
177

6
Basic SQL

The SQL language may be considered one of the
major reasons for the commercial success of rela-

tional databases. Because it became a standard for relational databases, users were
less concerned about migrating their database applications from other types of
database systems—for example, older network or hierarchical systems—to rela-
tional systems. This is because even if the users became dissatisfied with the partic-
ular relational DBMS product they were using, converting to another relational
DBMS product was not expected to be too expensive and time-consuming because
both systems followed the same language standards. In practice, of course, there
are differences among various commercial relational DBMS packages. However,
if the user is diligent in using only those features that are part of the standard,
and if two relational DBMSs faithfully support the standard, then conversion
between two systems should be simplified. Another advantage of having such a
standard is that users may write statements in a database application program
that can access data stored in two or more relational DBMSs without having to
change the database sublanguage (SQL), as long as both/all of the relational
DBMSs support standard SQL.

This chapter presents the practical relational model, which is based on the SQL
standard for commercial relational DBMSs, whereas Chapter 5 presented the most
important concepts underlying the formal relational data model. In Chapter 8 (Sec-
tions 8.1 through 8.5), we shall discuss the relational algebra operations, which are
very important for understanding the types of requests that may be specified on a
relational database. They are also important for query processing and optimization
in a relational DBMS, as we shall see in Chapters 18 and 19. However, the relational
algebra operations are too low-level for most commercial DBMS users because a
query in relational algebra is written as a sequence of operations that, when exe-
cuted, produces the required result. Hence, the user must specify how—that is, in
what order—to execute the query operations. On the other hand, the SQL language

chapter 6

178 Chapter 6 Basic SQL

provides a higher-level declarative language interface, so the user only specifies
what the result is to be, leaving the actual optimization and decisions on how to
execute the query to the DBMS. Although SQL includes some features from rela-
tional algebra, it is based to a greater extent on the tuple relational calculus, which
we describe in Section 8.6. However, the SQL syntax is more user-friendly than
either of the two formal languages.

The name SQL is presently expanded as Structured Query Language. Originally,
SQL was called SEQUEL (Structured English QUEry Language) and was designed
and implemented at IBM Research as the interface for an experimental relational
database system called SYSTEM R. SQL is now the standard language for com-
mercial relational DBMSs. The standardization of SQL is a joint effort by the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO), and the first SQL standard is called SQL-86 or SQL1. A
revised and much expanded standard called SQL-92 (also referred to as SQL2)
was subsequently developed. The next standard that is well-recognized is
SQL:1999, which started out as SQL3. Additional updates to the standard are
SQL:2003 and SQL:2006, which added XML features (see Chapter 13) among
other updates to the language. Another update in 2008 incorporated more object
database features into SQL (see Chapter 12), and a further update is SQL:2011.
We will try to cover the latest version of SQL as much as possible, but some of the
newer features are discussed in later chapters. It is also not possible to cover the
language in its entirety in this text. It is important to note that when new features
are added to SQL, it usually takes a few years for some of these features to make it
into the commercial SQL DBMSs.

SQL is a comprehensive database language: It has statements for data definitions,
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization,
for defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming lan-
guage such as Java or C/C++.1

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all
RDBMS vendors that are SQL compliant. The extensions can be implemented as
optional modules to be purchased independently for specific database applications
such as data mining, spatial data, temporal data, data warehousing, online analyti-
cal processing (OLAP), multimedia data, and so on.

Because the subject of SQL is both important and extensive, we devote two chap-
ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-
mands for creating schemas and tables, and gives an overview of the basic data
types in SQL. Section 6.2 presents how basic constraints such as key and referen-
tial integrity are specified. Section 6.3 describes the basic SQL constructs for

1Originally, SQL had statements for creating and dropping indexes on the files that represent relations,
but these have been dropped from the SQL standard for some time.

 6.1 SQL Data Definition and Data Types 179

specifying retrieval queries, and Section 6.4 describes the SQL commands for
insertion, deletion, and update.

In Chapter 7, we will describe more complex SQL retrieval queries, as well as the
ALTER commands for changing the schema. We will also describe the CREATE
ASSERTION statement, which allows the specification of more general constraints
on the database, and the concept of triggers, which is presented in more detail in
Chapter 26. We discuss the SQL facility for defining views on the database in Chap-
ter 7. Views are also called virtual or derived tables because they present the user
with what appear to be tables; however, the information in those tables is derived
from previously defined tables.

Section 6.5 lists some SQL features that are presented in other chapters of the book;
these include object-oriented features in Chapter 12, XML in Chapter 13, transac-
tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-
cal processing (OLAP) features in Chapter 29, and security/authorization in
Chapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss the
various database programming techniques for programming with SQL.

6.1 SQL Data Definition and Data Types
SQL uses the terms table, row, and column for the formal relational model terms
relation, tuple, and attribute, respectively. We will use the corresponding terms
interchangeably. The main SQL command for data definition is the CREATE state-
ment, which can be used to create schemas, tables (relations), types, and domains,
as well as other constructs such as views, assertions, and triggers. Before we describe
the relevant CREATE statements, we discuss schema and catalog concepts in Sec-
tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tables
are created, and Section 6.1.3 describes the most important data types available for
attribute specification. Because the SQL specification is very large, we give a descrip-
tion of the most important features. Further details can be found in the various SQL
standards documents (see end-of-chapter bibliographic notes).

6.1.1 Schema and Catalog Concepts in SQL
Early versions of SQL did not include the concept of a relational database schema;
all tables (relations) were considered part of the same schema. The concept of an
SQL schema was incorporated starting with SQL2 in order to group together tables
and other constructs that belong to the same database application (in some systems,
a schema is called a database). An SQL schema is identified by a schema name and
includes an authorization identifier to indicate the user or account who owns the
schema, as well as descriptors for each element in the schema. Schema elements
include tables, types, constraints, views, domains, and other constructs (such as
authorization grants) that describe the schema. A schema is created via the CREATE
SCHEMA statement, which can include all the schema elements’ definitions. Alter-
natively, the schema can be assigned a name and authorization identifier, and the

180 Chapter 6 Basic SQL

elements can be defined later. For example, the following statement creates a
schema called COMPANY owned by the user with authorization identifier ‘Jsmith’.
Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted
to the relevant user accounts by the system administrator or DBA.

In addition to the concept of a schema, SQL uses the concept of a catalog—a named
collection of schemas.2 Database installations typically have a default environment
and schema, so when a user connects and logs in to that database installation, the
user can refer directly to tables and other constructs within that schema without
having to specify a particular schema name. A catalog always contains a special
schema called INFORMATION_SCHEMA, which provides information on all the
schemas in the catalog and all the element descriptors in these schemas. Integrity
constraints such as referential integrity can be defined between relations only if
they exist in schemas within the same catalog. Schemas within the same catalog can
also share certain elements, such as type and domain definitions.

6.1.2 The CREATE TABLE Command in SQL
The CREATE TABLE command is used to specify a new relation by giving it a name
and specifying its attributes and initial constraints. The attributes are specified first,
and each attribute is given a name, a data type to specify its domain of values, and
possibly attribute constraints, such as NOT NULL. The key, entity integrity, and ref-
erential integrity constraints can be specified within the CREATE TABLE statement
after the attributes are declared, or they can be added later using the ALTER TABLE
command (see Chapter 7). Figure 6.1 shows sample data definition statements in
SQL for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified
in the environment in which the CREATE TABLE statements are executed. Alterna-
tively, we can explicitly attach the schema name to the relation name, separated by
a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE table
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables
(or base relations); this means that the table and its rows are actually created

2SQL also includes the concept of a cluster of catalogs.

 6.1 SQL Data Definition and Data Types 181

CREATE TABLE EMPLOYEE
(Fname
 Minit
 Lname
 Ssn
 Bdate
 Address
 Sex
 Salary
 Super_ssn
 Dno

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)
DATE,
VARCHAR(30),
CHAR,
DECIMAL(10,2),
CHAR(9),
INT

NOT NULL,

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Ssn),

CREATE TABLE DEPARTMENT
(Dname
 Dnumber
 Mgr_ssn
 Mgr_start_date

VARCHAR(15)
INT
CHAR(9)
DATE,

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

CREATE TABLE DEPT_LOCATIONS
(Dnumber
 Dlocation

INT
VARCHAR(15)

NOT NULL,
NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE PROJECT
(Pname
 Pnumber
 Plocation
 Dnum

VARCHAR(15)
INT
VARCHAR(15),
INT

NOT NULL,
NOT NULL,

NOT NULL,
PRIMARY KEY (Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON
(Essn
 Pno
 Hours

CHAR(9)
INT
DECIMAL(3,1)

NOT NULL,
NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
(Essn
 Dependent_name
 Sex
 Bdate
 Relationship

CHAR(9)
VARCHAR(15)
CHAR,
DATE,
VARCHAR(8),

NOT NULL,
NOT NULL,

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));

Figure 6.1
SQL CREATE
TABLE data
definition statements
for defining the
COMPANY schema
from Figure 5.7.

182 Chapter 6 Basic SQL

and stored as a file by the DBMS. Base relations are distinguished from virtual
relations, created through the CREATE VIEW statement (see Chapter 7), which
may or may not correspond to an actual physical file. In SQL, the attributes in a
base table are considered to be ordered in the sequence in which they are speci-
fied in the CREATE TABLE statement. However, rows (tuples) are not considered
to be ordered within a table (relation).

It is important to note that in Figure 6.1, there are some foreign keys that may cause
errors because they are specified either via circular references or because they refer
to a table that has not yet been created. For example, the foreign key Super_ssn in
the EMPLOYEE table is a circular reference because it refers to the EMPLOYEE table
itself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table,
which has not been created yet. To deal with this type of problem, these constraints
can be left out of the initial CREATE TABLE statement, and then added later using
the ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys in
Figure 6.1 to show the complete COMPANY schema in one place.

6.1.3 Attribute Data Types and Domains in SQL
The basic data types available for attributes include numeric, character string, bit
string, Boolean, date, and time.

 ■ Numeric data types include integer numbers of various sizes (INTEGER or
INT, and SMALLINT) and floating-point (real) numbers of various precision
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be
declared by using DECIMAL(i, j)—or DEC(i, j) or NUMERIC(i, j)—where i, the
precision, is the total number of decimal digits and j, the scale, is the number
of digits after the decimal point. The default for scale is zero, and the default
for precision is implementation-defined.

 ■ Character-string data types are either fixed length—CHAR(n) or
CHARACTER(n), where n is the number of characters—or varying length—
VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n), where n is
the maximum number of characters. When specifying a literal string value,
it is placed between single quotation marks (apostrophes), and it is case sen-
sitive (a distinction is made between uppercase and lowercase).3 For fixed-
length strings, a shorter string is padded with blank characters to the right.
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is
padded with five blank characters to become ‘Smith’ if needed. Padded
blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str1 appears before another string str2 in alphabetic order,
then str1 is considered to be less than str2.4 There is also a concatenation
operator denoted by || (double vertical bar) that can concatenate two strings

3This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-

sitive, meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.
4For nonalphabetic characters, there is a defined order.

 6.1 SQL Data Definition and Data Types 183

in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ’.
Another variable-length string data type called CHARACTER LARGE OBJECT
or CLOB is also available to specify columns that have large text values, such
as documents. The CLOB maximum length can be specified in kilobytes
(K), megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a
maximum length of 20 megabytes.

 ■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—
BIT VARYING(n), where n is the maximum number of bits. The default for n,
the length of a character string or bit string, is 1. Literal bit strings are placed
between single quotes but preceded by a B to distinguish them from character
strings; for example, B‘10101’.5 Another variable-length bitstring data type
called BINARY LARGE OBJECT or BLOB is also available to specify columns
that have large binary values, such as images. As for CLOB, the maximum
length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).
For example, BLOB(30G) specifies a maximum length of 30 gigabits.

 ■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL,
because of the presence of NULL values, a three-valued logic is used, so a
third possible value for a Boolean data type is UNKNOWN. We discuss the
need for UNKNOWN and the three-valued logic in Chapter 7.

 ■ The DATE data type has ten positions, and its components are YEAR, MONTH,
and DAY in the form YYYY-MM-DD. The TIME data type has at least eight
positions, with the components HOUR, MINUTE, and SECOND in the form
HH:MM:SS. Only valid dates and times should be allowed by the SQL imple-
mentation. This implies that months should be between 1 and 12 and days
must be between 01 and 31; furthermore, a day should be a valid day for the
corresponding month. The < (less than) comparison can be used with dates
or times—an earlier date is considered to be smaller than a later date, and
similarly with time. Literal values are represented by single-quoted strings
preceded by the keyword DATE or TIME; for example, DATE ‘2014-09-27’ or
TIME ‘09:12:47’. In addition, a data type TIME(i), where i is called time frac-
tional seconds precision, specifies i + 1 additional positions for TIME—one
position for an additional period (.) separator character, and i positions for
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the
standard universal time zone, which is in the range +13:00 to –12:59 in units
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is
not exhaustive; different implementations have added more data types to SQL.

 ■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus
a minimum of six positions for decimal fractions of seconds and an optional
WITH TIME ZONE qualifier. Literal values are represented by single-quoted

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal
string is preceded by X and each hexadecimal character represents 4 bits.

184 Chapter 6 Basic SQL

strings preceded by the keyword TIMESTAMP, with a blank space between
data and time; for example, TIMESTAMP ‘2014-09-27 09:12:47.648302’.

 ■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data
type. This specifies an interval—a relative value that can be used to increment
or decrement an absolute value of a date, time, or timestamp. Intervals are
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-
natively, a domain can be declared, and the domain name can be used with the
attribute specification. This makes it easier to change the data type for a domain
that is used by numerous attributes in a schema, and improves schema readability.
For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 6.1 for the attributes Ssn and
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn
of DEPENDENT. A domain can also have an optional default specification via a
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be
available in some implementations of SQL.

In SQL, there is also a CREATE TYPE command, which can be used to create user
defined types or UDTs. These can then be used either as data types for attributes, or
as the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-
ter 12, because it is often used in conjunction with specifying object database features
that have been incorporated into more recent versions of SQL.

6.2 Specifying Constraints in SQL
This section describes the basic constraints that can be specified in SQL as part of
table creation. These include key and referential integrity constraints, restrictions
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion using the CHECK clause. We discuss the specification of more general con-
straints, called assertions, in Chapter 7.

6.2.1 Specifying Attribute Constraints and Attribute Defaults
Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified
if NULL is not permitted for a particular attribute. This is always implicitly specified for
the attributes that are part of the primary key of each relation, but it can be specified for
any other attributes whose values are required not to be NULL, as shown in Figure 6.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any

 6.2 Specifying Constraints in SQL 185

new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustrates
an example of specifying a default manager for a new department and a default
department for a new employee. If no default clause is specified, the default default
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK
clause following an attribute or domain definition.6 For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we
can change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-
ure 6.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM > 0 AND D_NUM < 21);

6The CHECK clause can also be used for other purposes, as we shall see.

CREATE TABLE EMPLOYEE
 (… ,
 Dno INT NOT NULL DEFAULT 1,
 CONSTRAINT EMPPK
 PRIMARY KEY (Ssn),
 CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET NULL ON UPDATE CASCADE,
 CONSTRAINT EMPDEPTFK
 FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
 (… ,
 Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’,
 … ,
 CONSTRAINT DEPTPK
 PRIMARY KEY(Dnumber),
 CONSTRAINT DEPTSK
 UNIQUE (Dname),
 CONSTRAINT DEPTMGRFK
 FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
 (… ,
 PRIMARY KEY (Dnumber, Dlocation),
 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE CASCADE ON UPDATE CASCADE);

Figure 6.2
Example illustrating
how default attribute
values and referential
integrity triggered
actions are specified
in SQL.

186 Chapter 6 Basic SQL

We can then use the created domain D_NUM as the attribute type for all attributes
that refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT,
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

6.2.2 Specifying Key and Referential Integrity Constraints
Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to
illustrate the specification of keys and referential integrity are shown in Figure 6.1.7
The PRIMARY KEY clause specifies one or more attributes that make up the primary
key of a relation. If a primary key has a single attribute, the clause can follow the
attribute directly. For example, the primary key of DEPARTMENT can be specified as
follows (instead of the way it is specified in Figure 6.1):

Dnumber INT PRIMARY KEY,

The UNIQUE clause specifies alternate (unique) keys, also known as candidate keys
as illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1.
The UNIQUE clause can also be specified directly for a unique key if it is a single
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig-
ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can be
violated when tuples are inserted or deleted, or when a foreign key or primary key
attribute value is updated. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as
the RESTRICT option. However, the schema designer can specify an alternative
action to be taken by attaching a referential triggered action clause to any foreign
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this
with the examples shown in Figure 6.2. Here, the database designer chooses ON
DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the
value of Super_ssn is automatically set to NULL for all employee tuples that were
referencing the deleted employee tuple. On the other hand, if the Ssn value for a
supervising employee is updated (say, because it was entered incorrectly), the new
value is cascaded to Super_ssn for all employee tuples referencing the updated
employee tuple.8

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the
same for both ON DELETE and ON UPDATE: The value of the affected referencing
attributes is changed to NULL for SET NULL and to the specified default value of the

7Key and referential integrity constraints were not included in early versions of SQL.
8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at
the end of Section 6.1.2.

 6.3 Basic Retrieval Queries in SQL 187

referencing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to
delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to
change the value of the referencing foreign key attribute(s) to the updated (new)
primary key value for all the referencing tuples. It is the responsibility of the data-
base designer to choose the appropriate action and to specify it in the database
schema. As a general rule, the CASCADE option is suitable for “relationship” rela-
tions (see Section 9.1) , such as WORKS_ON; for relations that represent multival-
ued attributes, such as DEPT_LOCATIONS; and for relations that represent weak
entity types, such as DEPENDENT.

6.2.3 Giving Names to Constraints
Figure 6.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular
schema must be unique. A constraint name is used to identify a particular con-
straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is also
possible to temporarily defer a constraint until the end of a transaction, as we shall
discuss in Chapter 20 when we present transaction concepts.

6.2.4 Specifying Constraints on Tuples Using CHECK
In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK
clauses at the end of a CREATE TABLE statement. These can be called row-based
constraints because they apply to each row individually and are checked whenever
a row is inserted or modified. For example, suppose that the DEPARTMENT table in
Figure 6.1 had an additional attribute Dept_create_date, which stores the date when
the department was created. Then we could add the following CHECK clause at the
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using
the CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 because
it requires the full power of queries, which are discussed in Sections 6.3
and 7.1.

6.3 Basic Retrieval Queries in SQL
SQL has one basic statement for retrieving information from a database: the
SELECT statement. The SELECT statement is not the same as the SELECT operation
of relational algebra, which we shall discuss in Chapter 8. There are many options
and flavors to the SELECT statement in SQL, so we will introduce its features grad-
ually. We will use example queries specified on the schema of Figure 5.5 and will

188 Chapter 6 Basic SQL

refer to the sample database state shown in Figure 5.6 to show the results of some
of these queries. In this section, we present the features of SQL for simple retrieval
queries. Features of SQL for specifying more complex retrieval queries are pre-
sented in Section 7.1.

Before proceeding, we must point out an important distinction between the practical
SQL model and the formal relational model discussed in Chapter 5: SQL allows a
table (relation) to have two or more tuples that are identical in all their attribute
values. Hence, in general, an SQL table is not a set of tuples, because a set does not
allow two identical members; rather, it is a multiset (sometimes called a bag) of
tuples. Some SQL relations are constrained to be sets because a key constraint has
been declared or because the DISTINCT option has been used with the SELECT state-
ment (described later in this section). We should be aware of this distinction as we
discuss the examples.

6.3.1 The SELECT-FROM-WHERE Structure
of Basic SQL Queries

Queries in SQL can be very complex. We will start with simple queries, and then
progress to more complex ones in a step-by-step manner. The basic form of the
SELECT statement, sometimes called a mapping or a select-from-where block, is
formed of the three clauses SELECT, FROM, and WHERE and has the following form:9

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

 ■ <attribute list> is a list of attribute names whose values are to be retrieved by
the query.

 ■ <table list> is a list of the relation names required to process the query.

 ■ <condition> is a conditional (Boolean) expression that identifies the tuples
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond
to the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively, and to the
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntactic
difference is the not equal operator. SQL has additional comparison operators that
we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The
queries are labeled here with the same query numbers used in Chapter 8 for easy
cross-reference.

9The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec-
tion 6.3.3).

 6.3 Basic Retrieval Queries in SQL 189

Query 0. Retrieve the birth date and address of the employee(s) whose name is
‘John B. Smith’.

Q0: SELECT Bdate, Address
 FROM EMPLOYEE
 WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The
query selects the individual EMPLOYEE tuples that satisfy the condition of the
WHERE clause, then projects the result on the Bdate and Address attributes listed in
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes in relational algebra (see Chapter 8) and
the WHERE clause specifies the Boolean condition that must be true for any
retrieved tuple, which is known as the selection condition in relational algebra.
Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is,
those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: SELECT Fname, Lname, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condition
that chooses the particular tuple of interest in the DEPARTMENT table, because Dname
is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,
whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in
EMPLOYEE. The result of query Q1 is shown in Figure 6.3(b). In general, any number
of selection and join conditions may be specified in a single SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND

Plocation = ‘Stafford’

190 Chapter 6 Basic SQL

(a) Bdate

1965-01-09 731Fondren, Houston, TX

Address (b) Fname

John

Franklin

Ramesh

Joyce

Smith

Wong

Narayan

English

731 Fondren, Houston, TX

638 Voss, Houston, TX

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

Lname Address

(d) E.Fname

John

Franklin

Alicia Zelaya

Joyce

Ramesh

Jennifer Wallace

Ahmad Jabbar

Smith

Wong

Narayan

English

Jennifer

James

Jennifer

Franklin

James

Franklin

Franklin

Wallace

Borg

Wallace

Wong

Borg

Wong

Wong

E.Lname S.Fname S.Lname

Fname

John

Franklin

K

Joyce

Ramesh

A

B

T

M

F

M

M

5

5

5

5

38000

25000

30000

40000

333445555

333445555

333445555

888665555

Narayan

English

Smith

Wong

975 Fire Oak, Humble, TX

5631 Rice, Houston, TX

731 Fondren, Houston, TX

638 Voss, Houston, TX

1962-09-15

1972-07-31

1965-09-01

1955-12-08

666884444

453453453

123456789

333445555

Minit Lname Ssn Bdate Address Sex DnoSalary Super_ssn

(g)

(e) E.Fname

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

(c) Pnumber

10

30

1941-06-20

1941-06-20

4

4

Wallace 291Berry, Bellaire, TX

291Berry, Bellaire, TXWallace

Dnum Lname BdateAddress (f) Ssn

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

123456789

333445555

999887777

453453453

666884444

987654321

987987987

888665555

Research

Research

Research

Research

Research

Research

Research

Research

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Administration

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Headquarters

Dname

Figure 6.3
Results of SQL queries when applied to the COMPANY database state shown
in Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

 6.3 Basic Retrieval Queries in SQL 191

The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department (that controls the proj-
ect), and one employee (that manages the department). The projection attributes
are used to choose the attributes to be displayed from each combined tuple. The
result of query Q2 is shown in Figure 6.3(c).

6.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the
attributes are in different tables. If this is the case, and a multitable query refers to
two or more attributes with the same name, we must qualify the attribute name
with the relation name to prevent ambiguity. This is done by prefixing the rela-
tion name to the attribute name and separating the two by a period. To illustrate
this, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the
EMPLOYEE relation were called Dnumber and Name, and the Dname attribute of
DEPARTMENT was also called Name; then, to prevent ambiguity, query Q1 would
be rephrased as shown in Q1A. We must prefix the attributes Name and Dnumber
in Q1A to specify which ones we are referring to, because the same attribute
names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE DEPARTMENT.Name = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambi-
guity in attribute names. Q1 can be rewritten as Q1′ below with fully qualified
attribute names. We can also rename the table names to shorter names by creat-
ing an alias for each table name to avoid repeated typing of long table names
(see Q8 below).

Q1′: SELECT EMPLOYEE.Fname, EMPLOYEE.LName,
EMPLOYEE.Address

 FROM EMPLOYEE, DEPARTMENT
 WHERE DEPARTMENT.DName = ‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
 FROM EMPLOYEE AS E, EMPLOYEE AS S
 WHERE E.Super_ssn = S.Ssn;

192 Chapter 6 Basic SQL

In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and
so on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join
condition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recur-
sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was not
possible to specify a general recursive query, with an unknown number of levels, in
a single SQL statement. A construct for specifying recursive queries has been incor-
porated into SQL:1999 (see Chapter 7).

The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliases
are given to a relation, we can use these names to represent different references
to that same relation. This permits multiple references to the same relation
within a query.

We can use this alias-naming or renaming mechanism in any SQL query to specify
tuple variables for every table in the WHERE clause, whether or not the same rela-
tion needs to be referenced more than once. In fact, this practice is recommended
since it results in queries that are easier to comprehend. For example, we could
specify query Q1 as in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address
 FROM EMPLOYEE AS E, DEPARTMENT AS D
 WHERE D.DName = ‘Research’ AND D.Dnumber = E.Dno;

6.3.3 Unspecified WHERE Clause and Use of the Asterisk
We discuss two more features of SQL here. A missing WHERE clause indicates
no condition on tuple selection; hence, all tuples of the relation specified in the
FROM clause qualify and are selected for the query result. If more than one rela-
tion is specified in the FROM clause and there is no WHERE clause, then the
CROSS PRODUCT—all possible tuple combinations—of these relations is
selected. For example, Query 9 selects all EMPLOYEE Ssns (Figure 6.3(e)), and
Query 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT
Dname, regardless of whether the employee works for the department or not
(Figure 6.3(f)).

 6.3 Basic Retrieval Queries in SQL 193

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn
 FROM EMPLOYEE;

Q10: SELECT Ssn, Dname
 FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the WHERE
clause; if any such condition is overlooked, incorrect and very large relations may
result. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a
PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-
butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT
(except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all
the attributes. The * can also be prefixed by the relation name or alias; for example,
EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

Query Q1C retrieves all the attribute values of any EMPLOYEE who works in
DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for
every employee of the ‘Research’ department, and Q10A specifies the CROSS
PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C: SELECT *
 FROM EMPLOYEE
 WHERE Dno = 5;

Q1D: SELECT *
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q10A: SELECT *
 FROM EMPLOYEE, DEPARTMENT;

6.3.4 Tables as Sets in SQL
As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset;
duplicate tuples can appear more than once in a table, and in the result of a query.
SQL does not automatically eliminate duplicate tuples in the results of queries, for
the following reasons:

 ■ Duplicate elimination is an expensive operation. One way to implement it is
to sort the tuples first and then eliminate duplicates.

 ■ The user may want to see duplicate tuples in the result of a query.

 ■ When an aggregate function (see Section 7.1.7) is applied to tuples, in most
cases we do not want to eliminate duplicates.

194 Chapter 6 Basic SQL

An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.10 If we do want to eliminate duplicate tuples from the result of
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that
only distinct tuples should remain in the result. In general, a query with SELECT
DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-
fying SELECT with neither ALL nor DISTINCT—as in our previous examples—is
equivalent to SELECT ALL. For example, Q11 retrieves the salary of every employee;
if several employees have the same salary, that salary value will appear as many
times in the result of the query, as shown in Figure 6.4(a). If we are interested only
in distinct salary values, we want each value to appear only once, regardless of how
many employees earn that salary. By using the keyword DISTINCT as in Q11A, we
accomplish this, as shown in Figure 6.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

Q11: SELECT ALL Salary
 FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary
 FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set
theory, which are also part of relational algebra (see Chapter 8). There are set union
(UNION), set difference (EXCEPT),11 and set intersection (INTERSECT) operations.
The relations resulting from these set operations are sets of tuples; that is, duplicate
tuples are eliminated from the result. These set operations apply only to type-
compatible relations, so we must make sure that the two relations on which we apply
the operation have the same attributes and that the attributes appear in the same
order in both relations. The next example illustrates the use of UNION.

(b)Salary

30000

40000

25000

43000

38000

25000

25000

55000

(c)(a) Salary

30000

40000

25000

43000

38000

55000

Fname Lname

(d) Fname Lname

James Borg

Figure 6.4
Results of additional
SQL queries when
applied to the
COMPANY database
state shown in
Figure 5.6. (a) Q11.
(b) Q11A. (c) Q16.
(d) Q18.

10In general, an SQL table is not required to have a key, although in most cases there will be one.
11In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.

 6.3 Basic Retrieval Queries in SQL 195

Query 4. Make a list of all project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.

Q4A: (SELECT DISTINCT Pnumber
 FROM PROJECT, DEPARTMENT, EMPLOYEE
 WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
 AND Lname = ‘Smith’)
 UNION
 (SELECT DISTINCT Pnumber
 FROM PROJECT, WORKS_ON, EMPLOYEE
 WHERE Pnumber = Pno AND Essn = Ssn
 AND Lname = ‘Smith’);

The first SELECT query retrieves the projects that involve a ‘Smith’ as manager of
the department that controls the project, and the second retrieves the projects that
involve a ‘Smith’ as a worker on the project. Notice that if several employees have
the last name ‘Smith’, the project names involving any of them will be retrieved.
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the key-
word ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets
(duplicates are not eliminated). The behavior of these operations is illustrated by
the examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—
is considered as a different tuple when applying these operations.

6.3.5 Substring Pattern Matching and Arithmetic Operators
In this section we discuss several more features of SQL. The first feature allows
comparison conditions on only parts of a character string, using the LIKE compari-
son operator. This can be used for string pattern matching. Partial strings are spec-
ified using two reserved characters: % replaces an arbitrary number of zero or more
characters, and the underscore (_) replaces a single character. For example, con-
sider the following query.

T(b)

A

a1

a1

a2

a2

a2

a3

a4

a5

T(c)

A

a2

a3

T(d)

A

a1

a2

R(a)

A

a1

a2

a2

a3

S

A

a1

a2

a4

a5

Figure 6.5
The results of SQL multiset
operations. (a) Two tables,
R(A) and S(A).
(b) R(A)UNION ALL S(A).
(c) R(A) EXCEPT ALL S(A).
(d) R(A) INTERSECT ALL
S(A).

196 Chapter 6 Basic SQL

Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Address LIKE ‘%Houston,TX%’;

To retrieve all employees who were born during the 1970s, we can use Query Q12A.
Here, ‘7’ must be the third character of the string (according to our format for date),
so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore serving as a place-
holder for an arbitrary character.

Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname
 FROM EMPLOYEE
 WHERE Bdate LIKE ‘_ _ 7 _ _ _ _ _ _ _’;

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using
the keyword ESCAPE. For example, ‘AB_CD\%EF’ ESCAPE ‘\’ represents the lit-
eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-
ter not used in the string can be chosen as the escape character. Also, we need a rule
to specify apostrophes or single quotation marks (‘ ’) if they are to be included in a
string because they are used to begin and end strings. If an apostrophe (’) is needed,
it is represented as two consecutive apostrophes (”) so that it will not be interpreted
as ending the string. Notice that substring comparison implies that attribute values
are not atomic (indivisible) values, as we had assumed in the formal relational
model (see Section 5.1) .

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (−), multiplication (*), and division (/) can
be applied to numeric values or attributes with numeric domains. For example,
suppose that we want to see the effect of giving all employees who work on the
‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salaries
would become. This example also shows how we can rename an attribute in the
query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the
‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
 FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
 WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND

P.Pname = ‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators
include incrementing (+) or decrementing (−) a date, time, or timestamp by an
interval. In addition, an interval value is the result of the difference between two
date, time, or timestamp values. Another comparison operator, which can be used
for convenience, is BETWEEN, which is illustrated in Query 14.

 6.3 Basic Retrieval Queries in SQL 197

Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Q14: SELECT *
 FROM EMPLOYEE
 WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

6.3.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one
or more of the attributes that appear in the query result, by using the ORDER BY
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on,
ordered by department and, within each department, ordered alphabetically by
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname
 FROM DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W,

PROJECT AS P
 WHERE D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =

P.Pnumber
 ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values. We can specify the keyword DESC
if we want to see the result in a descending order of values. The keyword ASC can be
used to specify ascending order explicitly. For example, if we want descending
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

6.3.7 Discussion and Summary of
Basic SQL Retrieval Queries
A simple retrieval query in SQL can consist of up to four clauses, but only the first
two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets […] being optional:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[ORDER BY <attribute list>];

The SELECT clause lists the attributes to be retrieved, and the FROM clause
specifies all relations (tables) needed in the simple query. The WHERE clause
identifies the conditions for selecting the tuples from these relations, including

198 Chapter 6 Basic SQL

join conditions if needed. ORDER BY specifies an order for displaying the results
of a query. Two additional clauses GROUP BY and HAVING will be described in
Section 7.1.8.

In Chapter 7, we will present more complex features of SQL retrieval queries. These
include the following: nested queries that allow one query to be included as part of
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be
used to provide additional power to aggregate functions; and various types of joins
that can combine records from various tables in different ways.

6.4 INSERT, DELETE, and UPDATE
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

6.4.1 The INSERT Command
In its simplest form, INSERT is used to add a single tuple (row) to a relation (table).
We must specify the relation name and a list of values for the tuple. The values
should be listed in the same order in which the corresponding attributes were speci-
fied in the CREATE TABLE command. For example, to add a new tuple to the
EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLE
EMPLOYEE … command in Figure 6.1, we can use U1:

U1: INSERT INTO EMPLOYEE
 VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98

Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned
values in the new tuple. However, the values must include all attributes with NOT
NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out. For example, to enter a tuple for a new
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we
can use U1A:

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)
 VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself.
It is also possible to insert into a relation multiple tuples separated by commas in a
single INSERT command. The attribute values forming each tuple are enclosed in
parentheses.

 6.4 INSERT, DELETE, and UPDATE Statements in SQL 199

A DBMS that fully implements SQL should support and enforce all the integrity
constraints that can be specified in the DDL. For example, if we issue the command
in U2 on the database shown in Figure 5.6, the DBMS should reject the operation
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly,
U2A would be rejected because no Ssn value is provided and it is the primary key,
which cannot be NULL.

U2: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)
 VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);
 (U2 is rejected if referential integrity checking is provided by DBMS.)

U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)
 VALUES (‘Robert’, ‘Hatcher’, 5);
 (U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the employee last name, project name,
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO
 (Emp_name VARCHAR(15),
 Proj_name VARCHAR(15),
 Hours_per_week DECIMAL(3,1));

U3B: INSERT INTO WORKS_ON_INFO (Emp_name, Proj_name,
Hours_per_week)

 SELECT E.Lname, P.Pname, W.Hours
 FROM PROJECT P, WORKS_ON W, EMPLOYEE E
 WHERE P.Pnumber = W.Pno AND W.Essn = E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query
WORKS_ON_INFO as we would any other relation; when we do not need it anymore,
we can remove it by using the DROP TABLE command (see Chapter 7). Notice that
the WORKS_ON_INFO table may not be up to date; that is, if we update any of the
PROJECT,WORKS_ON, or EMPLOYEE relations after issuing U3B, the information
in WORKS_ON_INFO may become outdated. We have to create a view (see Chap-
ter 7) to keep such a table up to date.

Most DBMSs have bulk loading tools that allow a user to load formatted data from
a file into a table without having to write a large number of INSERT commands.
The user can also write a program to read each record in the file, format it as a row
in the table, and insert it using the looping constructs of a programming language
(see Chapters 10 and 11, where we discuss database programming techniques).

Another variation for loading data is to create a new table TNEW that has the
same attributes as an existing table T, and load some of the data currently in T
into TNEW. The syntax for doing this uses the LIKE clause. For example, if we

200 Chapter 6 Basic SQL

want to create a table D5EMPS with a similar structure to the EMPLOYEE table
and load it with the rows of employees who work in department 5, we can write
the following SQL:

CREATE TABLE D5EMPS LIKE EMPLOYEE
(SELECT E.*
FROM EMPLOYEE AS E
WHERE E.Dno = 5) WITH DATA;

The clause WITH DATA specifies that the table will be created and loaded with
the data specified in the query, although in some implementations it may be
left out.

6.4.2 The DELETE Command
The DELETE command removes tuples from a relation. It includes a WHERE
clause, similar to that used in an SQL query, to select the tuples to be deleted.
Tuples are explicitly deleted from only one table at a time. However, the deletion
may propagate to tuples in other relations if referential triggered actions are spec-
ified in the referential integrity constraints of the DDL (see Section 6.2.2).12
Depending on the number of tuples selected by the condition in the WHERE
clause, zero, one, or several tuples can be deleted by a single DELETE command. A
missing WHERE clause specifies that all tuples in the relation are to be deleted;
however, the table remains in the database as an empty table. We must use the
DROP TABLE command to remove the table definition (see Chapter 7). The
DELETE commands in U4A to U4D, if applied independently to the database state
shown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, from
the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE
 WHERE Lname = ‘Brown’;
U4B: DELETE FROM EMPLOYEE
 WHERE Ssn = ‘123456789’;
U4C: DELETE FROM EMPLOYEE
 WHERE Dno = 5;
U4D: DELETE FROM EMPLOYEE;

6.4.3 The UPDATE Command
The UPDATE command is used to modify attribute values of one or more selected
tuples. As in the DELETE command, a WHERE clause in the UPDATE command
selects the tuples to be modified from a single relation. However, updating a pri-
mary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity

12Other actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.

 6.5 Additional Features of SQL 201

constraints of the DDL (see Section 6.2.2). An additional SET clause in the
UPDATE command specifies the attributes to be modified and their new values.
For example, to change the location and controlling department number of proj-
ect number 10 to ‘Bellaire’ and 5, respectively, we use U5:

U5: UPDATE PROJECT
 SET Plocation = ‘Bellaire’, Dnum = 5
 WHERE Pnumber = 10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the ‘Research’ department a 10% raise in salary, as shown in
U6. In this request, the modified Salary value depends on the original Salary value
in each tuple, so two references to the Salary attribute are needed. In the SET
clause, the reference to the Salary attribute on the right refers to the old Salary
value before modification, and the one on the left refers to the new Salary value
after modification:

U6: UPDATE EMPLOYEE
 SET Salary = Salary * 1.1
 WHERE Dno = 5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multi-
ple relations, we must issue several UPDATE commands.

6.5 Additional Features of SQL
SQL has a number of additional features that we have not described in this chapter
but that we discuss elsewhere in the book. These are as follows:

 ■ In Chapter 7, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval
queries, including nested queries, aggregate functions, grouping, joined
tables, outer joins, case statements, and recursive queries; SQL views, trig-
gers, and assertions; and commands for schema modification.

 ■ SQL has various techniques for writing programs in various programming
languages that include SQL statements to access one or more databases.
These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface)
and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM
(Persistent Stored Modules). We discuss these techniques in Chapter 10. We
also describe how to access SQL databases through the Java programming
language using JDBC and SQLJ.

 ■ Each commercial RDBMS will have, in addition to the SQL commands, a set
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of
SQL had commands for creating indexes, but these were removed from the

202 Chapter 6 Basic SQL

language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands; but they require a special
privilege. We describe this in Chapter 17.

 ■ SQL has transaction control commands. These are used to specify units of
database processing for concurrency control and recovery purposes. We
discuss these commands in Chapter 20 after we discuss the concept of trans-
actions in more detail.

 ■ SQL has language constructs for specifying the granting and revoking of
privileges to users. Privileges typically correspond to the right to use certain
SQL commands to access certain relations. Each relation is assigned an
owner, and either the owner or the DBA staff can grant to selected users the
privilege to use an SQL statement—such as SELECT, INSERT, DELETE, or
UPDATE—to access the relation. In addition, the DBA staff can grant the
privileges to create schemas, tables, or views to certain users. These SQL
commands—called GRANT and REVOKE—are discussed in Chapter 20,
where we discuss database security and authorization.

 ■ SQL has language constructs for creating triggers. These are generally
referred to as active database techniques, since they specify actions that are
automatically triggered by events such as database updates. We discuss these
features in Section 26.1, where we discuss active database concepts.

 ■ SQL has incorporated many features from object-oriented models to have
more powerful capabilities, leading to enhanced relational systems known
as object-relational. Capabilities such as creating complex-structured attri-
butes, specifying abstract data types (called UDTs or user-defined types) for
attributes and tables, creating object identifiers for referencing tuples, and
specifying operations on types are discussed in Chapter 12.

 ■ SQL and relational databases can interact with new technologies such as
XML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

6.6 Summary
In this chapter, we introduced the SQL database language. This language and its
variations have been implemented as interfaces to many commercial relational
DBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and many
other systems including Sybase and INGRES. Some open source systems also provide
SQL, such as MySQL and PostgreSQL. The original version of SQL was imple-
mented in the experimental DBMS called SYSTEM R, which was developed at IBM
Research. SQL is designed to be a comprehensive language that includes statements
for data definition, queries, updates, constraint specification, and view definition.
We discussed the following features of SQL in this chapter: the data definition com-
mands for creating tables, SQL basic data types, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter,
we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.

 Exercises 203

Review Questions
 6.1. How do the relations (tables) in SQL differ from the relations defined for-

mally in Chapter 3? Discuss the other differences in terminology. Why does
SQL allow duplicate tuples in a table or in a query result?

 6.2. List the data types that are allowed for SQL attributes.

 6.3. How does SQL allow implementation of the entity integrity and referential
integrity constraints described in Chapter 3? What about referential trig-
gered actions?

 6.4. Describe the four clauses in the syntax of a simple SQL retrieval query. Show
what type of constructs can be specified in each of the clauses. Which are
required and which are optional?

Exercises
 6.5. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

ure 2.1. What are the referential integrity constraints that should hold on the
schema? Write appropriate SQL DDL statements to define the database.

 6.6. Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

 6.7. Consider the LIBRARY relational database schema shown in Figure 6.6.
Choose the appropriate action (reject, cascade, set to NULL, set to default) for
each referential integrity constraint, both for the deletion of a referenced
tuple and for the update of a primary key attribute value in a referenced
tuple. Justify your choices.

 6.8. Write appropriate SQL DDL statements for declaring the LIBRARY relational
database schema of Figure 6.6. Specify the keys and referential triggered
actions.

 6.9. How can the key and foreign key constraints be enforced by the DBMS? Is
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

 6.10. Specify the following queries in SQL on the COMPANY relational database
schema shown in Figure 5.5. Show the result of each query if it is applied to
the COMPANY database in Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong’.

204 Chapter 6 Basic SQL

 6.11. Specify the updates of Exercise 3.11 using the SQL update commands.

 6.12. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘cs’ (computer
science).

b. Retrieve the names of all courses taught by Professor King in 2007 and
2008.

c. For each section taught by Professor King, retrieve the course number,
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4)
majoring in CS. A transcript includes course name, course number,
credit hours, semester, year, and grade for each course completed by
the student.

Publisher_nameBook_id Title

BOOK

BOOK_COPIES
Book_id Branch_id No_of_copies

BOOK_AUTHORS

Book_id Author_name

LIBRARY_BRANCH
Branch_id Branch_name Address

PUBLISHER

Name Address Phone

BOOK_LOANS

Book_id Branch_id Card_no Date_out Due_date

BORROWER
Card_no Name Address Phone

Figure 6.6
A relational database
schema for a
LIBRARY database.

 Selected Bibliography 205

 6.13. Write SQL update statements to do the following on the database schema
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>.

d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.

 6.14. Design a relational database schema for a database application of your
choice.

a. Declare your relations using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database
application.

c. Based on your expected use of the database, choose some attributes that
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

 6.15. Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in
Figure 6.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:

a. What happens when the following command is run on the database state
shown in Figure 5.6?

DELETE EMPLOYEE WHERE Lname = ‘Borg’

b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint
ON DELETE?

 6.16. Write SQL statements to create a table EMPLOYEE_BACKUP to back up the
EMPLOYEE table shown in Figure 5.6.

Selected Bibliography
The SQL language, originally named SEQUEL, was based on the language SQUARE
(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). The
syntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) and
then into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The original
implementation of SEQUEL was done at IBM Research, San Jose, California. We
will give additional references to various aspects of SQL at the end of Chapter 7.

This page intentionally left blank

207

7
More SQL: Complex Queries,

Triggers, Views, and
Schema Modification

This chapter describes more advanced features of
the SQL language for relational databases. We start

in Section 7.1 by presenting more complex features of SQL retrieval queries, such as
nested queries, joined tables, outer joins, aggregate functions, and grouping, and
case statements. In Section 7.2, we describe the CREATE ASSERTION statement,
which allows the specification of more general constraints on the database. We also
introduce the concept of triggers and the CREATE TRIGGER statement, which will
be presented in more detail in Section 26.1 when we present the principles of active
databases. Then, in Section 7.3, we describe the SQL facility for defining views on
the database. Views are also called virtual or derived tables because they present the
user with what appear to be tables; however, the information in those tables is
derived from previously defined tables. Section 7.4 introduces the SQL ALTER
TABLE statement, which is used for modifying the database tables and constraints.
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries
In Section 6.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We
discuss several of these features in this section.

chapter 7

