CHAPTER (11

MATHEMATICAL LOGIC
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Chapter (1)

Mathematical Logic

The rules of mathematical logic specify methods of
reasoning mathematical statements. Greek philosopher,
Aristotle, was the pioneer of logical reasoning. Logical
reasoning provides the theoretical base for many areas of
mathematics and consequently computer science. It has
many practical applications in computer science like
design of computing machines, artificial intelligence,
definition of data structures for programming languages

etc.

2.1 Propositional Calculus

Propositional Logic is concerned with statements to

29

which the truth wvalues, “true” and “false”, can be
assigned. The purpose is to analyze these statements
either individually or in a composite manner.

Definition.

In logic, a proposition (or a statement) is a meaningful
declarative sentence that is either true or false, but not
both.
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The truth value of a proposition is True "T or 1" if it is a
true proposition and false "F or 0" if it is a false
proposition. Letters p,q,r,.. are used to denote
proposition and are called propositional variables.
* The following propositions are true

(i) A triangle has three sides.

(ii) 7 is odd.

(iii) 2 divides 24.
* The following propositions are false:

()5+3=09.

(if) Makkah is the capital of Saudi Arabia.

(iii) 2 divides 7.
* The following are not proposition:

(1) Who are you?

Not declarative sentences
(2) Help yourself!
Not declarative sentence.
B u—-2=1
Neither true nor false.
Du—-—v=w.

Neither true nor false.
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(5) Broccoli tastes good.
Meaningful declarative sentences, but is not proposition
but rather matters of opinion or taste.

Definition.

A formula (or a compound proposition) A formula is
formed from existing propositions using connectives.

Definition.

Since we need to know the truth value of a proposition in
all possible scenarios, we consider all the possible
combinations of the propositions which are joined
together by Logical Connectives to form the given
compound proposition. This compilation of all possible
scenarios in a tabular format is called a truth table.

In particular, truth tables can be used to tell whether a
propositional expression is true or false for all legitimate
input values. Practically, a truth table is composed of one
column for each input variable (for example, p and q),
and one final column for all of the possible results of the
logical operation that the table is meant to represent (for
example, p — q). Each row of the truth table therefore

contains one possible configuration of the input variables
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(for instance, p is true (written 1 or T) q is false (written O
or F)), and the result of the operation for those values.

% Logical Connectives

Connectives are either unary operations like logical
identity and logical negation, or binary operations like
logical conjunction, logical disjunction and logical
implication.

Definition. (Logical identity and logical Negation).

Let p be a proposition.

e Logical identity

Logical identity is an operation on one logical value,
typically the value of a proposition that produces a value
of true if its operand is true and a value of false if its
operand is false. The truth table for the logical identity

operator is as follows:

Logical Identity
p p
Operand | Value
1 1
0 0
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e Logical negation

Logical negation is an operation on one logical value,
typically the value of a proposition, which produces a
value of true if its operand is false and a value of false if
its operand is true.

The truth table for logical negation (written as -p or ~p)

is as follows:
Logical negation
p -p
1 0
0 1
Example.

The negation of the proposition "The sun shines on the

screen" is "The sun does not shine on the screen".m

We will now introduce the logical connectives (binary
operations) that are used to form formulas.

Definition. (Logical Conjunction” A")

Logical conjunction is an operation on two logical
values, typically the values of two propositions, that

produces a value of true if both of its operands are true.
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The truth table for p AND q (written as p A Q) is as

follows:
Logical Conjunction

p q pAq

1 1 1

1 0 0

0 1 0

0 0 0
Example.

Let p be the proposition “It is sunny today” and q be the
proposition “The sun shines on the screen”. Then the
conjunction of these propositions, p A g, is the
proposition “It is sunny today and the sun shines on the
screen”. This proposition is true when the day is sunny
and the sun shines on the screen. It is false otherwise. m
Definition. (Logical Disjunction" v ")

Logical disjunction is an operation on two logical
values, typically the values of two propositions, that
produces a value of true if at least one of its operands is

true.
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The truth table for p OR q (written as p Vv q) is as

follows:
Logical disjunction

p q pVvVgq

1 1 1

1 0 1

0 1 1

0 0 0
Example.

The disjunction of the propositions p and g where p and g
are the same propositions as in the above example, p V q,
is the proposition “It is sunny today or the sun shines on
the screen”. This proposition is true on any day that is
either sunny day or the sun shines on the screen
(including both). It is only false on days that are not
sunny and when it also does not shine on the screen. m

Definition.
(“Logical Implication” or “Conditional Statement” " — "
Logical implication is associated with an operation on

two logical values, typically the values of two
propositions, that produces a value of false just in the
singular case the first operand is true and the second

operand is false.
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The truth table associated with the Logical implication if

p then g (symbolizedas p — q) is as

Logical implication

P q P—4q
1 1 1
1 0 0
0 1 1
0 0 1

It may also be useful to note that p - g and —=p V ¢q
have the same truth table. A variety of terminology is
used to express p = q. Some of them are: “if p, then g,
“p implies g”, “if p, q”, “ponlyif g”, “p is sufficient for
q”, “a sufficient condition for q is p”, “q if p”, “q
whenever p”, “qwhen p”, “qis necessary for p”

“a necessary condition for p is q”, “q follows from p”

and "q unless —p.
Example.

Let p the proposition "Aly study well* and q the
proposition "Aly will be a Computer Science student".
Then the formula p — q -as a formula in English- is "If
Aly study well, then he will be a Computer Science

student". m
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Definition. (Converse, Contra-positive and Inverse)

There are some related conditional statements that can be
formed from p — q. The conditional statement g — p is
called the converse of p - q. The contra-positive of

p — q is the conditional statement —q — —p.
The statement —p — —q is called the inverse of p — gq.

The contra-positive, =q — —p, of a conditional statement

p — q has the same truth value as p — q.

On the other hand, neither the converse, g — p, nor the
inverse —p — —q, has the same truth value as p — q for

all possible truth values of p and q.

Example.

What are the contra-positive, the converse, and the
inverse of the conditional statement “The home team

wins whenever it is raining”.

Solution.

Because “q whenever p” is one of the ways to express the
conditional statement p — g, the original statement can

be rewritten as “If it is raining, then the home team wins”.
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Consequently, the contra-positive of this conditional
statement 1s “If the home team does not win, then it is not
raining”.

The converse 1s “If the home team wins, then it is
raining”.

The inverse “If it is not raining, then the home team does
not win”. Only the contrapositive is equivalent to the

original statement. m
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We now introduce another way to combine propositions.
Definition. (Biconditional " & ").

Biconditional (also known as logical equality) is an
operation on two logical values, typically the values of
two propositions, that produces a value of true if both
operands are false or both operands are true.

The truth table for p XNOR g (writtenasp < q)isas

follows:

Logical Equality

1% q pP<g
1 1 1
1 0 0
0 1 0
0 0 1

So p « g is true if p and g have the same truth value
(both true or both false), and false if they have different
truth values. There are some other ways to express p < g
“p is necessary and sufficient for q”; “p iff g” where
“iff” is the abbreviation for “if and only if” and " if p

then g and conversely "
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Example.

Let p be the statement ““You can pass the exam.” and let q
be the statement “You study well”. Then p & q is the
statement “You can pass the exam if and only if you
study well”. m

Remark.

The previous operators (=, A, V, =, <) are the

common operators which we will focus on.

Definition. (Exclusive Or" @ ").
Truth table for Exclusive Or" @ "

Logical Equality

p q ' pPg
1 1 0
1 0 1
0 1 1
0 0 0

Actually, this operator can be expressed by using other
operators:
p @ qisthesameas = (p < q).

@ is used often in CSE. So we have a symbol for it.
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® Order of precedence

As a way of reducing the number of necessary
parentheses, one may introduce precedence rules for
operators. — has higher precedence than A, A higher than
Vv, and V higher than —.

Here is a table that shows a commonly used precedence
of logical operators.

The order of precedence determines which connective is

the "main connective™ when interpreting a formula.

Operator | Precedence
R 1
A 2
V 3
— 4
- 5

Example.

—p A g means (=p) A q;

pAq —rmeans (pAq) —;

pV qA-—r — sisshort for [p Y (q A (—rr))] - s.

When in doubt, use parenthesis. m
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Example.

Find the truth table for the following formula: "If you
studied discrete Mathematics well and did not neglect
studying logic, you would gain high marks in the exam".
Solution,

Suppose that

p: studied discrete Mathematics well;

q: neglect studying logic;

r: gain high mark in the exam.

The formulaisp A =g — r

plqg| r | 2q | pAaq | pAag—oT
111] 1] o 0 1
11] 0] o 0 1
110 1 1 1 1
1/o] o] 1 1 0
ol 1] 1] o 0 1
ol 1] o] o 0 1
00 1 1 0 1
olo] o | 1 0 1
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e Tautologies and Contradictions
Definition.

A formula that is always true, no matter what the truth
values of the propositions that occur in it, is called a

tautology.
A formula that is always false is called contradiction.

A formula that is neither a tautology nor a contradiction

is called a contingency.
Example.

We can construct examples of tautologies and
contradictions using just one proposition. Consider the
truth tables of p v —p and p A —p. Since p vV —p is always
true, it is a tautology. Since p A —p is always false, it is a

contradiction.

Example of a tautology and a contradiction

P |=Pp |pVaPp |pASP
110 1 0

0] 1 1 0
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e Logical Equivalence

Definition.

Two formulas p and g are logically equivalent, denoted
by p = gq, if and only if they have the same truth values
for all possible combination of truth values for the

propositional variables. Also,

Definition.

Two formulas p and q are called logically equivalent if

p < q is a tautology.

| Checking logical equivalence |

1. Construct and compare truth tables (most powerful)
2. Use logical equivalence laws

Example.

The formulas p — g and —p V q are logically equivalent.

plq | P|p=>q| "pPVQq
1] 1 0 1 1
1107} 0 0 0
0 1 1 1 1
0] 0 1 1 1
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Example.

The formulas —(p vV q) and —=p A —q are logically

equivalent.
p| q |-P|q pVqg | ~(Vq | —PA-q
1 0]0] 1 0 0
1{o]o0o 1] 1 0 0
ol 1]1|0]| 1 0 0
0/lo0] 1|1 O 1 1

Since the truth values of the formulas —(p Vv q) and
—p A —q agree for all possible combinations of the truth
values of p and g, it follows that =(p V q) & =p A =q
Is a tautology and these formulas are logically equivalent.

Similarly, we can prove that —=(p A q) = —p V —q.m
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Theorem. (Algebraic properties of connectives)
(1) Commutative rules:
@ pAq=qnp, (B)pvg=qVp.
(2) Associative rules:
@ @Ag)AT=pA(qAT),
(b) pvg)vr =pv(gvr).
(3) Distributive rules:

@pA(@vr)=(@EAqQV(pAT),

(b) pv@Aar)=@Vg@ A(Vr).
(4) ldentity rules:
(@pv0=p, (b) pAl=p
(5) Negation rules:
pA-p=0and pVv-ap=1.
(6) Double negation rule:
—(=p) =p.
(7) Idempotent rules:
pVp=p and pAp=p.
(8) De Morgan's rules:
@ -(pArqg) =-pV-q,
(b) ~(pVq) =-pA-q.
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(9) Universal rules:
pA0O=0 and pv1=1.
(10) Absorption rules:
@pv@Arg =p,
O)pA(pVva) =p.

(11) Alternative proof rule:
@p—=@Vvr)=@A-q) =r=@PA-T)—q.
O)pvg—r=@—or)A(g—r1).

(12) Conditional rules:
@p—q=-pVq
(b) =(p = @) =pAr-q.

(13) Biconditional rules:
@peog=@—=q9A@—Dp)
)peqg=@Aq)V(=pA-q)
Cpreqg=EpVve AV q)

(14) Rules of contrapositive:

p—q=—~q—"p

(15) Exportation — importation rule:

p—(@—1r)=EpAq—rT

Proof. Exercise. €
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Example.

Use the algebraic properties of connectives to prove:

@ =(pA(=pVq)=-pV-g;

b)) [(Vvg A(p — 1) A(q — r)] — risatautology.

Solution.

(a) Exercise.
®) [V A (@ =A==
=[@evOAr(pvg) —r)-r
Alternative proof rule
=[vaAr(=(pvgVvr]—r
Conditional rule
=[(pvA=@VODV (Vv Ar)] —r
Distributive rule
=[0V((pVq)Ar)] — r Negation rule
=[(pVvq)Ar] — r ldentity rule
= =[(pVvq)Ar]vr Conditional rule
=[=(pVq)V r]vr DeMorgan's rule
=-(pVvq)V[-rvr] Associative rule
=-(pvg)Vvli Negation rule

=1 Idempotent rules. =
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Exercise Set (2.1)

1- Which of the following are propositions?

(a) Buy Premium Bonds!

(b) The Apple Macintosh is a 16-bit computer.

(c) There is a largest even number.

(d) Why are we here?

(e)8 + 7 = 13.

Ha+ b = 13,
2- p is "1024 bytes is known as 1IMB" and q is "A
computer keyboard is an example of a data input device".
Express the following formulas as English sentences in as
natural a way as you can. Are the resulting propositions
true or false?
(@ pAg; (b)) pVvg; ;(c)p.
3-pis"x < 50";qis"x > 40"
Write as simply as you can:
@ —p;(b) =q; ©)pAg; (d)p Vv q;(e) =p Ag;
() =p A gq.
One of these compound propositional functions always
produces the output true, and one always outputs false.
Which ones?
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4- pis "l like Math" and g is "'l am going to spend at least
6 hours a week on Math". Write in as simple English as

you can:
@ (=p) Aq; (b) (=p) V q;
(€) =(=p); (d) (=p) V (=q);
€)@ Vv q); () (=p) A(=q);
@p-q;(h) prg.
5- Construct a truth table for each of these formulas:
(@) p A —p;
(0) p v —p;
) (Vv -q)—aq
d@vae - @Ar;
(&) p - —p;
() p < —p.
6- Show that each of these implications is a tautology by

using truth tables.
@ [~pA(eVval-gq
) [(p=DA@->1IAPp—->T1)
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7- Show that each implication in Exercise 6 is a tautology

without using truth tables.

8- Show that every pair in the following are logically

equivalent:
(@) p - qgand —q - —p
(b)=p < gandp < —q
(€) —(p « q) and—p © —q
@d (@-q9)A(—>r)andp = (qAT)
€ (@-qVvp->r)andp—(qVvr)
9- Show that(p vV g) A (=p V1) — (q Vr) is a tautology.
10- Show that (p - q) »rand p —»(q —»r) are not
logically equivalent.
11-Prove that:
@ p—q=-q9—
(b) —(Vvqg)=-pV-g;
() p—q=-pVvg;
d @Aq —r=-r—(apV-gq).
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2.2 Predicates and Quantifiers
(A) Predicates

Predicates are statements involving variables ( called
predicate variables), such as:
"x > 3" "x=y+3""x +y = z".
They are not propositions because the truth value you
give them will depend on the values assigned to the
variables x and y. The domain of a predicate variable is
the set of all values that may be substituted in place of the
variable.
In English you may have statements like this:

1- She is Tall and Fair.

2- X was born in a city y in the year z.
Often pronouns (I, he, she, you etc.) are used in place of
variables.
In the first case - we cannot say if the statement is true
because that depends of who she is and in the second case
the statement will get a truth value depending on variable
X,y and z.

Predicate are noted something like this P(x, y, z).
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For example

P(x,y,z). This stands for the predicate "x + y = z".
M (x, y). This stands for "x is married to y".

In general, you have predicates in the form of:

P(x) - this is a unary predicate (has one variable).
P(x,y) - this is a binary predicate (has two variables).
P(xq1,x5,...,%,) - this is an n-ray or n-place predicate —
(has n individual variables in a predicate).

You have to choose the values for the variables - these
can be from a set of humans - a specific human, a set of
places or a place, a set of integers or an integer, a set of
real numbers or a real number and so on.

The values are chosen from a particular domain of values
called a universe or a universe of discourse.

If we take a look at this again:

X was born in a city y in the year z. x is taken from a set of
human beings, y is taken from a set of cities and z is taken
from a set of years. This is called the underlying universe.
Looking at this again:

P(x,y,z).The values for the variables x, y and z will be

taken from a set of integers or negative integers.
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In some cases, you will have to specify the underlying
universe because a certain predicate may be true for real
numbers but false for not real numbers.

In the case x has to be a human being and y has to be a
city and z has to be a year. You cannot have y as an
integer or z a colour for example.

If you assign a particular value to each of the n place
values in P(xq, x5, ..., X,) then the predicate becomes a
proposition and takes a truth value - true or false.

Again the statement “x is greater than 3" has two parts.
The first part, the variable x, is the subject of the
statement. The second part, the predicate, “is greater
than 37, refers to a property that the subject of the
statement can have. We can denote the statement “x is
greater than 3” by P(x) where P denotes the predicate
“is greater than 3" and x is the variable. Once a value
has been assigned to the variable x, the statement P(x)

becomes a proposition and has a truth value.
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Example.

Let P(x) denote the statement “x > 3”. What are the
truth values of the propositions P(4) and P(2)?

Solution.

We obtain the proposition P(4) by setting x = 4 in the
statement “x > 3”. Hence P(4), which is the proposition
“4 > 3”istrue.

However, P(2) which is the proposition“2 > 3”, is
false.m

Example.

Let Q(x,y) denote the statement "x = y + 3." What
are the truth values of the propositions Q(1,2) and
Q(3,0)?

Solution.

To obtain proposition Q(1,2),set x = 1 and y = 2 in
the statement Q(x,y). HenceQ(1,2) is the proposition
"1 = 2 + 3" which is false.

The proposition Q(3,0) is the proposition "3 = 0 + 3"

which is true. m
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Example.

What are the truth values of the propositions P(1,2,3)
and P(0,0,1), where P(x,y,z) denote the statement
“x +y =27

Solution.

The proposition P(1,2,3) is obtained by setting x =
1,y = 2,and z = 3 in the statement P(x, y, z). We see
that P(1,2,3) is the proposition"1 + 2 = 3", which is
true.

Also, note that P(0,0, 1), which is the proposition"0 +
0 = 1"is false.m

Definition.

If P(x) is a predicate and x has domain D, the truth set
of P(x) is the set of all elements of D that make P (x)
true when they are substituted for x. The truth set of P(x)
Is denoted {x € D : P(x)}and we read as “the set of all
x in D such that P(x).”
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Example.

Let Q(n) be the predicate “n is a factor of 8.” Find the
truth set of Q(n) if:

(a) the domain of n is Z™, the set of all positive integers.
(b) the domain of n is Z, the set of all integers.

Solution.

(a) The truth set is {1, 2, 4, 8} because these are exactly
the positive integers that divide 8 evenly.

(b) The truth setis {1, 2, 4, 8,—1,—2,—4,—8} because
the negative integers —1, —2, —4, and —8 also divide into
8 without leaving a remainder. =

Definition.

Let P(x) and Q(x) be predicates with common domain D
of x. The notation P(x) = Q(x) means that every
element in the truth set of P(x) is in the truth set of Q (x).
Similarly, P(x) & Q(x) means that P(x) and Q(x) have
identical truth sets.

Example.

Let P(x) be “X is a factor of 87,

Q(x) be “x is a factor of 4”,
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R(x)be“x < 5andx # 37,

and let the domain of x be set of positive integers. Then
Truth set of P(x) is {1, 2, 4, 8}.

Truth set of Q(x) is {1, 2,4}.

Since every element in the truth set of Q (x) is in the truth
set of P(x), then Q(x) = P(x).

Further, truth set of R(x) is {1, 2, 4}, which is identical to
the truth set of Q(x). Hence R(x) & Q(x). m
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(B) Quantifiers
(i) The Universal Quantifier " v "

One sure way to change predicates into propositions is to
assign specific values to all their variables.

For example, if x represents the number 35, the sentence
“x is divisible by 5” is a true proposition.

Another way to obtain propositions from predicates is to
add quantifiers. Quantifiers are words that refer to
quantities such as “some” or “all” and tell for how many
elements a given predicate is true.

The symbol V is called the universal quantifier.
Depending on the context, it is read as “for every,” “for

29 ¢¢

each,” “for any,” “given any,” or “for all.”

For example, another way to express the sentence
“Every human being is mortal”

or
“All human beings are mortal”

IS to write

“Y human beings x, x is mortal”,

which you would read as
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“For every human being X, X is mortal.”
If you let D be the set of all human beings, then you can
symbolize the statement more formally by writing
“Vx € D, x is mortal”.
In sentences containing a mixture of symbols and words,
the v symbol can refer to two or more variables.
For instance, you could symbolize
“For all real numbers xandy, x +y = y + x.”
as
“Vreal numbersxandy, x+y =y +x.”

Definition.

Let P(x) be a predicate and D the domain of x. A
universal quantification of P(x) is a proposition

of the form “Vx € D, P(x).” It is defined to be true if, and
only if, P(x) is true for each individual x in D. It is
defined to be false if, and only if, P(x) is false for at least
one x in D.

The notation VxP(x) is used for the universal
quantification of P(x) when the domain is known.

Here V is called the universal quantifier.
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Example.

Let P(x) be the statement “x +1 > x”. What is the
truth value of the quantification VxP(x), where the
domain consists of all real numbers?

Solution.

Since P(x) is true for all real numbers x, the
quantification VxP(x) is true. m

Example.

Let Q(x) be the statement “x < 2”. What is the truth
value of the quantification VxQ(x), where the domain
consists of all real numbers?

Solution.

Q(x) is not true for every real number X, since, for
instance, Q(3) is false. Thus VxQ (x)is false. m

Note.

When all the elements in the universe of discourse can be
listed, say xi,x,,..,x, it follows that the universal
quantification VxP(x) is the same as the conjunction
P(x ) AP(x) A ...AP(xp).
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Example.

What is the truth value of VxP(x), where P(x) is the
statement "x* < 10" and the universe of discourse
consists of positive integers not exceeding 4?

Solution.

The statement VxP (x) is the same as the conjunction
P(1) AP(2) AP(3) AP(4). Since P(4),which is the
statement"42 < 10", is false, so VxP(x) is false. m

To show that a statement of the form VxP(x) is false,
where P(x) is a propositional function, we need only find
one value of x in the universe of discourse for which
P(x) is false. Such a value of x is called a
counterexample to the statement VxP (x).

Example.

Suppose that P(x) is "x“ > 0". To show the statement
VxP(x) is false where the universe of discourse consists
of all integers, we give a counterexample. We see that
x = 0 is a counterexample since x> = 0 whenx = 00

that x2 is not greater than O whenx = 0. m
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(ii) The Existential Quantifier « 3 »
The symbol 3 denotes “there exists” and is said to be the
existential quantifier. For example, the sentence

“There 1s a student in Math211”
can be written as
“J a person x such that x is a student in Math211”,
or, more formally,
“Jx € P such that x is a student in Math211”,
where P is the set of all people.
The domain of the predicate variable is generally
indicated either between the 3 symbol and the variable
name or immediately following the variable name, and
the words such that are inserted just before the predicate.
Some other expressions that can be used in place of there
exists are there is a, we can find a, there is at least
one, for some, and for at least one.
In a sentence such as
“Jintegersmand nsuchthatm+n=m-n,”

the 3 symbol is understood to refer to both m and n.
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In more formal versions of symbolic logic, the words
such that are not written out (although they are
understood) and a separate 3 symbol is used for each
variable: “Im € Z (An € Z(m+n= m-n)).”
Definition.
Let P(x) be a predicate and D the domain of x. An
existential statement is a statement of the form

“Jx € D such that P(x).”
It is defined to be true if, and only if, P(x) is true for at
least one x in D. It is false if, and only if, P(x) is false for
all x in D.
We use the notation 3IxP(x) for the existential
quantification of P (x).
Here 3 is called the existential quantifier.

A domain must always be specified when a statement
AxP(x) is used. Furthermore, the meaning of JIxP(x)
changes when the domain changes. Without specifying
the domain, the statement 3xP(x) has no meaning. The
existential quantification 3xP(x) is read as:

"There is an x such that P(x)","There is at least one x
such that P(x)" or "For some x P(x)".
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Example.

Let P(x) denote the statement “x > 3”. What is the truth
value of the quantification 3xP(x), where the domain
consists of all real numbers?

Solution.

Because “x > 3”is sometimes true - for instance, when
x = 4, the existential quantification 3xP(x) of P(x) is
frue.m

Example.

Let Q(x) denote the statement "x = x + 1". What is
the truth value of the quantification 3xP(x), where the
domain consists of all real numbers?

Solution.

Because Q(x) is false for every real number X, the
existential quantification of Q(x) which is IxP(x) is
false.m

When all elements in the domain can be listed say

X1, X5, ..., X, the existential quantification 3xP(x) is the

same as the disjunction P(x;) VP(x3) V ..V P(xy)
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because this disjunction is true if and only if at least
P(xy),P(x;), ..., P(x;) is true.

Example.

What is the truth value of 3xP(x), where P(x) is the
statement "x< > 10" and the domain consists of the
positive integers not exceeding 4?

Solution.

As the domain is {1, 2, 3,4}, the proposition IxP(x) is
the disjunction P(1) v P(2) v P(3) vV P(4).

Because P(4), which is the statement "42 > 10", is true,

it follows that 3xP (x) is true.m
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eTranslating from Formal to Informal Language
Example.

Rewrite the following formal statements in a variety of
equivalent but more informal ways. Do not use the
symbol Vv or 3.

(@) Vx € R, x? > 0;

(b) Vx € R, x? # —1;

(c) 3m € Z such that m? = m.

Solution.

(a) Every real number has a nonnegative square.

Or: All real numbers have nonnegative squares.

Or: Any real number has a nonnegative square.

Or: The square of each real number is nonnegative.

(b) All real numbers have squares that do not equal —1.
Or: No real numbers have squares equal to —1.

(The words none are or no ... are equivalent to the words
all are not.)

(c) There is a positive integer whose square is equal to
itself.

Or: We can find at least one positive integer equal to its

own square.
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Or: Some positive integer equals its own square.

Or: Some positive integers equal their own squares. =
Another way to restate universal and existential
statements informally is to place the quantification at the
end of the sentence. For instance, instead of saying “For
any real number X, x? is nonnegative,” you could say “x?
IS nonnegative for any real number x.”” In such a case the
quantifier is said to “trail” the rest of the sentence.
eTrailing Quantifiers

Example.

Rewrite the following statements so that the quantifier
trails the rest of the sentence.

(a) For any integer n, 2n is even.

(b) There exists at least one real number x such that x? <
0.

Solution.

(@) 2n is even for any integer n.
(b) x? < 0 for some real number x.

Or: x2 < 0 for at least one real number x. =
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eTranslating from Informal to Formal Language
Example.

Rewrite each of the following statements formally. Use
quantifiers and variables.

(a) All triangles have three sides.

(b) No dogs have wings.

(c) Some programs are structured.

Solution.

(a) V triangle t, t has three sides.

Or: vVt € T, t has three sides (where T is the set of all
triangles).

(b) V dog d, d does not have wings.

Or: vd € D, d does not have wings (where D is the set of
all dogs).

(c) 3 a program p such that p is structured.

Or: Ip € P such that p is structured (where P is the set of

all programs). =

174 -



eUniversal Conditional Statements
A reasonable argument can be made that the most
important form of statement in mathematics is the
universal conditional statement:

Vvx, iIf P(x) then Q(x).
Familiarity with statements of this form is essential if you
are to learn to speak mathematics.
e\Writing Universal Conditional Statements Informally

Example.

Rewrite the following statement informally, without
quantifiers or variables.

Vx € R, if x > 2, then x? > 4.

Solution.

If a real number is greater than 2, then its square is
greater than 4.

Or: Whenever a real number is greater than 2, its square
IS greater than 4.

Or: The square of any real number greater than 2 is
greater than 4.

Or: The squares of all real numbers greater than 2 are

greater than 4. m
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Example.

Rewrite each of the following statements in the form

(a) If a real number is an integer, then it is a rational
number.

(b) All bytes have eight bits.

(c) No fire trucks are green.

Solution.

(a) V real number X, if x is an integer, then x is a rational
number.

Or.vx e R, if x € Z then x € Q.

(b) Vx, if x is a byte, then x has eight bits.

(c) Vx, if x is a fire truck, then x is not green. m
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eEquivalent Forms of Universal and Existential
Statements
Observe that the two statements
“¥ real number x, if x is an integer then x is rational”
and
“V integer X, X is rational”
mean the same thing because the set of integers is a
subset of the set of real numbers. Both have informal
translations
“All integers are rational.”
In fact, a statement of the form
Vx € U, if P(x) then Q(x)
can always be rewritten in the form
Vx € D, Q(x)
by narrowing U to be the subset D consisting of all values
of the variable x that make P (x) true. Conversely, a
statement of the form
Vx € D, Q(x)
can be rewritten a

Vx, if xisin D then Q(x)
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Example.

Rewrite the following statement in the two forms

“Va,if....... then.......... ”
and
1 VAR Xyeaaannnn. ”

“All squares are rectangles” .

Solution.

“Vx, if x is a square then x is a rectangle”.
and

“V squarex, X is a rectangle”. m
Similarly, a statement of the form

“Jx such that P(x) and Q(x)”
can be rewritten as

“Jx € D such that Q(x),”

where D is the set of all x for which P(x) is true.
Example.
A prime number is an integer greater than 1 whose only
positive integer factors are itself and 1.
Consider the statement
“There is an integer that is both prime and even.”
Let P(n) be “nis prime” and E'(n) be “n is even.”
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Use the notation P(n) and E (n) to rewrite this statement
in the following two forms:

a. dn such that ... ... ... )

Solution.

(@) 3n such that P(n) A E(n).

(b) Two answers:

3 a prime number n such that E(n).

3 an even number n such that P(n). m

Example.

What do the following statements mean, where the
domain in each case consists of the real numbers?
(1) Vx < 0(x% > 0);

(2) Yy #0(y° # 0);

(3)and 3z > 0(z2 = 2).

Solution.

(1) The statement Vx < 0(x? > 0) states that for every
real number x with x < 0, x? > 0. That is, it states
"The square of a negative real number is positive".

This statement is the same as Vx(x < 0 > (x2 > 0)).
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(2) The statement Vy # 0 (y3 # 0), states that for every
real number y with y # 0, we have y3 # 0 that is, it
states
"the cube of every nonzero real number is nonzero."
Note that this statement is equivalent to
Vy(y £ 0 — y3 # 0).
(3) The statement 3z > 0(z? = 2) states that there exists
a real number z with z > 0 such that z2 = 2. That is, it
states
"there is a positive root of 2."

This statement is equivalent to 3z(z > 0 A z? = 2). =
e Precedence of Quantifiers

The quantifiers vV and 3 have higher precedence than
all logical operators from propositional calculus. For
example, VxP(x) Vv Q(x) is the disjunction of VxP(x)
and Q(x). In other words, it means (VxP(x))V Q(x)
rather than Vx(P(x) Vv Q(x)).
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L ogical Equivalence Involving Quantifiers
Definition.

Statements involving predicates and quantifiers are
logically equivalent if and only if they have the same
truth value no matter which predicates are substituted into
these statements. We use the notation S =T to indicate
that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example.

Show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are
logically equivalent, where the same domain is used
throughout.

Solution.

To show that these statements are logically equivalent,
we must show that they always take the same truth value,
no matter what predicate P and Q are, and no matter
which domain of discourse is used.

Suppose we have particular predicates P and Q, with a
common domain. We can show that Vx(P(x) A Q(x))

and VxP(x) A VxQ(x) are logically equivalent by doing
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two things. First, we show that if Vx(P(x) A Q(x)) is
true, then VxP(x) A VxQ(x) is true.

Second, we show that if VxP(x) A VxQ(x) is true, then
Vx(P(x) A Q(x)) is true.

So, suppose that Vx(P(x) A Q(x)) is true. This means
that if a is in the domain, then P(a) A Q(a) is true. Hence
P(a) is true and Q(a). Because P(a) is true and Q(a) for
every element in the domain, we can conclude that
VxP(x) and VxQ(x) are both true. This means that
VxP(x) AVxQ(x) is true.

Next, suppose that VxP(x) A VxQ(x) is true. It
follows that VxP(x) is true and VxQ (x) is true. Hence if
a is in the domain, then P(a) is true and Q(a) is true. It
follows that for all a, P(a) A Q(a) is true. It follows that
Vx(P(x) A Q(x)) is true.

Therefore Vx(P(x) A Q(x)) = VxP(x) A VxQ(x). m

Exercise.

Prove that Elx(p(x) Y, Q(x)) = Jxp(x) vV IxQ(x),

where the same domain is used throughout.
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Chapter (V)
Graph Theory

8.1 Introduction

Graphs are discrete structures consisting of vertices and
edges that connect these vertices. Problems in almost
every conceivable discipline can be solved using graph
models. Using graph models, we can determine whether
it is possible to walk down all the streets in a city without
going down a street twice, and we can find the number of
colors needed to color the regions of a map. Graphs can
be used to determine whether two computers are
connected by a communications link using graph modules
of computer networks. Also, graphs can be used to
determine whether a circuit can be implemented on a
planner circuit board. Graph with weights assigned to
their edges can be used to solve problems such as finding
the shortest path between two cities in a transportation

network.

This chapter will introduce the basic concepts of graph

theory and present many different graph models.
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8.2 Graphs and Graph Models
Definition.

Conceptually, a graph is formed by vertices and edges

connecting the vertices.

Formally. Let V be a non-empty set, E be another set, and
f be a mapping such that f: E - {{x,y}:x,y € V}. Then
the triple G = (V,E, f) is called a graph.

We call that V (or V(G)) the set of vertices of G and E
(or E(G)) the set of edges (lines) of G. The graph ¢ =
(V,E, f) is finite if each V and E is finite. We consider

only the finite graphs without explicitly state.
® If v € f(e), then v isan vertex for e.

® If a,b €V, then a is adjacent to b if there exists e €
E such that f(e) = {a, b}.
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® Also, a € V is adjacent to itself if there exists e € E

such that f(e) = {a} and e is called a loop at a.

® If e; e, € E are incident with a common vertex, then

we say e; and e, adjacent edges.

o®If f(e;) = f(e;) = {a, b}, then e; and e, are called a

multiple edge.

® If f(e;) = f(e,) = {v}, then e; and e, are called a

multiple loop at v.

® A graph G with no loops and no multiple edges is a
simple graph.
®© IfG=(V,E,f)isagraph and f(e) = {a, b}, then we
write e = {a, b} and so we write G = (V,E) instead of
G = (V,E,f).

We sometimes consider the following generalizations of
graphs: a multigraph is a pair (V, E) where V is a set and
E is a multiset of unordered pairs from IV . In other
words, we allow more than one edge between two
vertices. A pseudograph is a pair (V, E) where V' is

a set and E is a multiset of unordered multisets of size

- 491 -



two from V . A pseudograph allows loops, namely edges

of the form {a, a} fora € V.

® In general, we visualize graphs by using points to
represent vertices and line segments, possibly curved, to
represent edges.

Definition.

The set of all neighbors of a vertex v of G = (V,E),
denoted by N(v), is called the neighborhood of v. If A is
a subset of V , we denote by N(A) the set of all vertices
in G that are adjacent to at least one vertex in A. So,
N(A) = UyeaN(v).

To keep track of how many edges are incident to a vertex,

we make the following definition.

Definition.

Let G = (V,E) be a graph and x € V. The degree of x
(denoted by d;( x)) is the number of edges incident with

it, except a loop at x contributes twice to the degree of x.
® If d;(x) = 0, then x is said to be isolated vertex.

® A vertex is pendant if and only if it has degree one.
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® A vertex with odd degree is said to be odd vertex and

one with even degree is said to be even vertex.

® The degree sequence of a graph G is the sequence of

degrees of vertices of G in non-increasing order.
Note.

We represent a graph by means of a diagram.

€2 ¢

Graph H:
Thus, in the graph H:
® The points a and b are adjacent, but a and d are not.

® The lines e; and es are adjacent but e and e; are not.
® Although the lines es and e; are intersect in the
diagram but their intersection is not a vertex of the

graph.
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® The degree sequence of the graph H is (3,3,3,3,2).
Example.
What are the degrees and what are the neighborhoods of

the vertices in the graphs G and H displayed in the given

figure?

L 3=
p o
=l
e

a f e g e d

Solution.

InG,dg(a) =2,ds(b) = dg(c) =dg(f) =4, dg(d) =
1,d;(e) = 3,and d;(g) = 0. The neighborhoods of
these verticesare N(a) = {b,f}, N(b) = {a,c, e, [},
N(c) ={b,d,e, f}, N(d) = {c}, N(e) = {b,c, [},

N(f) ={a,b,c,e},and N(g) = ¢.

InH,dy(a) = 4,dy(b) =dy(e) =6,dy(c) =1, and
dy(d) = 5. The neighborhoods of these vertices are
N(a) ={b,d,e}, N(b) ={a,b,c,d, e}, N(c) = {b},
N(d) ={a,b,e},and N(e) = {a,b,d}.m
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Example.
Consider the graph G = (V, E), where & F
V={1,2,3}and E = {{1, 2},{1, 3}}.

Then the given drawing represents this

—

graph.m

Example.
Let V = {p1, 02, D3, P4, D5, Ps } bE p "
a set of six people at a party, and

suppose that p; shook hands with

P @ N —p 1

p, and p,, ps shook hands with \

. \ -\_\\.\ .;;I_.-""
pa; Ps and pg, and ps and pg 2 ® v,

shook hands. Let G = (V, E) be the graph with edge set E
consisting of pairs of people who shook hands. Then

E = {{p1, 02}, {p1, P4}, {3, P4}, {03, P53, {03, D6}, {Ds, D6 1}
A drawing of G is given in given figure. m

Example.

Let Z denote the set of integers and let

V={(x,y) € ZXZ:0<x<20<y<2}%

Then V is just the set of points in the plane with integer

co-ordinates between 0 and 2. Now, suppose G = (V,E)
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Is the graph where E is the set of pairs of vertices of V at
distance 1 from each other. In other words, (x, y) and
(x',y") are adjacent iff (x —x )2 + (y —y')? = 1.

We check that the edge set is

E = {{(0,0)(0,1)},{(0,0)(1,0)},{(0,1)(0, 2)},
{(1,0)(2,0)}{(1,00(1, D} {1, (L, 2} {(1,1), (2, D},
{(0,1),(1,1D},{(0,2)(1,2)},{(2,0)(2, D}L{(2, 1), (2,2)},
{(1,2),(2,2)}}:

o (0,2) (1.2) (2.2)
This is a cumbersome way to

§ @

®

write the edge set of G, as

compared to the drawing of G (0,1)8 ® 9(2.1)

in the given figure, which is

much easier to absorb. The 0 & 0
(0,0) (1,0 (2,0)

graph is called grid graph. =

Example.

Let V be the set of binary strings of length three, so

v ={000,001,010,100,011,101,110,111}:

Then let E be the set of pairs of strings which differ in
one position. Then

E = {{000,001},{010, 000}, {100,000}, ...,{111,101},
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{111,110}, {111,011}}:

The reader should fill in the rest of the edges as an
exercise. Once again, this graph actually has a very nice
drawing (which explains why it is sometimes called the

cube graph).

101 111

100 AN

v ®
000 010

Example.

Consider the graph G = (V, E), where the vertex set is

V = {v{,v,,v3,1,, Vs, Vs, U7} and the edge set is

E = {vy,v4},{v1,v7},{v2, v3}, {v2, 6}, {v2, V7],

{vs, v}, {vs, 5}, {vs, v7 1, {va, s} {va, v6}, {vs, v},

{vs, v7}}:

In the following figure, two drawings of G are shown (the

reader should verify that they are both drawings of G)
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Example.

Let G = (V,E) beagraph, whereV ={a,b,c,d, g}, E =
{e1,ez,e3,e4,e5,66} = {{a}, {a,b},{a,c},{a c}{b c},
{c,d}}

1. Represent the graph G;

2. Find the degree of each vertex and isolated vertices;

3. Find multiple edges and loops;

4. Is G asimple graph? Why?

Solution.
1.
b d
ez e5 €6
a
EJG & 9
ey < £

Graph &
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2. dG(a) = 5, dG(b) = 2, dG(C) = 4, dG(d) = 1,
d;(g) = 0. Therefore the degree sequence is
(5,4,2,1,0). Since d;(g) = 0 then g is the only

iIsolated vertex.

3. Since e; = e, = {a,c}, e3 and e, are multiple edges
and hence G is a multiple graph. Also, since e; = {a},
then e is a loop.

4. G is not a simple graph. It is a pseudograph as it
contains multiple edges and a loop. =

Example.

If G = (V,E, f) is the graph given by the following

diagram

FindV,E, f.
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Solution.
Itis clearthat V = {vy,v,, V3,14, Vs, Vg}. and E =
{eq,e5,e3,6e,, 65,60, €7, €5, €9, €10}

The following table represents the function f:

E eq e, €3 e, ec

fe) | {vy, v} | {vo,v3} | {vs,va} | {va} | {va}

E € €7 €g €9 €10
f@) | {va,vs} | {vs, v} | {vy,vs} | {vi,vs} | {v1,v6}
o
Definition.

We write §(G) = min{d;(v):v € V}and A(G) =
max{d;(v): v € V} for the minimum degree and

maximum degree of G, respectively.
Note.

The graphs we have introduced are undirected graphs.
Their edges are also said to be undirected. To construct a
graph model, we may find it is necessary to assign

direction to the edges of a graph.
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Definition.

A directed graph (or digraph) G = (V,E, f) consists of
a non-empty set of vertices V and set of directed edges
(or arcs) with the map f: E - {(x,y):x,y € V},i.e., each
directed edge is associated with an ordered pair of
vertices. The directed edge associated with the ordered
pair (u,v) is said to start at u and end at v. If f(e;) =
f(e,) in digraph, then e; and e, are multiple edges. If a
digraph G contains no multiple edges or graph loops,

then it a directed simple graph.

Example.

G is a simple directed graph while H and K are not.

Note:

(@) If e = (u, v) is an edge of a digraph G, then u is the

initial vertex and v is the terminal vertex for the edge e.
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(b) In a digraph G, let N*(v) and N~ (v) denote the sets
of vertices adjacent from v and to v, respectively. These
are the out-neighborhood of v and the in-neighborhood
of v respectively. Thus N*(v) = {u: (v,u) € E} and
N~ (v) = {u: (u,v) € E}. For example, in the digraph

drawn below, N*(x) = {u,v,w}and N~ (x) = {v}.

o ur

»
L

A

U &£

(c) A graph with both directed and undirected edge is

called a mixed graph.

Graph Terminology.

Type Edges Multiple Edges Allowed? Loops Allowed ?
Simple graph Undirected No No
Multigraph Undirected Yes No
Pseudograph Undirected Yes Yes
Simple directed graph Directed No No
Directed multigraph Directed Yes Yes
Mixed graph Directed and undirected Yes Yes
Definition.

In a graph with directed edge the in-degree of a vertex v,

denoted by (or d; (v)) is the number of edges with v as
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their terminal vertex. The out-degree of a vertex v
denoted by (or df (v))) is the number of edges with v as
their initial vertex. A loop at v contributes one to the in-

degree and one to the out-degree of v. In other words,
dg (v) = IN~(v)| and dg(v) = INT(v)I.
Example.

Find the in-degree and out-degree of each vertex in the

digraph G Shown in the following diagram.

a) (b)
@G =)
|' i
- o\
G [
Solution.

The following tables gives the out-degree and in-degree
of each vertex in Graphs G-(a), G-(b) and G-(c),

respectively.

G-(a): G-(b):

' a/b|c |d a |b Jc |d
dz(v) |31 1 2 13

di(w) |1]2 |13 2 14 |1 |1
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