d) Why are we here?   

(e) 8 +  7 =  13.  

(f) 𝑎 +  𝑏 =  13. 

2- p is "1024 bytes is known as 1MB" and q is "A 

computer keyboard is an example of a data input device". 

Express the following formulas as English sentences in as 

natural a way as you can. Are the resulting propositions 

true or false?         

(a)  𝑝 ∧ 𝑞;  (b) )  𝑝 ∨ 𝑞;  ; (c) ¬𝑝. 

3- p is "𝑥 <  50"; q is "𝑥 >  40".  

Write as simply as you can: 

(a) ¬𝑝; (b) ¬𝑞; (c) 𝑝 ∧ 𝑞; (d) 𝑝 ∨  𝑞; (e) ¬𝑝 ∧ 𝑞; 

(f) ¬𝑝 ∧ ¬𝑞. 

One of these compound propositional functions always 

produces the output true, and one always outputs false. 

Which ones? 
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4- p is "I like Math" and q is "I am going to spend at least 

6 hours a week on Math". Write in as simple English as 

you can: 

(a) (¬𝑝)  ∧ 𝑞;  (b) (¬𝑝)  ∨  𝑞;   

(c) ¬(¬𝑝);  (d) (¬𝑝)  ∨  (¬𝑞);   

(e) ¬(𝑝 ∨  𝑞);  (f) (¬𝑝)  ∧ (¬𝑞);   

(g) 𝑝 → 𝑞 ; (h)  𝑝 ∧ 𝑞. 

5- Construct a truth table for each of these formulas: 

(a) 𝑝 ∧ ¬𝑝;   

(b) 𝑝 ∨ ¬𝑝; 

(c) (𝑝 ∨ ¬𝑞) → 𝑞;   

(d) (𝑝 ∨ 𝑞) → (𝑝 ∧ 𝑞); 

(e) 𝑝 → ¬𝑝;    

(f) 𝑝 ↔ ¬𝑝.  

6- Show that each of these implications is a tautology by 

using truth tables.  

 (a)  [∼ 𝑝 ∧ (𝑝 ∨ 𝑞)] → 𝑞.  

 (b)  [(𝑝 → 𝑞) ∧ (𝑞 → 𝑟)] ∧ (𝑝 → 𝑟) 
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7- Show that each implication in Exercise 6 is a tautology 

without using truth tables.  

8- Show that every pair in the following are logically 

equivalent:  

(a) 𝑝 → 𝑞 and ¬𝑞 → ¬𝑝  

(b)¬𝑝 ↔ 𝑞and𝑝 ↔ ¬𝑞 

     (c)    ¬(𝑝 ↔ 𝑞) and¬𝑝 ↔ ¬𝑞 

(d) (𝑝 → 𝑞) ∧ (𝑝 → 𝑟) and𝑝 → (𝑞 ∧ 𝑟) 

(e) (𝑝 → 𝑞) ∨ (𝑝 → 𝑟) and𝑝 → (𝑞 ∨ 𝑟) 

9- Show that(𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑟) → (𝑞 ∨ 𝑟) is a tautology. 

10- Show that   (𝑝 → 𝑞) → 𝑟 and   𝑝 → (𝑞 → 𝑟)  are not 

logically equivalent. 

11-Prove that:  

(a)  𝑝 ⟶ 𝑞 ≡ ¬ 𝑞 ⟶ ¬𝑝; 

(b)  ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞; 

(c)  𝑝 ⟶ 𝑞 ≡ ¬𝑝 ∨ 𝑞; 

(d)  (𝑝 ∧ 𝑞) ⟶ 𝑟 ≡ ¬𝑟 ⟶ (¬𝑝 ∨ ¬𝑞). 
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2.2 Predicates and Quantifiers 

(A) Predicates 

Predicates  are statements involving variables ( called 

predicate variables), such as: 

"𝑥 >  3", "𝑥 =  𝑦 + 3", "𝑥 +  𝑦 =  𝑧". 

They are not propositions because the truth value you 

give them will depend on the values assigned to the 

variables x and y. The domain of a predicate variable is 

the set of all values that may be substituted in place of the 

variable. 

In English you may have statements like this: 

1- She is Tall and Fair. 

2- x was born in a city y in the  year z. 

Often pronouns (I, he, she, you etc.) are used in place of 

variables. 

In the first case - we cannot say if the statement is true 

because that depends of who she is and in the second case 

the statement will get a truth value depending on variable 

x, y and z. 

Predicate are noted something like this 𝑃(𝑥, 𝑦, 𝑧).  
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For example 

𝑃(𝑥, 𝑦, 𝑧).  This stands for the predicate "𝑥 +  𝑦 =  𝑧". 

𝑀(𝑥, 𝑦). This stands for "x is married to y".  

In general, you have predicates in the form of: 

𝑃(𝑥) - this is a unary predicate (has one variable). 

𝑃(𝑥, 𝑦) - this is a binary predicate (has two variables). 

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛) - this is an n-ray or n-place predicate – 

(has n individual variables in a predicate). 

You have to choose the values for the variables - these 

can be from a set of humans - a specific human, a set of 

places or a place, a set of integers or an integer, a set of 

real numbers or a real number and so on. 

The values are chosen from a particular domain of values 

called a universe or a universe of discourse. 

If we take a look at this again: 

x was born in a city y in the year z. x is taken from a set of 

human beings, y is taken from a set of cities and z is taken 

from a set of years. This is called the underlying universe. 

Looking at this again: 

𝑃(𝑥, 𝑦, 𝑧).The values for the variables x, y and z will be 

taken from a set of integers or negative integers. 
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In some cases, you will have to specify the underlying 

universe because a certain predicate may be true for real 

numbers but false for not real numbers. 

In the case x has to be a human being and y has to be a 

city and z has to be a year. You cannot have y as an 

integer or z a colour for example. 

If you assign a particular value to each of the n place 

values in 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) then the predicate becomes a 

proposition and takes a truth value - true or false. 

Again the statement “x is greater than 3” has two parts. 

The first part, the variable x, is the subject of the 

statement. The second part, the predicate, “is greater 

than 3”, refers to a property that the subject of the 

statement can have. We can denote the statement “x is 

greater than 3” by 𝑃(𝑥) where P denotes the predicate 

“is greater than 3” and x is the variable. Once a value 

has been assigned to the variable x, the statement 𝑃(𝑥) 

becomes a proposition and has a truth value.  
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Example.  

Let 𝑃(𝑥) denote the statement “𝑥 >  3”. What are the 

truth values of the propositions 𝑃(4) and 𝑃(2)? 

Solution.  

We obtain the proposition 𝑃(4) by setting 𝑥 =  4 in the 

statement “𝑥 >  3”. Hence 𝑃(4), which is the proposition 

“4 >  3” is true.  

However, 𝑃(2) which is the proposition“ 2 >  3”, is 

false.∎ 

Example.  

Let 𝑄(𝑥, 𝑦) denote the statement "𝑥 =  𝑦 +  3." What 

are the truth values of the propositions 𝑄(1, 2) and 

𝑄(3, 0)? 

Solution. 

To obtain proposition 𝑄(1,2), set 𝑥 =  1 and 𝑦 =  2 in 

the statement 𝑄(𝑥, 𝑦). Hence𝑄(1, 2) is the proposition 

"1 =  2 +  3" which is false.  

The proposition 𝑄(3, 0) is the proposition "3 =  0 +  3" 

which is true. ∎ 
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Example.  

What are the truth values of the propositions 𝑃(1, 2, 3) 

and 𝑃(0, 0, 1), where 𝑃(𝑥, 𝑦, 𝑧) denote the statement 

“ 𝑥 +  𝑦 =  𝑧”? 

Solution. 

The proposition 𝑃(1, 2, 3) is obtained by setting 𝑥 =

 1, 𝑦 =  2, and 𝑧 =  3 in the statement 𝑃(𝑥, 𝑦, 𝑧). We see 

that 𝑃(1, 2, 3) is the proposition"1 +  2 =  3", which is 

true.  

Also, note that 𝑃(0, 0, 1), which is the proposition"0 +

 0 =  1" is false.∎ 

Definition. 

If 𝑃(𝑥) is a predicate and x has domain D, the truth set 

of 𝑃(𝑥) is the set of all elements of D that make 𝑃(𝑥) 

true when they are substituted for x. The truth set of 𝑃(𝑥) 

is denoted {𝑥 ∈  𝐷 ∶  𝑃(𝑥)} and we read as “the set of all 

x in D such that 𝑃(𝑥).” 
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Example.  

Let 𝑄(𝑛) be the predicate “n is a factor of 8.” Find the 

truth set of 𝑄(𝑛) if: 

(a) the domain of n is ℤ+, the set of all positive integers. 

(b) the domain of n is ℤ, the set of all integers. 

Solution. 

(a) The truth set is {1, 2, 4, 8} because these are exactly 

the positive integers that divide 8 evenly. 

(b) The truth set is {1, 2, 4, 8, −1, −2, −4, −8} because 

the negative integers −1,−2, −4, and −8 also divide into 

8 without leaving a remainder. ■ 

Definition. 

Let 𝑃(𝑥) and 𝑄(𝑥) be predicates with common domain D 

of x. The notation 𝑃(𝑥) ⇒ 𝑄(𝑥) means that every 

element in the truth set of 𝑃(𝑥) is in the truth set of 𝑄(𝑥). 

Similarly, 𝑃(𝑥) ⇔ 𝑄(𝑥) means that 𝑃(𝑥) and 𝑄(𝑥) have 

identical truth sets. 

Example.  

Let 𝑃(𝑥) be “x is a factor of 8”,  

𝑄(𝑥) be “x is a factor of 4”, 
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𝑅(𝑥) be “ 𝑥 <  5 and 𝑥 ≠ 3”, 

and let the domain of x be set of positive integers. Then 

Truth set of 𝑃(𝑥) is {1, 2, 4, 8}. 

Truth set of 𝑄(𝑥) is {1, 2, 4}. 

Since every element in the truth set of 𝑄(𝑥) is in the truth 

set of 𝑃(𝑥), then 𝑄(𝑥) ⇒ 𝑃(𝑥). 

Further, truth set of 𝑅(𝑥) is {1, 2, 4}, which is identical to 

the truth set of 𝑄(𝑥). Hence 𝑅(𝑥) ⇔ 𝑄(𝑥). ∎ 
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(B) Quantifiers 

(i) The Universal Quantifier " ∀ " 

One sure way to change predicates into propositions is to 

assign specific values to all their variables.  

For example, if x represents the number 35, the sentence 

“x is divisible by 5” is a true proposition.  

Another way to obtain propositions from predicates is to 

add quantifiers. Quantifiers are words that refer to 

quantities such as “some” or “all” and tell for how many 

elements a given predicate is true. 

The symbol ∀ is called the universal quantifier. 

Depending on the context, it is read as “for every,” “for 

each,” “for any,” “given any,” or “for all.”  

For example, another way to express the sentence  

“Every human being is mortal” 

 or 

“All human beings are mortal”  

is to write 

“∀ human beings x, x is mortal”, 

 

which you would read as 
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“For every human being x, x is mortal.” 

 If you let D be the set of all human beings, then you can 

symbolize the statement more formally by writing 

“∀𝑥 ∈ 𝐷, x is mortal”. 

In sentences containing a mixture of symbols and words, 

the ∀ symbol can refer to two or more variables.  

For instance, you could symbolize  

“For all real numbers x and y, 𝑥 + 𝑦 =  𝑦 + 𝑥.” 

as  

“∀ real numbers x and y, 𝑥 + 𝑦 =  𝑦 + 𝑥.” 

Definition.  

Let 𝑃(𝑥)  be a predicate and D the domain of x. A 

universal quantification of 𝑃(𝑥) is a proposition  

of the form “∀𝑥 ∈ 𝐷, 𝑃(𝑥).” It is defined to be true if, and 

only if, 𝑃(𝑥) is true for each individual x in D. It is 

defined to be false if, and only if, 𝑃(𝑥) is false for at least 

one x in D.  

The notation ∀𝑥𝑃(𝑥) is used for the universal 

quantification of 𝑃(𝑥) when the domain is known.  

Here ∀  is called the universal quantifier.  
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Example.  

Let 𝑃(𝑥) be the statement “𝑥 + 1 >  𝑥”. What is the 

truth value of the quantification ∀𝑥𝑃(𝑥), where the 

domain consists of all real numbers?  

Solution. 

Since 𝑃(𝑥) is true for all real numbers x, the 

quantification ∀𝑥𝑃(𝑥) is true. ∎ 

Example.  

Let 𝑄(𝑥) be the statement “𝑥 <  2”. What is the truth 

value of the quantification ∀𝑥𝑄(𝑥), where the domain 

consists of all real numbers?  

Solution. 

𝑄(𝑥) is not true for every real number x, since, for 

instance, 𝑄(3) is false. Thus ∀𝑥𝑄(𝑥)is false. ∎ 

Note. 

When all the elements in the universe of discourse can be 

listed, say 𝑥1, 𝑥2, … , 𝑥𝑛 it follows that the universal 

quantification ∀𝑥𝑃(𝑥) is the same as the conjunction 

𝑃(𝑥1) ∧ 𝑃( 𝑥2) ∧  … ∧ 𝑃( 𝑥𝑛). 
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Example.  

What is the truth value of ∀𝑥𝑃(𝑥), where 𝑃(𝑥) is the 

statement "𝑥2 < 10" and the universe of discourse 

consists of positive integers not exceeding 4? 

Solution. 

The statement ∀𝑥𝑃(𝑥) is the same as the conjunction 

𝑃(1) ∧ 𝑃(2) ∧ 𝑃(3) ∧ 𝑃(4). Since 𝑃(4),which is the 

statement"42 < 10" , is false, so ∀𝑥𝑃(𝑥) is false. ∎ 

To show that a statement of the form ∀𝑥𝑃(𝑥) is false, 

where 𝑃(𝑥) is a propositional function, we need only find 

one value of x in the universe of discourse for which 

𝑃(𝑥) is false. Such a value of x is called a 

counterexample to the statement ∀𝑥𝑃(𝑥). 

Example.  

Suppose that 𝑃(𝑥) is "𝑥2 > 0". To show the statement 

∀𝑥𝑃(𝑥) is false where the universe of discourse consists 

of all integers, we give a counterexample. We see that 

𝑥 =  0 is a counterexample since 𝑥2 = 0 when 𝑥 =  0 so 

that 𝑥2 is not greater than 0 when 𝑥 =  0.∎ 
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(ii) The Existential Quantifier “ ∃ ” 

The symbol ∃ denotes “there exists” and is said to be the 

existential quantifier. For example, the sentence  

“There is a student in Math211” 

can be written as 

“∃ a person x such that x is a student in Math211”, 

or, more formally, 

“∃𝑥 ∈ 𝑃 such that x is a student in Math211”, 

where 𝑃 is the set of all people.  

The domain of the predicate variable is generally 

indicated either between the ∃ symbol and the variable 

name or immediately following the variable name, and 

the words such that are inserted just before the predicate. 

Some other expressions that can be used in place of there 

exists are there is a, we can find a, there is at least 

one, for some, and for at least one.  

In a sentence such as  

“∃ integers m and n such that 𝑚 + 𝑛 = 𝑚 ∙ 𝑛,”  

the ∃ symbol is understood to refer to both m and n.   
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In more formal versions of symbolic logic, the words 

such that are not written out (although they are 

understood) and a separate ∃ symbol is used for each 

variable: “∃𝑚 ∈  ℤ (∃𝑛 ∈  ℤ(𝑚 + 𝑛 =  𝑚 ∙ 𝑛)).” 

Definition.  

Let 𝑃(𝑥)  be a predicate and D the domain of x. An 

existential statement is a statement of the form  

“∃𝑥 ∈ 𝐷 such that 𝑃(𝑥).” 

It is defined to be true if, and only if, 𝑃(𝑥) is true for at 

least one x in D. It is false if, and only if, 𝑃(𝑥) is false for 

all x in D. 

We use the notation ∃𝑥𝑃(𝑥) for the existential 

quantification of 𝑃(𝑥). 

Here ∃ is called the existential quantifier. 

      A domain must always be specified when a statement 

∃𝑥𝑃(𝑥) is used. Furthermore, the meaning of ∃𝑥𝑃(𝑥) 

changes when the domain changes. Without specifying 

the domain, the statement ∃𝑥𝑃(𝑥) has no meaning. The 

existential quantification ∃𝑥𝑃(𝑥) is read as:  

"There is an x such that 𝑃(𝑥)","There is at least one x 

such that 𝑃(𝑥)"  or   "For some 𝑥 𝑃(𝑥)". 
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Example.  

Let 𝑃(𝑥) denote the statement “𝑥 >  3”. What is the truth 

value of the quantification ∃𝑥𝑃(𝑥), where the domain 

consists of all real numbers? 

Solution.  

Because “𝑥 >  3” is sometimes true - for instance, when 

𝑥 =  4 , the existential quantification ∃𝑥𝑃(𝑥) of 𝑃(𝑥) is 

true.∎ 

Example.  

Let 𝑄(𝑥) denote the statement "𝑥 =  𝑥 +  1". What is 

the truth value of the quantification ∃𝑥𝑃(𝑥), where the 

domain consists of all real numbers?  

Solution.  

Because 𝑄(𝑥) is false for every real number x, the 

existential quantification of 𝑄(𝑥) which is ∃𝑥𝑃(𝑥) is 

false.∎ 

When all elements in the domain can be listed say 

𝑥1, 𝑥2, … , 𝑥𝑛 the existential quantification ∃𝑥𝑃(𝑥) is the 

same as the disjunction 𝑃(𝑥1) ∨ 𝑃( 𝑥2) ∨  …∨ 𝑃( 𝑥𝑛) 
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because this disjunction is true if and only if at least 

𝑃(𝑥1), 𝑃(𝑥2), … , 𝑃( 𝑥𝑛) is true. 

Example.  

What is the truth value of ∃𝑥𝑃(𝑥), where 𝑃(𝑥) is the 

statement "𝑥2 > 10" and the domain consists of the 

positive integers not exceeding 4? 

Solution.  

As the domain is {1, 2, 3, 4}, the proposition ∃𝑥𝑃(𝑥) is 

the disjunction 𝑃(1)  ∨  𝑃(2)  ∨  𝑃(3)  ∨ 𝑃(4).  

Because 𝑃(4), which is the statement "42 > 10", is true, 

it follows that ∃𝑥𝑃(𝑥) is true.∎ 
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●Translating from Formal to Informal Language 

Example.  

Rewrite the following formal statements in a variety of 

equivalent but more informal ways. Do not use the 

symbol ∀ or ∃. 

(a) ∀𝑥 ∈ ℝ, 𝑥2 ≥  0; 

(b) ∀𝑥 ∈ ℝ, 𝑥2 ≠ −1; 

(c) ∃𝑚 ∈ ℤ such that 𝑚2 = 𝑚.  

Solution.  

(a) Every real number has a nonnegative square. 

Or: All real numbers have nonnegative squares. 

Or: Any real number has a nonnegative square. 

Or: The square of each real number is nonnegative. 

(b) All real numbers have squares that do not equal −1. 

Or: No real numbers have squares equal to −1. 

(The words none are or no … are equivalent to the words 

all are not.) 

(c) There is a positive integer whose square is equal to 

itself. 

Or: We can find at least one positive integer equal to its 

own square. 
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Or: Some positive integer equals its own square. 

Or: Some positive integers equal their own squares. ∎ 

Another way to restate universal and existential 

statements informally is to place the quantification at the 

end of the sentence. For instance, instead of saying “For 

any real number x, 𝑥2 is nonnegative,” you could say “𝑥2 

is nonnegative for any real number x.” In such a case the 

quantifier is said to “trail” the rest of the sentence. 

●Trailing Quantifiers 

Example.  

Rewrite the following statements so that the quantifier 

trails the rest of the sentence. 

(a) For any integer 𝑛, 2𝑛 is even. 

(b) There exists at least one real number 𝑥 such that 𝑥2 ≤

0. 

Solution. 

(a) 2𝑛 is even for any integer 𝑛. 

(b) 𝑥2 ≤ 0 for some real number x. 

Or: 𝑥2 ≤ 0  for at least one real number x. ∎ 
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●Translating from Informal to Formal Language 

Example.  

Rewrite each of the following statements formally. Use 

quantifiers and variables. 

(a) All triangles have three sides. 

(b) No dogs have wings. 

(c) Some programs are structured. 

Solution. 

(a) ∀ triangle t, t has three sides. 

Or: ∀𝑡 ∈ 𝑇, t has three sides (where T is the set of all 

triangles). 

(b) ∀ dog d, d does not have wings. 

Or: ∀𝑑 ∈ 𝐷, d does not have wings (where D is the set of 

all dogs). 

(c) ∃ a program p such that p is structured. 

Or: ∃𝑝 ∈ 𝑃 such that p is structured (where P is the set of 

all programs). ■ 
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●Universal Conditional Statements 

A reasonable argument can be made that the most 

important form of statement in mathematics is the 

universal conditional statement: 

∀𝑥, if 𝑃(𝑥) then 𝑄(𝑥). 

Familiarity with statements of this form is essential if you 

are to learn to speak mathematics. 

●Writing Universal Conditional Statements Informally 

Example.  

Rewrite the following statement informally, without 

quantifiers or variables. 

∀𝑥 ∈ ℝ, if 𝑥 > 2, then 𝑥2 > 4. 

Solution.  

If a real number is greater than 2, then its square is 

greater than 4. 

Or: Whenever a real number is greater than 2, its square 

is greater than 4. 

Or: The square of any real number greater than 2 is 

greater than 4. 

Or: The squares of all real numbers greater than 2 are 

greater than 4. ■ 
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Example.  

Rewrite each of the following statements in the form 

∀……., if……., then……… . 

(a) If a real number is an integer, then it is a rational 

number. 

(b) All bytes have eight bits. 

(c) No fire trucks are green.  

Solution.  

(a) ∀ real number x, if x is an integer, then x is a rational 

number. 

Or: ∀𝑥 ∈ ℝ, if 𝑥 ∈ ℤ then 𝑥 ∈ ℚ. 

(b) ∀𝑥, if x is a byte, then x has eight bits. 

(c) ∀𝑥, if x is a fire truck, then x is not green. ■ 
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●Equivalent Forms of Universal and Existential 

Statements 

Observe that the two statements  

“∀ real number x, if x is an integer then x is rational” 

and 

“∀ integer x, x is rational” 

mean the same thing because the set of integers is a 

subset of the set of real numbers. Both have informal 

translations  

“All integers are rational.” 

In fact, a statement of the form 

∀𝑥 ∈ 𝑈, if 𝑃(𝑥) then 𝑄(𝑥) 

can always be rewritten in the form 

∀𝑥 ∈ 𝐷, 𝑄(𝑥) 

by narrowing U to be the subset D consisting of all values 

of the variable x that make 𝑃(𝑥) true. Conversely, a 

statement of the form 

∀𝑥 ∈ 𝐷, 𝑄(𝑥) 

can be rewritten a 

∀𝑥, if x is in D then  𝑄(𝑥) 
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Example.  

Rewrite the following statement in the two forms 

“∀𝑥, if…….. then………. ” 

and 

“∀………𝑥,………. ”: 

 “All squares are rectangles” . 

Solution.  

 “∀𝑥, if x is a square  then x is a rectangle”.  

and 

“∀ square x, x is a rectangle”. ■ 

Similarly, a statement of the form 

“∃𝑥 such that 𝑃(𝑥) and 𝑄(𝑥)” 

can be rewritten as 

“∃𝑥 ∈ 𝐷 such that 𝑄(𝑥),” 

where D is the set of all x for which 𝑃(𝑥) is true. 

Example.  

A prime number is an integer greater than 1 whose only 

positive integer factors are itself and 1.  

Consider the statement  

“There is an integer that is both prime and even.”  

Let 𝑃(𝑛) be “n is prime” and 𝐸(𝑛) be “n is even.”  
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Use the notation 𝑃(𝑛) and 𝐸(𝑛) to rewrite this statement 

in the following two forms: 

a. ∃𝑛 such that ………∧ ………. 

b. ∃………𝑛 such that ………. 

Solution.  

(a) ∃𝑛 such that 𝑃(𝑛) ∧ 𝐸(𝑛). 

(b) Two answers:  

∃ a prime number n such that 𝐸(𝑛). 

∃ an even number n such that 𝑃(𝑛). ■ 

Example.  

What do the following statements mean, where the 

domain in each case consists of the real numbers? 

(1)  ∀𝑥 < 0(𝑥2 > 0); 

(2)  ∀𝑦 ≠ 0(𝑦3 ≠ 0); 

(3) and ∃𝑧 > 0(𝑧2 = 2). 

Solution. 

(1) The statement ∀𝑥 < 0(𝑥2 > 0) states that for every 

real number x with 𝑥 <  0, 𝑥2 > 0. That is, it states  

"The square of a negative real number is positive".  

This statement is the same as ∀𝑥(𝑥 < 0 → (𝑥2 > 0)). 



- 180 - 
 

(2) The statement ∀𝑦 ≠ 0 (𝑦3 ≠ 0), states that for every 

real number y with 𝑦 ≠ 0, we have 𝑦3 ≠ 0 that is, it 

states  

"the cube of every nonzero real number is nonzero."  

Note that this statement is equivalent to 

∀𝑦(𝑦 ≠ 0 ⟶ 𝑦3 ≠ 0). 

(3) The statement ∃𝑧 > 0(𝑧2 = 2) states that there exists 

a real number z with 𝑧 > 0 such that 𝑧2 = 2. That is, it 

states  

"there is a positive root of 2." 

This statement is equivalent to ∃𝑧(𝑧 > 0 ∧ 𝑧2 = 2).∎ 

● Precedence of Quantifiers 

     The quantifiers  and  have higher precedence than 

all logical operators from propositional calculus. For 

example, ∀𝑥𝑃(𝑥) ∨ 𝑄(𝑥) is the disjunction of ∀𝑥𝑃(𝑥) 

and 𝑄(𝑥). In other words, it means (∀𝑥𝑃(𝑥)) ∨ 𝑄(𝑥) 

rather than ∀𝑥(𝑃(𝑥) ∨ 𝑄(𝑥)). 
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Logical Equivalence Involving Quantifiers 

Definition.  

Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 

truth value no matter which predicates are substituted into 

these statements. We use the notation 𝑆  𝑇 to indicate 

that two statements S and T involving predicates and 

quantifiers are logically equivalent. 

Example. 

Show that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) and ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) are 

logically equivalent, where the same domain is used 

throughout. 

Solution. 

To show that these statements are logically equivalent, 

we must show that they always take the same truth value, 

no matter what predicate 𝑃 and 𝑄 are, and no matter 

which domain of discourse is used.  

Suppose we have particular predicates 𝑃 and 𝑄, with a 

common domain. We can show that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) 

and ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) are logically equivalent by doing 
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two things. First, we show that if ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is 

true, then ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true.  

Second, we show that if ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true, then 

∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true. 

     So, suppose that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true. This means 

that if a is in the domain, then 𝑃(𝑎)  𝑄(𝑎) is true. Hence 

𝑃(𝑎) is true and 𝑄(𝑎). Because 𝑃(𝑎) is true and 𝑄(𝑎) for 

every element in the domain, we can conclude that 

 ∀𝑥𝑃(𝑥) and ∀𝑥𝑄(𝑥) are both true. This means that 

∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true. 

     Next, suppose that ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true. It 

follows that ∀𝑥𝑃(𝑥) is true and ∀𝑥𝑄(𝑥) is true. Hence if 

a is in the domain, then 𝑃(𝑎) is true and 𝑄(𝑎) is true. It 

follows that for all a, 𝑃(𝑎)  ∧  𝑄(𝑎) is true. It follows that 

∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true.  

Therefore ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) ≡ ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥). ∎ 

Exercise.  

Prove that ∃𝑥(𝑝(𝑥) ∨ 𝑄(𝑥)) ≡ ∃𝑥𝑝(𝑥) ∨ ∃𝑥𝑄(𝑥), 

where the same domain is used throughout. 
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Chapter (VIII)

Graph Theory

8.1 Introduction 

Graphs are discrete structures consisting of vertices and 

edges that connect these vertices. Problems in almost 

every conceivable discipline can be solved using graph 

models. Using graph models, we can determine whether 

it is possible to walk down all the streets in a city without 

going down a street twice, and we can find the number of 

colors needed to color the regions of a map. Graphs can 

be used to determine whether two computers are 

connected by a communications link using graph modules 

of computer networks. Also, graphs can be used to 

determine whether a circuit can be implemented on a 

planner circuit board. Graph with weights assigned to 

their edges can be used to solve problems such as finding 

the shortest path between two cities in a transportation 

network.  

   This chapter will introduce the basic concepts of graph 

theory and present many different graph models. 



- 490 - 
 

8.2 Graphs and Graph Models 

Definition. 

Conceptually, a graph is formed by vertices and edges 

connecting the vertices.  

 

Formally. Let 𝑉 be a non-empty set, 𝐸 be another set, and 

𝑓 be a mapping such that 𝑓: 𝐸 → {{𝑥, 𝑦}: 𝑥, 𝑦 ∈ 𝑉}. Then 

the triple 𝐺 =  (𝑉, 𝐸, 𝑓) is called a graph.  

We call that 𝑉 (or 𝑉(𝐺)) the set of vertices of G and 𝐸 

(or 𝐸(𝐺)) the set of edges (lines) of 𝐺. The graph 𝐺 =

 (𝑉, 𝐸, 𝑓) is finite if each 𝑉 and 𝐸 is finite. We consider 

only the finite graphs without explicitly state.  

☻ If 𝑣 ∈ 𝑓(𝑒), then  𝑣 is an vertex for e.  

☻ If 𝑎, 𝑏 ∈ 𝑉, then 𝑎 is adjacent to 𝑏 if there exists 𝑒 ∈

𝐸 such that 𝑓(𝑒) = {𝑎, 𝑏}.  
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☻ Also, 𝑎 ∈ 𝑉 is adjacent to itself if there exists  𝑒 ∈ 𝐸 

such that 𝑓(𝑒) = {𝑎} and e is called a loop at a.  

☻ If 𝑒1,𝑒2 ∈ 𝐸 are incident with a common vertex, then 

we say 𝑒1 and 𝑒2 adjacent edges.  

☻If 𝑓(𝑒1) = 𝑓(𝑒2) = {𝑎, 𝑏}, then 𝑒1 and 𝑒2 are called a 

multiple edge.  

☻ If 𝑓(𝑒1) = 𝑓(𝑒2) = {𝑣}, then 𝑒1 and 𝑒2 are called a 

multiple loop at 𝑣.  

☻ A graph G with no loops and no multiple edges is a 

simple graph.  

☻ If 𝐺 = (𝑉, 𝐸, 𝑓) is a graph and 𝑓(𝑒) = {𝑎, 𝑏}, then we 

write  𝑒 = {𝑎, 𝑏} and so we write 𝐺 = (𝑉, 𝐸) instead of 

𝐺 = (𝑉, 𝐸, 𝑓).  

We sometimes consider the following generalizations of 

graphs: a multigraph is a pair (𝑉, 𝐸) where 𝑉 is a set and 

𝐸 is a multiset of unordered pairs from 𝑉 . In other 

words, we allow more than one edge between two 

vertices. A pseudograph is a pair (𝑉, 𝐸) where 𝑉 is 

a set and 𝐸 is a multiset of unordered multisets of size 
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two from 𝑉 . A pseudograph allows loops, namely edges 

of the form {𝑎, 𝑎} for 𝑎 ∈ 𝑉. 

☻ In general, we visualize graphs by using points to 

represent vertices and line segments, possibly curved, to 

represent edges. 

Definition.  

The set of all neighbors of a vertex 𝑣 of 𝐺 =  (𝑉, 𝐸), 

denoted by 𝑁(𝑣), is called the neighborhood of 𝑣. If 𝐴 is 

a subset of 𝑉 , we denote by 𝑁(𝐴) the set of all vertices 

in 𝐺 that are adjacent to at least one vertex in 𝐴. So, 

𝑁(𝐴)  = ⋃ 𝑁(𝑣)𝑣∈𝐴 . 

To keep track of how many edges are incident to a vertex, 

we make the following definition. 

Definition.  

Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑥 ∈ 𝑉. The degree of 𝑥 

(denoted by 𝑑𝐺( 𝑥)) is the number of edges incident with 

it, except a loop at 𝑥 contributes twice to the degree of  𝑥.  

☻ If 𝑑𝐺(𝑥) = 0, then 𝑥 is said to be isolated vertex.  

☻ A vertex is pendant if and only if it has degree one. 
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☻ A vertex with odd degree is said to be odd vertex and 

one with even degree is said to be even vertex.   

☻ The degree sequence of a graph 𝐺 is the sequence of 

degrees of vertices of 𝐺 in non-increasing order.  

Note. 

We represent a graph by means of a diagram. 

 

Thus, in the graph 𝐻:   

☻ The points 𝑎 and 𝑏 are adjacent, but 𝑎 and 𝑑 are not. 

☻ The lines e2 and e6 are adjacent but e6 and e7 are not.  

☻Although the lines e6 and e7 are intersect in the 

diagram but their intersection is not a vertex of the 

graph. 
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☻ The degree sequence of the graph 𝐻 is (3,3,3,3,2). 

Example. 

What are the degrees and what are the neighborhoods of 

the vertices in the graphs 𝐺 and 𝐻 displayed in the given 

figure? 

Solution. 

In 𝐺, 𝑑𝐺(𝑎) = 2, 𝑑𝐺(𝑏) = 𝑑𝐺(𝑐) = 𝑑𝐺(𝑓) = 4, 𝑑𝐺(𝑑) =

1, 𝑑𝐺(𝑒) = 3, and 𝑑𝐺(𝑔) = 0. The neighborhoods of 

these vertices are 𝑁(𝑎) = {𝑏, 𝑓}, 𝑁(𝑏) = {𝑎, 𝑐, 𝑒, 𝑓}, 

𝑁(𝑐) = {𝑏, 𝑑, 𝑒, 𝑓}, 𝑁(𝑑) = {𝑐}, 𝑁(𝑒) = {𝑏, 𝑐, 𝑓}, 

𝑁(𝑓) = {𝑎, 𝑏, 𝑐, 𝑒}, and 𝑁(𝑔) = 𝜙.  

In 𝐻, 𝑑𝐻(𝑎) = 4, 𝑑𝐻(𝑏) = 𝑑𝐻(𝑒) = 6, 𝑑𝐻(𝑐) = 1, and 

𝑑𝐻(𝑑) = 5. The neighborhoods of these vertices are 

𝑁(𝑎) = {𝑏, 𝑑, 𝑒}, 𝑁(𝑏) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑁(𝑐) = {𝑏}, 

𝑁(𝑑) = {𝑎, 𝑏, 𝑒}, and 𝑁(𝑒)  =  {𝑎, 𝑏, 𝑑}.■ 
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Example. 

Consider the graph 𝐺 = (𝑉, 𝐸), where 

𝑉 = {1, 2, 3} and 𝐸 = {{1, 2}, {1, 3}}. 

Then the given drawing represents this 

graph.■ 

Example.  

Let 𝑉 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6} be 

a set of six people at a party, and 

suppose that 𝑝1 shook hands with 

𝑝2 and 𝑝4, 𝑝3 shook hands with 

𝑝4; 𝑝5 and 𝑝6, and 𝑝5 and 𝑝6 

shook hands. Let 𝐺 = (𝑉, 𝐸) be the graph with edge set 𝐸 

consisting of pairs of people who shook hands. Then 

𝐸 = {{𝑝1, 𝑝2}, {𝑝1, 𝑝4}, {𝑝3, 𝑝4}, {𝑝3, 𝑝5}, {𝑝3, 𝑝6}, {𝑝5, 𝑝6}} 

A drawing of G is given in given figure. ■ 

Example. 

Let ℤ denote the set of integers and let 

𝑉 = {(𝑥, 𝑦) ∈  ℤ × ℤ ∶ 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 2}: 

Then 𝑉 is just the set of points in the plane with integer 

co-ordinates between 0 and 2. Now, suppose 𝐺 = (𝑉, 𝐸) 
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is the graph where 𝐸 is the set of pairs of vertices of 𝑉 at 

distance 1 from each other. In other words, (𝑥, 𝑦) and 

(𝑥′, 𝑦′) are adjacent iff (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 =  1. 

We check that the edge set is 

𝐸 = {{(0, 0)(0, 1)}, {(0, 0)(1, 0)}, {(0, 1)(0, 2)}, 

{(1, 0)(2, 0)}, {(1, 0)(1, 1)}, ({1, 1)(1, 2)}, {(1, 1), (2, 1)}, 

 {(0, 1), (1, 1)}, {(0, 2)(1, 2)}, {(2, 0)(2, 1)}, {(2, 1), (2, 2)},  

{(1, 2), (2, 2)}}: 

This is a cumbersome way to 

write the edge set of 𝐺, as 

compared to the drawing of 𝐺  

in the given figure, which is 

much easier to absorb. The 

graph is called grid graph. ■ 

Example. 

Let 𝑉 be the set of binary strings of length three, so 

𝑉 = {000, 001, 010, 100, 011, 101, 110, 111}: 

Then let 𝐸 be the set of pairs of strings which differ in 

one position. Then 

𝐸 = {{000, 001}, {010, 000}, {100, 000}, … , {111, 101}, 
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{111, 110}, {111, 011}}: 

The reader should fill in the rest of the edges as an 

exercise. Once again, this graph actually has a very nice 

drawing (which explains why it is sometimes called the 

cube graph).  

 

 

Example. 

Consider the graph 𝐺 = (𝑉, 𝐸), where the vertex set is 

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}  and the edge set is 

𝐸 = {{𝑣1, 𝑣4}, {𝑣1, 𝑣7}, {𝑣2, 𝑣3}, {𝑣2, 𝑣6}, {𝑣2, 𝑣7}, 

{𝑣3, 𝑣4}, {𝑣3, 𝑣5}, {𝑣3, 𝑣7}, {𝑣4, 𝑣5}, {𝑣4, 𝑣6}, {𝑣5, 𝑣6},  

{𝑣5, 𝑣7}}: 

In the following figure, two drawings of 𝐺 are shown (the 

reader should verify that they are both drawings of 𝐺) 
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Example.  

Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑔}, 𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 

{𝑐, 𝑑}}   

1. Represent the graph 𝐺; 

2. Find the degree of each vertex and isolated vertices; 

3. Find multiple edges and loops; 

4. Is 𝐺 a simple graph? Why? 

Solution. 

1. 
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2. 𝑑𝐺(𝑎) = 5, 𝑑𝐺(𝑏) = 2, 𝑑𝐺(𝑐) = 4, 𝑑𝐺(𝑑) = 1,  

𝑑𝐺(𝑔) = 0. Therefore the degree sequence is 

(5, 4, 2, 1, 0). Since 𝑑𝐺(𝑔) = 0  then 𝑔 is the only 

isolated vertex. 

3. Since 𝑒3 = 𝑒4 = {𝑎, 𝑐}, 𝑒3 and 𝑒4 are multiple edges 

and hence 𝐺 is a multiple graph. Also, since 𝑒1 = {𝑎}, 

then 𝑒1 is a loop.  

4. 𝐺 is not a simple graph. It is a pseudograph as it 

contains multiple edges and a loop. ∎ 

Example.  

If 𝐺 = (𝑉, 𝐸, 𝑓) is the graph given by the following 

diagram  

 

Find 𝑉, 𝐸, 𝑓.  
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Solution.  

It is clear that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}.  and  𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10}.  

The following table represents the function f: 

𝐸 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 

𝑓(𝑒) {𝑣1, 𝑣2} {𝑣2, 𝑣3} {𝑣3, 𝑣4} {𝑣4} {𝑣4} 

 

𝐸 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 

𝑓(𝑒) {𝑣4, 𝑣5} {𝑣5, 𝑣2} {𝑣1, 𝑣5} {𝑣1, 𝑣5} {𝑣1, 𝑣6} 

.■ 

Definition.  

We write 𝛿(𝐺) = min{𝑑𝐺(𝑣): 𝑣 ∈ 𝑉} and ∆(𝐺) =

max{𝑑𝐺(𝑣): 𝑣 ∈ 𝑉} for the minimum degree and 

maximum degree of 𝐺, respectively.  

Note.  

The graphs we have introduced are undirected graphs. 

Their edges are also said to be undirected. To construct a 

graph model, we may find it is necessary to assign 

direction to the edges of a graph. 
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Definition.  

A directed graph (or digraph)  𝐺 = (𝑉, 𝐸, 𝑓) consists of 

a non-empty set of vertices 𝑉 and set of directed edges 

(or arcs) with the map 𝑓: 𝐸 → {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑉}, 𝑖. 𝑒., each 

directed edge is associated with an ordered pair of 

vertices. The directed edge associated with the ordered 

pair (𝑢, 𝑣) is said to start at 𝑢 and end at 𝑣. If 𝑓(𝑒1) =

𝑓(𝑒2) in digraph, then 𝑒1 and  𝑒2 are multiple edges. If a 

digraph  𝐺 contains no multiple edges or graph loops, 

then it a directed simple graph. 

Example. 

G is a simple directed graph while H and K are not. 

 

Note: 

(a) If 𝑒 = (𝑢, 𝑣) is an edge of a digraph 𝐺, then 𝑢 is the 
initial vertex and 𝑣 is the terminal vertex for the edge 𝑒. 
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(b) In a digraph 𝐺, let 𝑁+(𝑣) and 𝑁−(𝑣)  denote the sets 

of vertices adjacent from 𝑣 and to 𝑣, respectively. These 

are the out-neighborhood of 𝑣 and the in-neighborhood 

of 𝑣 respectively. Thus 𝑁+(𝑣) = {𝑢: (𝑣, 𝑢) ∈ 𝐸} and 

𝑁−(𝑣) = {𝑢: (𝑢, 𝑣) ∈ 𝐸}. For example, in the digraph 

drawn below,  𝑁+(𝑥) = {𝑢, 𝑣, 𝑤} and 𝑁−(𝑥) = {𝑣}. 

 

(c) A graph with both directed and undirected edge is 

called a  mixed graph. 

 

Definition.   

In a graph with directed edge the in-degree of a vertex v, 

denoted by (or 𝑑𝐺
−(𝑣)) is the number of edges with v as 
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their terminal vertex. The out-degree of a vertex 𝑣 

denoted by (or 𝑑𝐺
+(𝑣))) is the number of edges with v as 

their initial vertex. A loop at 𝑣 contributes one to the in-

degree and one to the out-degree of  𝑣. In other words, 

𝑑𝐺
−(𝑣) = |𝑁−(𝑣)|  and 𝑑𝐺

+(𝑣) = |𝑁+(𝑣)|. 

Example.    

Find the in-degree and out-degree of each vertex in the 

digraph G Shown in the following diagram. 

 

Solution. 

The following tables gives the out-degree and in-degree 

of each vertex in Graphs G-(a), G-(b) and G-(c), 

respectively. 

      G-(a):                              G-(b): 

v a b c d  a b c d 

𝑑𝐺
−(𝑣) 3 1 2 1 2 3 2 1 

𝑑𝐺
+(𝑣) 1 2 1 3 2 4 1 1 

 


