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Chapter (I) 

Sets, Relations and Functions 

Much of discrete mathematics is devoted to the study of discrete 

structures, used to represent discrete objects. Many important 

discrete structures are built using sets, which are collections of 

objects. Relations between elements of sets occur in many 

contexts. Every day we deal with relationships such as those 

between a business and its telephone number, a person and a 

relative and so on. In mathematics we study relationships such as 

these between a positive integer and one that it divides, an integer 

and one that it is congruent to modulo 5, and so on. The concept 

of a function is extremely important in discrete mathematics. A 

function assigns to each element of a set exactly one element of a 

set. Functions play important roles throughout discrete 

mathematics. 

1.1 Sets 

Definition. 

A set is an unordered collection of objects, called elements or 

members of the set. A set is said to contain its elements. We write 

𝑎 ∈ 𝐴 to denote that a is an element of the set A. The 

notation 𝑎 ∈ 𝐴 denotes that a is not an element of the set A. 
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It is common for sets to be denoted using uppercase letters. 

Lowercase letters are usually used to denote elements of sets. 

There are several ways to describe a set. One way is to list all 

the members of a set, when this is possible. We use a notation 

where all members of the set are listed between braces. For 

example, the notation {𝑎, 𝑏, 𝑐, 𝑑} represents the set with the four 

elements a, b, c, and d. This way of describing a set is known as 

the roster method. 

Example 

The set V of all vowels in the English alphabet can be written as 

𝑉 =  {𝑎, 𝑒, 𝑖, 𝑜, 𝑢}. ■ 

Example 

The set O of odd positive integers less than 10 can be expressed 

by 𝑂 =  {1, 3, 5, 7, 9}. ■ 

Although sets are usually used to group together elements with 

common properties, there is nothing that prevents a set from 

having seemingly unrelated elements.  

Example 

{a, 2, Ali, Assiut} is the set containing the four elements a, 2, Ali, 

and Assiut. ■ 

If we can completely list (enumerate) all the elements in a set, the 

set is said to be finite. The set of primary colours is finite set. If a 

set isn’t finite, it is said to be infinite. The set of all positive 

integers is an infinite set. 
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Sometimes the roster method is used to describe a set without 

listing all its members. Some members of the set are listed, and 

then ellipses (. . .) are used when the general pattern of the 

elements is obvious. 

Example 

The set of positive integers less than 100 can be denoted by 

{1, 2, 3, . . . , 99}. ■ 

Another way to describe a set is to use set builder notation. We 

characterize all these elements in the set by stating the property or 

properties they must have to be members.  

Example 

The set O of all odd positive integers less than 10 can be written 

as 

𝑂 = {𝑥| 𝑥 is an odd positive integer less than 10}. 

or, specifying the universe as the set of positive integers, as 

𝑂 =  {𝑥 ∈ ℤ+ | 𝑥 is odd and 𝑥 <  10}. ■ 

We often use this type of notation to describe sets when it is 

impossible to list all the elements of the set.  

Example 

The set ℚ+ of all positive rational numbers can be written as 

ℚ+  =  {𝑥 ∈ 𝑅 | 𝑥 = 𝑝/𝑞, for some positive integers 𝑝 and 𝑞}. 

Here are some common mathematical sets you are familiar with. 

You need to be able to recognize the symbols. 

   the set of positive integers and zero,  
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    the set of integers 

   the set of positive integers 

    the set of rational numbers 

   the set of positive rational numbers 

    the set of real numbers 

  the set of positive real numbers 

    the set of complex numbers 

(Note that some people do not consider 0 a natural number, so be 

careful to check how the term natural numbers is used when you 

read different books.) 

Recall the notation for intervals of real numbers. When a and b 

are real numbers with 𝑎 <  𝑏, we write 

[𝑎, 𝑏]  =  {𝑥 | 𝑎 ≤  𝑥 ≤  𝑏} 

[𝑎, 𝑏)  =  {𝑥 | 𝑎 ≤  𝑥 <  𝑏} 

(𝑎, 𝑏]  =  {𝑥 | 𝑎 <  𝑥 ≤  𝑏} 

(𝑎, 𝑏)  =  {𝑥 | 𝑎 <  𝑥 <  𝑏} 

Note that [𝑎, 𝑏] is called the closed interval from a to b and 

(𝑎, 𝑏) is called the open interval from a to b. 

Sets can have other sets as members, as the following example  

illustrates. 

Example. 

The set {ℕ, ℤ,ℚ,ℝ} is a set containing four elements, each of 

which is a set. The four elements of this set are ℕ, the set of 
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natural numbers; ℤ, the set of integers; ℚ, the set of rational 

numbers; and ℝ, the set of real numbers. ■ 

Remark 

Note that the concept of a datatype, or type, in computer science 

is built upon the concept of a set. In particular, a datatype or type 

is the name of a set, together with a set of operations that can be 

performed on objects from that set.  

Example 

Boolean is the name of the set {0, 1} together with operators on 

one or more elements of this set, such as AND, OR, and NOT.■ 

● Definition of equality for sets 

Two sets S and T are equal if every element of S is also an 

element of T and every element of T is also an element of S. Not 

surprisingly, write as  S = T. 

Here are some implications of this definition. 

● The ordering of elements in a set is not important 

The set {red, yellow, blue} equals (i.e. is the same as) the set 

{yellow, blue, red}. Why? Look at the definition of equality. 

Every element in the first set is an element of the second, and 

every element in the second set is an element of the first. So the 

two sets are equal. 

● Something is either an element of a set or not; it doesn’t make 

any difference if you list it multiple times 
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The set {red, red, yellow, blue, red} is the same as (i.e. is equal 

to) the set {red, yellow, blue}, even though “red” is listed 

multiple times in the first set. Don’t take my word for it; check 

the definition of equals.  

●The smallest possible set 

We call the set containing no elements the null set or the empty 

set. It sometimes is written as { } but more often we write it as 𝜙. 

For instance, the set of all positive integers that are greater than 

their squares is the null set. 

A set with one element is called a singleton set. A common error 

is to confuse the empty set 𝜙 with the set {𝜙}, which is a 

singleton set. The single element of the set {𝜙} is the empty set 

itself! A useful analogy for remembering this difference is to 

think of folders in a computer file system. The empty set can be 

thought of as an empty folder and the set consisting of just the 

empty set can be thought of as a folder with exactly one folder 

inside, namely, the empty folder.  
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● Subsets 

Definition 

The set A is a subset of B if and only if every element of A is also 

an element of B. We use the notation 𝐴 ⊆  𝐵 to indicate that A is 

a subset of the set B. 

We see that 𝐴 ⊆  𝐵 if and only if the quantification 

∀𝑥(𝑥 ∈  𝐴 →  𝑥 ∈  𝐵) 

is true.  

We say that S is a superset of T if every element of T is an 

element of S. We write this as S ⊇ T. 

To show that 𝐴 ⊆  𝐵, show that if x belongs to A then x also 

belongs to B. 

To show that 𝐴 ⊈  𝐵, find a single 𝑥 ∈  𝐴 such that 𝑥 ∉  𝐵.    

Example. 

The set of all odd positive integers less than 10 is a subset of the 

set of all positive integers less than 10, the set of rational numbers 

is a subset of the set of real numbers, the set of all computer 

science majors at your school is a subset of the set of all students 

at your school, and the set of all people in Egypt is a subset of the 

set of all people in Egypt (that is, it is a subset of itself). 

Each of these facts follows immediately by noting that an element 

that belongs to the first set in each pair of sets also belongs to the 

second set in that pair. ■ 
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Example. 

(i) The set of integers with squares less than 100 is not a subset of 

the set of nonnegative integers because −1 is in the former set [as 

(−1)2  <  100], but not the later set. 

(ii) The null set is a subset of every set, i.e., If A is any set then 

𝜙 ⊂  𝐴.   ■ 

●The relationship between subsets, supersets and equality 

Reviewing the definitions, we see that for two sets S and T, S = T 

is true whenever both S ⊆ T  and S ⊇ T are true. 

To show that two sets A and B are equal, show that 𝐴 ⊆  𝐵 and 

𝐵 ⊆  𝐴. 

Sets may have other sets as members. For instance, the sets 𝐴 =

 {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}} and 𝐵 =  {𝑥 | 𝑥 is a subset of the set {𝑎, 𝑏}}. 

Note that these two sets are equal, that is, 𝐴 =  𝐵. Also note that 

{𝑎}  ∈  𝐴, but 𝑎 ∉  𝐴. 

● “Proper” subsets 

Sometimes we have S ⊆ T  and we want to rule out the possibility 

that S = T. To do this, we write S ⊂ T, i.e. we omit the bar below 

the ⊂. To say this in words, we say that S is a proper subset of T. 

The use of the word “proper” here is kind of funny. It is just the 

term that mathematicians have come to use to avoid having to 

say, “S is a subset of T but it isn’t equal to T.” Similarly, S ⊃ T is 
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read “S is a proper superset of T ” and is a shorter way of writing 

S ⊇ T  and S ≠ T. 

Example 

(i) If 𝐴 =  {0, 2, 9}, 𝐵 =  {0, 2, 7, 9, 11}, then 𝐴 ⊂ 𝐵  (A is a 

proper subset of B). 

(ii) If 𝐴 =  {𝑎, 𝑎, 𝑏}, 𝐵 =  {𝑎, 𝑏}, then A and B denoted the same 

set, i.e., 𝐴 =  𝐵. 

(iii) If 𝐴 =  {1, 2, 4}, 𝐵 =  {2, 4, 6, 8}, then A is proper subset of 

B and B is a superset of A.■ 

●Combining sets: union and intersection 

So far, we have defined various relations on pairs of sets (=, ⊆,⊂

 etc.) in terms of membership. It is also useful to define operations 

that take two sets and form a third set. Once again, we will define 

these operations in terms of membership. We’ll start by defining 

the intersection of two sets S and T to be the set containing 

anything that is both an element of S and an element of T. We’ll 

write the intersection operation as S ∩ T.  

Two sets are called disjoint if their intersection is the empty set. 

Similarly, we’ll define the union of two sets S and T to be the set 

containing anything that is either an element of S or an element of 

T. We’ll write the union operation as S ∪ T. 
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●Venn diagrams 

For elementary set operations, there is a conventional 

method of drawing pictures called Venn diagrams, 

named after the British mathematician John Venn. 

To draw a set S, we simply draw a circle, with the 

name of the set inside the circle.  

The intent of this drawing is that the inside of the circle represents 

all the elements in S. The outside of the circle represents 

everything that isn’t in the set S. There isn’t any significance to 

the fact that we use circles in Venn diagrams. We could just as 

well draw 

Now, to represent an operation on two sets, we draw two 

overlapping circles, like this: 

 

 

 

http://commons.wikimedia.org/wiki/File:Trivial_Venn_Diagram.png
http://commons.wikimedia.org/wiki/File:Trivial_Elliptical_Venn_Diagram.PNG
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Draw a Venn diagram (not limited to circles) that depicts every 

possible combination of intersections between four sets. What is 

the best you can do? 

●Universal Set  

Definition. 

In many discussions all the sets are considered to be subsets of 

one particular set. This set is called the universal set for that 

discussion. The Universal set is often designated by the script 

letter U (or by X). Universal set in not unique, and it may change 

from one discussion to another. 
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Example. 

If 𝐴 =  {0, 2, 7}, 𝐵 =  {3, 5, 6}, 𝐶 =  {1, 8, 9, 10}, the universal 

set can be taken as the set. 𝑈 =  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.■ 

●The Power Set  

The power set of S is the set of all subsets of the set S. The power 

set of S is denoted by P(S). 

Example. 

What is the power set of the set {0,1,2}? 

Solution. 

𝑃({0,1,2}) = {𝜙, {0}, {1}, {2}, {1,2}, {0,2}, {0,1}, {0,1,2}}.■ 

If a set has n elements, then its power set has 2𝑛 elements.  

Example. 

What is the power set of the empty set? What is the power set of 

the set {𝜙}? 

Solution. 

The empty set has exactly one subset, namely, itself. 

Consequently, 

𝑃(𝜙)  =  {𝜙}. 

The set {𝜙} has exactly two subsets, namely, 𝜙 and the set {𝜙} 

itself. Therefore, 𝑃({𝜙})  =  {𝜙, {𝜙}}. ■ 
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● Disjoint Sets 

Definition. 

Two sets are said to be disjoint if they have no element in 

common. 

Example.  

The sets 𝐴 =  {0, 4, 7, 9} and 𝐵 =  {3, 6, 10} are disjoint. ■ 

●Cartesian Product  

The order of elements in a collection is often important. Because 

sets are unordered, a different structure is needed to represent 

ordered collections. This is provided by ordered n-tuples. 

Definition. 

The ordered n-tuple (𝑎1, 𝑎2, . . . , 𝑎𝑛) is the ordered collection that 

has 𝑎1 as its first element, 𝑎2 as its second element, . . . , and 𝑎𝑛 

as its nth element. We say that two ordered n-tuples are equal if 

and only if each corresponding pair of their elements is equal. In 

other words, (𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝑏1, 𝑏2, . . . , 𝑏𝑛) if and only if 𝑎𝑖  =

 𝑏𝑖 for 𝑖 =  1, 2, . . . , 𝑛. In particular, ordered 2-tuples are called 

ordered pairs. The ordered pairs (𝑎, 𝑏) and (𝑐, 𝑑) are equal if 

and only if 𝑎 =  𝑐 and 𝑏 =  𝑑. Note that (𝑎, 𝑏) and (𝑏, 𝑎) are not 

equal unless 𝑎 =  𝑏. 
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Definition. 

Let A and B be sets. The Cartesian product of A and B, denoted 

by 𝐴 × 𝐵, is the set of all ordered pairs (a, b) where 𝑎 ∈ 𝐴 and 

𝑏 ∈ 𝐵. Hence  

𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} 

Example. 

What are the Cartesian products 𝐴 × 𝐵 and 𝐵 × 𝐴, where 𝐴 =

 {1, 2} and 𝐵 = {𝑎, 𝑏, 𝑐}? 

Solution. 

𝐴 × 𝐵 = {(1, 𝑎), (1, 𝑏), (1, 𝑐), (2, 𝑎), (2, 𝑏), (2, 𝑐)}. 

𝐵 ×  𝐴 =  {(𝑎, 1), (𝑎, 2), (𝑏, 1), (𝑏, 2), (𝑐, 1), (𝑐, 2)}. ■ 

Note that the Cartesian product 𝐵 ×  𝐴 is not equal to the 

Cartesian product 𝐴 ×  𝐵. 

Definition. 

The Cartesian product of the sets 𝐴1, 𝐴2, … , 𝐴𝑛, denoted by 

𝐴1 × 𝐴2 × …× 𝐴𝑛, is the set of ordered n-tuples (𝑎1, 𝑎2, … , 𝑎𝑛), 

where 𝑎𝑖 ∈ 𝐴𝑖 for 𝑖 = 1,2,… , 𝑛. In other words,  

𝐴1 × 𝐴2 × …× 𝐴𝑛 = {(𝑎1, 𝑎2, … , 𝑎𝑛): 𝑎𝑖 ∈ 𝐴𝑖 , 𝑖 = 1,2,… , 𝑛} 

Example. 

What is the Cartesian product 𝐴 ×  𝐵 ×  𝐶, where 𝐴 =  {0, 1}, 

𝐵 =  {1, 2}, and 𝐶 =  {0, 1, 2} ? 
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Solution. 

The Cartesian product 𝐴 ×  𝐵 ×  𝐶 consists of all ordered triples 

(𝑎, 𝑏, 𝑐), where 𝑎 ∈  𝐴, 𝑏 ∈  𝐵, and 𝑐 ∈  𝐶.  

Hence, 

𝐴 ×  𝐵 ×  𝐶 =  {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1),  

(0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1),  

           (1, 2, 2)}.■ 

Remark. 

Note that when A, B, and C are sets, (𝐴 ×  𝐵)  ×  𝐶 is not the 

same as 𝐴 ×  𝐵 ×  𝐶. 

Definition. 

A subset R of the Cartesian product 𝐴 ×  𝐵 is called a relation 

from the set A to the set B. The elements of R are ordered pairs, 

where the first element belongs to A and the second to B. For 

example 𝑅 =  {(𝑎, 0), (𝑎, 1), (𝑎, 3), (𝑏, 1), (𝑏, 2), (𝑐, 0), (𝑐, 3)} is 

a relation from the set {𝑎, 𝑏, 𝑐} to the set {0, 1, 2, 3}.  

A relation from a set A to itself is called a relation on A.  

Example. 

What are the ordered pairs in the less than or equal to relation, 

which contains (𝑎, 𝑏) if 𝑎 ≤  𝑏, on the set {0, 1, 2, 3}? 

Solution.  

The ordered pair (𝑎, 𝑏) belongs to R if and only if both a and b 

belong to {0, 1, 2, 3} and 𝑎 ≤  𝑏. Consequently, the ordered pairs 
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in R  are (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2, 3), 

and (3, 3). ■ 

We will study relations and their properties in Section 1.3.  

●Cardinality 

Sets are used extensively in counting problems, and for such 

applications we need to discuss the sizes of sets. 

●Cardinality of a Set 

Definition.  

Let S be a set. If there are exactly n distinct elements in S where n 

is a nonnegative integer, we say that S is a finite set and that n is 

the cardinality of S. The cardinality of S is denoted by |𝑆|. 

Example. 

 Let A be the set of odd positive integers less than 10.  

Then |𝐴|  =  5.■ 

Example. 

Let S be the set of letters in the English alphabet.  

Then |𝑆|  =  26. ■ 

Example. 

Because the null set has no elements, it follows that |𝜙|  =  0. ■ 

We will also be interested in sets that are not finite. 

Definition. 

A set is said to be infinite if it is not finite. 
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Example. 

The set of positive integers is infinite. ■ 

●Cardinality of  Union of Two Sets 

To find the number of elements in the union of two finite sets A 

and B, not that |𝐴| + |𝐵| counts each element that is in A but not 

in B or in B but not in A exactly once, and each element that is in 

both A and B exactly twice. Thus, if the number of elements that 

are in both A and B is subtracted from |𝐴| + |𝐵|, elements in 𝐴 ∩

𝐵 will be counted only once.  

Hence |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|. 

●Cardinality of  Union of Three Sets 

Number of elements in 𝐴 ∪ 𝐵 ∪ 𝐶: If A, B and C are any three 

finite sets, then 

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| +

|𝐴 ∩ 𝐵 ∩ 𝐶|. 

● Comparable Sets 

Definition. 

Two sets A and B are said to be comparable if 𝐴 ⊂ 𝐵  or 𝐵 ⊂ 𝐴. 

Definition. 

Two sets A and B are said to be comparable if 𝐴 ⊄ 𝐵  and 𝐵 ⊄ 𝐴. 
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Example. 

Let 𝐴 =  {1, 2, 3} and 𝐵 =  {1, 2, 3, 4, 6} then A is comparable to 

B, since A is a subset of B.■ 

Example. 

If 𝐴 =  {𝑎, 𝑐}, 𝐵 =  {𝑏, 𝑐, 𝑑, 𝑒, 𝑓} then 𝐴 ⊄ 𝐵  and 𝐵 ⊄ 𝐴. 

Therefore the sets A and B are not comparable. ■ 

●Multiset  

Definition.  

A collection of objects that are not necessarily distinct is called a 

multiset. 

Example. 

{𝑎, 𝑎, 𝑏, 𝑏 𝑐, 𝑐}.■ 

●Multiplicity  

Definition. 

Let S be a multiset and 𝑥 ∈ 𝑆  . The multiplicity of x is defined to 

be the numbers of times the element x appears in the multiset S. 

Example 

Let 𝑆 =  {𝑎, 𝑎, 𝑏, 𝑏, 𝑏, 𝑑, 𝑑, 𝑑, 𝑒}. Then  

Multiplicity of a is 2; 

Multiplicity of b is 3; 

Multiplicity of d is 3; 

Multiplicity of e is 1. 



- 25 - 
 

If A and B are multisets then 𝐴 ∪ 𝐵  and 𝐴 ∩ 𝐵  are also multisets. 

The multiplicity of an element 𝑥 ∈ 𝐴 ∪ 𝐵 is equal to the 

maximum of the multiplicity of x in A and B. 

The multiplicity of 𝑥 ∈ 𝐴 ∩ 𝐵 is equal to the minimum of the 

multiplicities of x in 𝐴 and in 𝐵. 

Example. 

Let 𝐴 =  {𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑑, 𝑑} and 𝐵 =  {𝑎, 𝑎, 𝑏, 𝑐, 𝑑}. Then 

𝐴 ∪ 𝐵 = {𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑑, 𝑑} and 𝐴 ∩ 𝐵 = {𝑎, 𝑎, 𝑏, 𝑐, 𝑑}. ■ 

●Set Operations  

Let A and B be sets. The difference of A and B, denoted by 𝐴–𝐵, 

is the set containing those elements that are in A but not in B.  

The difference of A and B is also called the complement of B 

with respect to A.   

Thus 𝐴 − 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} = 𝐴 ∩ 𝐵𝑐. 

 

The symmetric difference of A and B, denoted by A ⨁ B, is 

defined as   𝐴 ⨁ 𝐵 =  𝐴 ∪ 𝐵 −  𝐴 ∩ 𝐵 =  (𝐴 − 𝐵) ∪ (𝐵 − 𝐴).  
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For example, {1,3, 5} − {1,2,3} = {5}, {1,2,3} − {1,3,5} = {2} 

and {1,35}⨁{1,2,3} = {5} ∪ {2} = {2,5}. 

● The complement 

Let U be the universal set. The complement of the set A, denoted 

by 𝐴𝑐 (or 𝐴̄), is the complement of A with respect to U. In other 

words, the complement of the set A is 𝑈 –  𝐴. An element belongs 

to 𝐴𝑐 if and only if 𝑥 ∉ 𝐴. This tells us that   𝐴𝑐 = {𝑥: 𝑥 ∉ 𝐴}. 

 

Once the universal set U has been specified, the complement of a 

set can be defined. 
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●Set Identities  

The following table lists the most important set identities. We will 

prove several of these identities here, using three different 

methods.  

Identity  Name 

𝐴 ∪ 𝜙 = 𝐴 

𝐴 ∩ 𝑈 = 𝐴 

Identity laws  

𝐴 ∪ 𝑈 = 𝑈 

𝐴 ∩ 𝜙 = 𝜙 

Domination laws 

𝐴 ∪ 𝐴 = 𝐴 

𝐴 ∩ 𝐴 = 𝐴 

Idempotent laws 

(𝐴𝑐)𝑐 = 𝐴 Complementation 

law 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

Commutative laws  

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶 

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶 

Associative laws 

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

Distributive laws 

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 

(𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 

De Morgan’s laws 

𝐴 ∪ (𝐴 ∩ 𝐵) = 𝐴 

𝐴 ∩ (𝐴 ∪ 𝐵) = 𝐴 

Absorption laws  

𝐴 ∪ 𝐴𝑐 = 𝑈 

𝐴 ∩ 𝐴𝑐 = 𝜙 

Complement laws 

Example. 

We will prove that (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐  by showing that each is 

a subset of the other.  First suppose that 𝑥 ∈ (𝐴 ∩ 𝐵)𝑐 .  By the 
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definition of complement, 𝑥 ∉ 𝐴 ∩ 𝐵.  Hence,  𝑥 ∉ 𝐴 or 𝑥 ∉ 𝐵.  

By the definition of the complement 𝑥 ∈ 𝐴𝑐 or 𝑥 ∈ 𝐵𝑐 . By the 

definition of the union that 𝑥 ∈ 𝐴𝑐 ∪ 𝐵𝑐. So (𝐴 ∩ 𝐵)𝑐 ⊆ 𝐴𝑐 ∪ 𝐵𝑐 . 

Now, suppose that 𝑥 ∈ 𝐴𝑐 ∪ 𝐵𝑐 . By the definition of union,  𝑥 ∈

𝐴𝑐 or 𝑥 ∈ 𝐵𝑐 . Hence,  𝑥 ∉ 𝐴 or 𝑥 ∉ 𝐵. By the definition of 

complement, 𝑥 ∉ 𝐴 ∩ 𝐵. It follows 𝑥 ∈ (𝐴 ∩ 𝐵)𝑐. This shows that 

𝐴𝑐 ∪ 𝐵𝑐 ⊆ (𝐴 ∩ 𝐵)𝑐. Since we have shown that each set is a 

subset of the other, the two sets are equal, and the identity is 

proved.■ 

Example. 

We will use set builder notation and logical equivalence to show 

that (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 as follows: 

(𝐴 ∩ 𝐵)𝑐 = {𝑥: 𝑥 ∉ 𝐴 ∩ 𝐵} = {𝑥:¬(𝑥 ∈ (𝐴 ∩ 𝐵))} 

          = {𝑥:¬(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {𝑥: 𝑥 ∉ 𝐴 ∨ 𝑥 ∉ 𝐵}      

         = {𝑥: 𝑥 ∈ 𝐴𝑐 ∨ 𝑥 ∈ 𝐵𝑐} = {𝑥: 𝑥 ∈ 𝐴𝑐 ∪ 𝐵𝑐}
 

         = 𝐴𝑐 ∪ 𝐵𝑐.◄ 

Set identities can also be proved using membership tables. We 

consider each combination of sets that an element can belong to 

and verify that elements in the same combinations of sets belong 

to both the sets in the identity. To include that an element is in a 

set a 1 is used; to indicate that an element is not in a set, a 0 is 

used.  
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Example. 

We will use membership table to show that  

𝑋 ∪ (𝑌 ∩ 𝑍) = (𝑋 ∪ 𝑌) ∩ (𝑋 ∪ 𝑍). 

The membership table for these combinations of sets is shown in 

the following table. This table has eight rows. Since the columns 

for 𝑋 ∪ (𝑌 ∩ 𝑍) and (𝑋 ∪ 𝑌) ∩ (𝑋 ∪ 𝑍) are the same, the identity 

is valid. 

 

  Additional set identities can be established using those that we 

have already proved.  

Example. 

Let 𝐴, 𝐵 and 𝐶 be sets. To show that  

(𝐴 ∪ (𝐵 ∩ 𝐶))
𝑐
= (𝐶𝑐 ∪ 𝐵𝑐) ∩ 𝐴𝑐. 

We have 
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(𝐴 ∪ (𝐵 ∩ 𝐶))
𝑐
= 𝐴𝑐 ∩ (𝐵 ∩ 𝐶)𝑐 

                         = 𝐴𝑐 ∩ (𝐵𝑐 ∪ 𝐶𝑐) 

                         = (𝐵𝑐 ∪ 𝐶𝑐) ∩ 𝐴𝑐 

                         = (𝐶𝑐 ∪ 𝐵𝑐) ∩ 𝐴𝑐.■ 

Since unions and intersections of sets satisfy associative laws, the 

sets 𝐴 ∪ 𝐵 ∪ 𝐶 and 𝐴 ∩ 𝐵 ∩ 𝐶 are well defined when A, B and C 

are sets. We can also consider unions and intersections of an 

arbitrary number of sets as follows:  

  (i) The union of a collection of sets is the set that contain those 

elements that are members of at least one set in the collection.  

We use the notation  𝐴1 ∪. . .∪ 𝐴𝑛 = ⋃ 𝐴𝑖
𝑛
𝑖=1  to denoted the union 

of the sets 𝐴1, 𝐴2, . . . , 𝐴𝑛 

   (ii) The intersection of a collection of sets is the set that 

contains those elements that are members of all the sets in the 

collection.  

We use 𝐴1 ∩. . .∩ 𝐴𝑛 = ⋂ 𝐴𝑖
𝑛
𝑖=1  to denote the intersection of the 

sets 𝐴1, 𝐴2, . . . , 𝐴𝑛. 
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●Computer Representation of the sets  

There are various ways to represent sets using a computer. We 

will present a method for storing elements using an arbitrary 

ordering of the elements of the universal set. This method of 

representing sets makes computing combinations of sets easy.  

Assume that the universal set U is finite (and of reasonable size so 

that the number of elements of U is not larger than the memory 

size of the computer being used). First, specify an arbitrary 

ordering of the elements of U, for instance 𝑎1, 𝑎2, . . , 𝑎𝑛. 

Represent a subset A of U with the bit string of length n, where 

the ith bit in this string is 1 if 𝑎𝑖 belongs to A and is 0 if 𝑎𝑖 does 

not belong to A. 

Example. 

Let 𝑈 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements 

of U has the elements in increasing order, i.e, 𝑎𝑖 = 𝑖. 

What bit strings represent the subset of all odd integers in U, the 

subset of all even integers in U, and the subset of integers not 

exceeding 5 in U? 

To do this. The bit string that represents the set of odd integers in 

U, namely,  {1, 3, 5, 7, 9}, has one bit in the first, third, fifth, 

seventh, and ninth positions, and a zero elsewhere. It is 

1010101010.  

Similarly, we represent the subset of all even integers in U, 

namely, {2, 4, 6, 8, 10} by the string  01 0101 0101. 
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(we have split this bit string of length ten into locks of length four 

for easy reading since long bit strings are difficult to read).  

The set of all integers in U that do not exceed 5, namely, 

{1, 2, 3, 4, 5}, is represented by the string  11 1110 0000.■ 

Using bit strings to represent sets, it is easy to find complements 

of sets and unions, intersections, and difference of sets. 

To find the bit string for the complement of a set from the bit 

string for that set, we simply change each 1 to 0 and each 0 to 1, 

since 𝑥 ∈ 𝐴 if and only if 𝑥 ∉ 𝐴𝑐 . 

To obtain the set string for the union and intersection of two sets 

we perform bitwise Boolean operations on the bit strings 

representing the two sets.  

The bit in the ith position of the bit string of the union is 1 if either 

of the bits in the ith position in the two strings is 1, and is 0 when 

both bits are 0.  

Hence, the bit string for the union is the bitwise OR of the bit 

strings for the two sets.  

The bit in the ith position of the bit string of the intersection is 1 

when the bits in the corresponding position in the two strings are 

both 1, and is 0 when either of the two bits is 0 (or both are). 

Hence, the bit string for the intersection is the bitwise AND of the 

bit strings for the two sets.  
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Example. 

We have seen that the bit string for the set {1, 3, 5, 7, 9} (with 

universal set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) is  

  101010 1010   

The bit string for the complement of this set is obtained by 

replacing 0's with 1's and vice versa. This yields the string  

  01 0101 0101 

which corresponds to the set {2, 4, 6, 8, 10}.■ 

Example. 

The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 

11 1110  0000  and 10 1010  1010, respectively.  

We use bit strings to find the union and intersection of these sets.  

The bit string for the union of these sets is  

1111100000 ∨ 1010101010 = 1111101010,  

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. 

The bit string for the intersection of these sets is 

 1111100000 ∧ 1010101010 = 1010100000, 

which corresponds to the set {1, 3, 5}.■ 
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Exercise Set (1.1) 

1. List the members of these sets  

●{x: x is a real number such that 𝑥2 = 1}. 

●{x: x is a positive integer less than 12}. 

●{x: x is the square of an integer and 𝑥 < 100}. 

●{x: x is an integer such that 𝑥2 = 2}. 

2- Use set builder notation to give description of each of these 

sets.  

    (a) {0, 3, 6, 9, 12}; 

    (b)  {−3,−2,−1, 0, 1, 2, 3}. 

3- Determine whether each of these statements is true or false.  

 (a)  0 ∈ 𝜙 ;          (b) 𝜙 ∈ {0}; 

 (c)  {0} ⊂ 𝜙;  (d) 𝜙 ⊂ {0}; 

 (e) {0} ∈ {0};  (f) {0} ⊂ {0}; 

 (g) {𝜙} ⊆ {𝜙};  (h) 𝜙 ∈ {𝜙}; 

 (i) 𝜙 ∈ {𝜙, {𝜙}}; (i) 𝑥 ∈ {𝑥}; 

 (k) {𝜙} ∈ {{𝜙}};           (l) {𝑥} ∈ {{𝑥}}; 

 (m) {𝑥} ⊆ {𝑥};  (n) 𝜙 ∈ {𝑥}. 

4- What is the Cartesian product 𝐴 × 𝐵, where A is the set of 

courses offered by the mathematics department at a university and 

B is the set of mathematics professors at this university?  

5- Let A be a set. Show that 𝜙 × 𝐴 = 𝐴 × 𝜙 = 𝜙. 
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6- Find the power set of each of these sets. 

      (a) {𝑎};   (b)  {𝑎, 𝑏};  (c) {𝜙, {𝜙}}. 

7- Let A be the set of students who live within one mile of school 

and let B be the set of students who walk to classes.  

Describe the students in each of the following sets. 

      (a) 𝐴 ∩ 𝐵; (b) 𝐴 ∪ 𝐵;  (c) 𝐴 –  𝐵; (d) 𝐵 –  𝐴.  

8- Let 𝐴 = {1, 2, 3, 4, 5} and 𝐵 = {0, 3, 6}. Find 

    (a) 𝐴 ∪ 𝐵; (b) 𝐴 ∩ 𝐵; (c) 𝐴 –  𝐵; (d) 𝐵 –  𝐴.  

9- Let A, B and C be sets. Show that  

(a) (𝐴 ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵 ∪ 𝐶);   

(b) (𝐴 ∩ 𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐵); 

(c) (𝐴 − 𝐵) − 𝐶 ⊆ 𝐴 − 𝐶; 

(d) (𝐴 − 𝐶) ∩ (𝐶 − 𝐵) = 𝜙; 

(e) (𝐵 − 𝐴) ∪ (𝐶 − 𝐴) = (𝐵 ∪ 𝐶) − 𝐴. 

10- What can you say about the sets A and B if we know that  

(a) 𝐴 ∪ 𝐵 = 𝐴;   

(b) 𝐴 ∩ 𝐵 = 𝐴;  

(c) 𝐴 –  𝐵 =  𝐴;  

(d) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴;  

(e) 𝐴 –  𝐵 =  𝐵 –  𝐴. 

11- Suppose that the universal set is 𝑈 = {1,2,3,4,5,6,7,8,9,10}. 

Express each of these sets with bit strings.  

(a) {3, 4, 5}; (b) {1, 3, 6, 10}; (c){2, 3, 4, 7, 8, 9}. 
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12- Suppose that the universal set is 𝑈 = {1,2,3,4,5,6,7,8,9,10}. 

Find the set specified by each of these bit strings 

    (a) 11 1100 1111;  (b) 01 0111 1000;   (c) 10 0000 0001.  

13- What subsets of a finite universal set do these bit strings 

represent?  

(a) The string with all zeros;  

(b) The string with all ones.  

14- Let A and B be sets. Show that  

(a) (𝐴 ∩ 𝐵) ⊆ 𝐴;  

(b)  𝐴 ⊆ (𝐴 ∪ 𝐵);   

(c) 𝐴 − 𝐵 ⊆ 𝐴;  

(d) 𝐴 ∩ (𝐵 − 𝐴) = 𝜙;  

(e) 𝐴 ∪ (𝐵 − 𝐴) = 𝐴 ∪ 𝐵. 

15- Show that if A, B and C are sets then  

|𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| 

+|𝐴 ∩ 𝐵 ∩ 𝐶| 
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1.2 Functions  

What is a Function? 

A function relates an input to an output. 

It is like a machine that has an input and 

an output. The output is related 

somehow to the input. 

"𝑓(𝑥)  = . .. " is the classic way of writing a function.  

And there are other ways, as you will see! 

I will show you many ways to think about functions, but there 

will always be three main parts:  

●The input  ● The relationship   ●  The output 

Example.  

"Multiply by 2" is a very simple function. Here are the three parts: 

Input Relationship Output 

0 × 2 0 

1 × 2 2 

7 × 2 14 

10 × 2 20 

... ... ... 

● Some Examples of Functions 

● x2 (squaring) is a function 

● x3+1 is also a function 

● Sine, Cosine and Tangent are functions used in trigonometry 

http://www.mathsisfun.com/sine-cosine-tangent.html
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● Names 

First, it is useful to give a function a name.  

The most common name is "f", but you can have other names like 

"g" ....   

 

You would say "f of x equals x squared" 

The function 𝑓(𝑥)  =  𝑥2 shows you that function "𝑓" takes "𝑥" 

and squares it. 

● The "x" is Just a Place-Holder!  

Don't get too concerned about "x", it is just there to show you 

where the input goes and what happens to it. It could be anything! 

So this function:   𝑓(𝑥)  =  1 −  𝑥 +  𝑥2 

Would be the same function if we wrote: 

● 𝑓(𝑞) = 1 − 𝑞 + 𝑞2, ℎ(𝐴) = 1 − 𝐴 + 𝐴2, 𝑤(𝜃) = 1 − 𝜃 +  𝜃2. 

It is just there so you know where to put the values: 

𝑓(2)  =  1 −  2 + 22  =  3 

● Sometimes There is No Function Name 

Sometimes a function has no name, and you might just see 

something like: 𝑦 =  𝑥2.  But there is still: 

 ◦ an input (x)  ◦ a relationship (squaring) ◦ and an output (y) 
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What Types of Things Do Functions Process?  

A function takes elements of a set, and gives back elements of a 

set.  

This can be said in one definition: 

Definition. 

Let A and B be nonempty sets. A function f from A to B 

is an assignment of exactly one element of B to each 

element of A. We write 𝑓 (𝑎) = 𝑏 if b is the unique 

element of B assigned by the function f to the element a 

of A. If f is a function from A to B, we write 𝑓 ∶  𝐴 →  𝐵. 

Remark: Functions are sometimes also called mappings 

or transformations.  

 

Formal Definition of a Function 

A function relates each element of a set 

with exactly one element of another set 

(possibly the same set). 

The Two Important Things! 

1."...each element..." means that every element in X is related to 

some element in Y.  We say that the function covers X (relates 

every element of it). (But some elements of Y might not be 

related to at all, which is fine.) 
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2. "...exactly one..." means that a function is single valued. It 

will not give back 2 or more results for the same input.  
 

 

 

 

(one-to-many)  (many-to-one) 

This is NOT OK in a function  But this is OK in a function 

If a relationship does not follow those two rules then it is not a 

function ... it would still be a relationship, just not a function. 

Example 

The relationship x → x2 

 

It is a function, because: 

• Every element in X is related to Y. 

• No element in X has two or more relationships. 

So it follows the rules. 

(Notice how both 4 and -4 relate to 16, which is allowed.) 
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Example. 

This relationship is not a function: 

 

It is a relationship, but it is not a function, for these reasons: 

• Value "3" in X has no relation in Y. 

• Value "4" in X has no relation in Y. 

• Value "5" is related to more than one value in Y. 

(But the fact that "6" in Y is not related to does not matter) 

●Vertical Line Test 

On a graph, the idea of single valued 

means that no vertical line would ever 

cross more than one value.  

If it crosses more than once it is still a 

valid curve, but it would not be a 

function. 

● Set of Ordered Pairs 

Here is another way to think about functions:  

You can write the input and output of a function as an "ordered 

pair".  They are called ordered pairs because the input always 

comes first, and the output second:  (input, output).  So it looks 

like this:  ( 𝒙, 𝒇(𝒙) ). 
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Example.  

{(2,4), (3,5), (7,3)} is a function says "2 is related to 4", "3 is 

related to 5" and "7 is related 3".  

Also, notice that: 

But the function has to be single valued, so we also say  "if it 

contains (𝑎, 𝑏) and (𝑎, 𝑐), then b must equal c". Which is just a 

way of saying that an input of "a" cannot produce two different 

results. 

Example. 

 {(2,4), (2,5), (7,3)} is not a function because  (2,4) and (2,5) 

means that 2 could be related to 4 or 5. In other words it is not a 

function because it is not single valued 

● Piecewise Functions: A Function Can be in Pieces 

You can create functions that depending on the input value. 

Example 

A function with two pieces: 

• when x is less than 0, it gives 5,  

• when x is 0 or more it gives x2. 
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Example  

A function with three pieces: 

 

A function made up of 3 pieces 

Example  

A function with three pieces: 

It looks like this: 

𝑓(𝑥) = {
𝑥2 𝑥 < 2
6 𝑥 = 2

10 − 𝑥 𝑥 > 2 and 𝑥 ≤ 6

 

(a solid dot means "including", an open 

dot means "not including") 

● The Absolute Value Function 

The Absolute Value Function is a famous Piecewise Function. 

It has two pieces: 

• below zero: −𝒙 

• from 0 onwards: 𝒙 

• This is its graph: 

𝑓(𝑥) =  |𝑥| = {
𝑥 𝑥 ≥ 0

−𝑥 𝑥 < 0
 

http://www.mathsisfun.com/sets/function-absolute-value.html
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● Floor and Ceiling Functions 

The Floor and Ceiling Functions are a Piecewise Functions. 

They give you the nearest integer up or down. 

Example  

What is the floor and ceiling of 2.31? 

 

The Floor of 2.31 is 2  

The Ceiling of 2.31 is 3 

What if you want the floor or ceiling of a number that is already 

an integer?   That's easy: no change! 

Example.  

What is the floor and ceiling of 5? 

The Floor of 5 is 5. The Ceiling of 5 is 5. 

Here are some example values for you: 

x Floor Ceiling 

-1.1 -2 -1 

0 0 0 

1.01 1 2 

2.9 2 3 

3 3 3 



- 45 - 
 

●Symbols 

The symbols for floor and ceiling are like the square brackets  

[ ] with the top or bottom part missing: 

 

But I prefer to use the word form: floor(x) and ceil(x) 

Definition 

Floor Function:  

the greatest integer that is less than or equal to x. 

Ceiling Function:  

the least integer that is greater than or equal to x. 

● As A Graph 
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The following table, with x denoting a real number and n is 

integer, displays some simple but important properties of the floor 

and ceiling functions.  

 (1a) ⌊𝑥⌋ = 𝑛  if and only if 𝑛 ≤ 𝑥 < 𝑛 + 1 

(1b) ⌈𝑥⌉ = 𝑛  if and only if 𝑛 − 1 < 𝑥 ≤ 𝑛 

(1c) ⌊𝑥⌋ = 𝑛  if and only if  𝑥 − 1 < 𝑛 ≤ 𝑥 

(1 d) ⌈𝑥⌉ = 𝑛 if and only if 𝑥 ≤ 𝑛 < 𝑥 + 1 

(2) 𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥 ≤ ⌈𝑥⌉ < 𝑥 + 1 

(3 a) ⌊−𝑥⌋ = −⌈𝑥⌉ 

(3 b) ⌈−𝑥⌉ = −⌊𝑥⌋ 

(4 a) ⌊𝒙 + 𝒏⌋ = ⌊𝒙⌋ + 𝒏         

(4 b) ⌈𝒙 + 𝒏⌉ = ⌈𝒙⌉ + 𝒏         

 

Each property in this table can be established using the definitions 

of the floor and ceiling functions properties (1a), (1b), (1c) and 

(1d) follow directly from these definitions.  

For example (1a) states that ⌊𝑥⌋ = 𝑛 if and only if the integer n is 

less than or equal to x and     𝑛 +  1 is larger than x. This is 

precisely what it means for n to be the greatest integer not 

exceeding x, which is the definition of ⌊𝑥⌋ = 𝑛.  

Properties (1b), (1c) and (1d) can be established similarly.  

We will prove (4a) as follows: 
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 Suppose that ⌊𝑥⌋ = 𝑚, where m is a positive integer. By (1a) it 

follows that 𝑚 ≤ 𝑥 < 𝑚 + 1. Adding n to both sides of this 

inequality shows that  

𝑚 + 𝑛 ≤ 𝑥 + 𝑛 ≤ 𝑚 + 𝑛 + 1. 

Using property (1a) again, we see that 

⌊𝑥 + 𝑛⌋ = 𝑚 + 𝑛 = ⌊𝑥⌋ + 𝑛. 

This completes the proof.  

Example. 

Prove or disprove that ⌈𝑥 + 𝑦⌉ = ⌈𝑥⌉ + ⌈𝑦⌉ for all real numbers x 

and y. 

Solution. 

Although this statement may appear reasonable, it is false. 

A counter example is supplied by 𝑥 =
1

2
 and 𝑦 =

1

2
. With these 

values we find that ⌈𝑥 + 𝑦⌉ = ⌈
1

2
+

1

2
⌉ = ⌈1⌉ = 1. 

But  ⌈𝑥⌉ + ⌈𝑦⌉ = ⌈
1

2
⌉ + ⌈

1

2
⌉ = 1 + 1 = 2. 
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● Domain, Codomain and Range 
How to Specify Domains and Ranges 

In our examples above 

• the set "X" is called the Domain,  

• the set "Y" is called the Codomain, and  

• the set of elements that get pointed to in Y (the actual 

values produced by the function) is called the Range.  

Let us look at a simple example: 

In this illustration:  

◦the set "A" is the Domain,  

◦the set "B" is the Codomain,  

◦and the set of elements that get 

pointed to in B (the actual 

values produced by the 

function) are the Range, also called the Image. 

In that example: 

• Domain: {1, 2, 3, 4} 

• Codomain: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

• Range: {3, 5, 7, 9} 

● Part of the Function 

Now, what comes out (the Range) depends on what you put in 

(the Domain) ...  but YOU can define the Domain! 

In fact the Domain is an essential part of the function. Change the 

Domain and you have a different function. 
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Example. 

A simple function like 𝑓(𝑥) = 𝑥2 can have the domain (what 

goes in) of just the counting numbers {1,2,3, . . . }, and the range 

will therefore be the set {1,4,9, . . . } 

 

And another function 𝑔(𝑥) = 𝑥2 can have the domain of integers 

{. . . , −3,−2,−1,0,1,2,3, . . . }, in which case the range will be the 

set {0,1,4,9, . . . } 

 

Even though both functions take the input and square it, they 

operate on a different set of inputs, and so give a different set of 

outputs.  In this case the range of 𝑔(𝑥) also includes 0. Also they 

will have different properties. For example 𝑓(𝑥) always gives a 

unique answer, but 𝑔(𝑥) can give the same answer with two 

different inputs (such as 𝑔(−2) = 4, and also 𝑔(2) = 4). So, the 

domain is an essential part of the function.  
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Does Every Function Have a Domain? 

Yes, but in simpler mathematics you never notice this, because 

the domain is assumed: 

• Usually it is assumed to be something like "all numbers 

that would work".  

• Or if you are studying whole numbers, the domain is 

assumed to be whole numbers.  

But in more advanced work you need to be more careful! 

● Codomain vs Range 

The Codomain and Range are both on the output side but are 

subtly different. 

The Codomain is the set of values that could possibly come out. 

The Codomain is actually part of the definition of the function.  

And the Range is the set of values that actually do come out. 

Example. 

you can define a function  𝒇(𝒙) = 𝟐𝒙 with a domain and 

codomain of integers (because you say so). But by thinking about 

it you can see that the range (actual output values) would be just 

the even integers. So the codomain is integers (you defined it that 

way), but the range is even integers. 

The Range is a subset of the Codomain. 

Why both? Well, sometimes you don't know the exact range 

(because the function may be complicated or not fully known), 
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but you know the set it lies in (such as integers or reals). So, you 

define the codomain and continue on. 

● The Importance of Codomain 

Let me ask you a question: Is square root a function? 

If you say the codomain (the possible outputs) is the set of real 

numbers, then square root is not a function! ... is that a surprise?  

The reason is that there could be two answers for one input, for 

example 𝑓(9)  =  3 or −3. 

A function must be single valued. It can not give back 2 or more 

results for the same input. So "f(9) = 3 or -3" is not right!  

But it can be fixed by simply limiting the codomain to non-

negative real numbers. In fact, the radical symbol (like √𝑥) 

always means the principal (positive) square root, so √𝑥 is a 

function because its codomain is correct. So, that you choose for 

the codomain can actually affect whether something is a 

function or not.  

● Domains 

Now you must consider the Domains of the functions. 

 

The domain is the set of all 

the values that go into a 

function. 

The function must work for all 

values you give it, so it is up to 

you to make sure you get the 

domain correct! 

http://www.mathsisfun.com/algebra/square-root.html
http://www.mathsisfun.com/sets/function.html
http://www.mathsisfun.com/sets/domain-range-codomain.html
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Example: the domain for √𝒙 (the square root of x)  
You cannot have the square root of a negative number (unless you 

use imaginary numbers, but we aren't), so we must exclude 

negative numbers: The Domain of √𝑥 is all non-negative Real 

Numbers. On the Number Line it looks like: 

 

Using set-builder notation it is written: {𝑥|𝑥 ∈ ℝ, 𝑥 ≥ 0}. Or 

using interval notation it is: [0, +∞). It is important to get the 

Domain right, or you will get bad results! There is also: 

Dom(f) or Dom f meaning "the domain of the function f". 

Ran(f) or Ran f  meaning "the range of the function f". 

Definition 

If f is a function from A to B, we say that A is the domain of f and 

B is the codomain of f. If 𝑓(𝑎) = 𝑏, we say that b is the image of 

a and a is a preimage of b. The range, or image, of f  is the set of 

all images of elements of A. Also, if f is a function from A to B, 

we say that f maps A to B. 

Example 

Let f  be the function that assigns the last two bits of a bit string of 

length 2 or greater to that string. For example, 𝑓(11010)  =  10. 

Then, the domain of f is the set of all bit strings of length 2 or 

greater, and both the codomain and range are the set 

{00, 01, 10, 11}.■ 

 

http://www.mathsisfun.com/sets/set-builder-notation.html
http://www.mathsisfun.com/sets/intervals.html
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Example. 

Let 𝑓: ℤ → ℤ assign the square of an integer to this integer. Then, 

𝑓(𝑥) = 𝑥2, where the domain of f is the set of all integers, the 

codomain of f is the set of all integers, and the range of f is the set 

of all integers that are perfect squares, namely, {0, 1, 4, 9, . . . }.■ 

Example. 

The domain and codomain of functions are often specified in 

programming languages. For instance, the Java statement 

int floor(float real){. . .} 

and the C++ function statement 

int function (float x){. . .} 

both tell us that the domain of the floor function is the set of real 

numbers (represented by floating point numbers) and its 

codomain is the set of integers. ■ 

A function is called real-valued if its codomain is the set of real 

numbers, and it is called integer-valued if its codomain is the set 

of integers.  

● Injective, Surjective and Bijective 

A General Function points from each member of "A" to a 

member of "B". 
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Injective means that every member of "A" has its own unique 

matching member in "B". As it is also a function one-to-many is 

not OK. And you won't get two "A"s pointing to the same "B", so 

many-to-one is NOT OK. But you can have a "B" without a 

matching "A". Injective functions can be reversed!  

If "A" goes to a unique "B" then given that "B" value you can go 

back again to "A" (this would not work if two or more "A"s 

pointed to one "B" like in the "General Function"). Injective is 

also called "one-to-one". 

Surjective means that every "B" has at least one matching "A" 

(maybe more than one). There won't be a "B" left out.  Bijective 

means both Injective and Surjective together. So there is a perfect 

"one-to-one correspondence" between the members of the sets. 

(But don't get that confused with the term "one-to-one" used to 

mean injective).  

● On The Graph 

Let me show you on a graph what a "General Function" and a 

"Injective Function" looks like: 

 

 

 

General Function  "Injective" (one-to-one) 
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In fact you can do a "Horizontal Line Test":  

To be Injective, a Horizontal Line should never intersect the 

curve at 2 or more points. Note that: Strictly Increasing (and 

Strictly Decreasing) functions are Injective. 

● Formal Definitions 

A function f is said to be one-to-one if and only if 𝑓(𝑎)  =  𝑓(𝑏) 

implies that 𝑎 =  𝑏 for all a and b in the domain of f. A function 

is said to be injective if it is one-to-one. 

We illustrate this concept by giving examples of functions that are 

one-to-one and other functions that are not one-to-one. 

Example. 

Determine whether the function f from {𝑎, 𝑏, 𝑐, 𝑑} to {1, 2, 3, 4, 5} 

with 𝑓(𝑎) = 4, 𝑓(𝑏) = 5, 𝑓(𝑐) = 1, and 𝑓(𝑑) = 3 is one-to-one. 

Solution. 

The function f is one-to-one because f takes 

on different values at the four elements of 

its domain. This is illustrated in the figure. 

■ 

Example. 

𝑓(𝑥)  =  𝑥 + 5 from the set of real numbers ℝ to ℝ  is an 

injective function. This function can be easily reversed. for 

example: 𝑓(3)  =  8. Given 8 we can go back to 3. ■ 

 

http://www.mathsisfun.com/sets/functions-increasing.html
http://www.mathsisfun.com/sets/functions-increasing.html


- 56 - 
 

Example. 

𝑓(𝑥) = 𝑥2 from the set of real numbers ℝ to ℝ  is not an injective 

function because: 𝑓(2)  =  4 and  𝑓(−2)  =  4. This is against the 

definition 𝑓(𝑥)  =  𝑓(𝑦), 𝑥 =  𝑦, because 𝑓(2)  =  𝑓(−2) but 

2 ≠  −2. In other words, there are two values of "A" that point to 

one "B", and this function could not be reversed (given the value 

"4" ... what produced it?). BUT if we made it from the set of 

natural numbers ℕ to ℕ  then it is injective, because: 𝑓(2)  =  4. 

There is no 𝑓(−2), because −2 is not a natural number. ■ 

Example. 

Study the injection of the function 𝑓(𝑥) = 𝑎𝑥 + 𝑏. 

Solution. 

 Let 𝑓(𝑥1) = 𝑓(𝑥2) then 𝑎𝑥1 + 𝑏 = 𝑎𝑥2 + 𝑏 Thus, 𝑎𝑥1 = 𝑎𝑥2.  If 

𝑎 ≠ 0 ,then 𝑥1 = 𝑥2 and f  is one-to-one. If 𝑎 =  0, then 𝑓(𝑥)  =

 𝑏 for every 𝑥 ∈ ℝ    and 𝑓(1)  =  𝑓(2) , for example. Hence f  is 

not one-to-one. ■ 

Example. 

The function 𝑓 ∶ ℝ →  ℝ,  defined by 𝑓(𝑥) = 𝑥2 is not one-to-

one. For example, 𝑓 (−3)  =  𝑓(3)  =  9. But, if we restrict the 

function on the interval [0 ,∞) , the function will be one-to-one as  

𝑓(𝑥1) = 𝑓(𝑥2) ⇒ 𝑥1
2 = 𝑥2

2 ⇒ 𝑥1 = ±𝑥2. Since 𝑥1 , 𝑥2 are 

positive then 𝑥1 = 𝑥2. ■ 
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Example. 

Prove that 𝑓(𝑥) =
3𝑥+1

5−2𝑥
  is injective.  

Solution. 

Let 𝑥1 , 𝑥2 ∈ 𝐷(𝑓) =  ℝ − {5/2}, then 

 𝑓(𝑥1) = 𝑓(𝑥2) ⇒
3𝑥1+1

5−2𝑥1
=

3𝑥2+1

5−2𝑥2
 

⇒ 15𝑥1 − 6𝑥1 𝑥2 + 5 − 2𝑥2 = 15𝑥2 − 6𝑥1𝑥2 + 5 − 2𝑥1  ⇒

𝑥1 = 𝑥2.  

Thus, f  is injective.■ 

● Surjective (Also Called "Onto") 

A function f (from set A to B) is surjective if and only for every y 

in B, there is at least one x in A such that f(x) = y. In other words 

f is surjective if and only if 𝑓(𝐴)  =  𝐵. So, every element of the 

range corresponds to at least one member of the domain.  

Remark 

A function f is onto if ∀𝑦∃𝑥(𝑓 (𝑥) = 𝑦), where the domain for x 

is the domain of the function and the domain for y is the 

codomain of the function. 

Example  

Let f be the function from {𝑎, 𝑏, 𝑐, 𝑑} to {1, 2, 3} defined by 

𝑓(𝑎) = 3, 𝑓(𝑏) = 2, 𝑓(𝑐) = 1, and 𝑓(𝑑) = 3.  

Is f an onto function? 
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Solution  

Because all three elements of the codomain 

are images of elements in the domain, we 

see that f is onto. This is illustrated in the 

figure. Note that if the codomain were 

{1, 2, 3, 4}, then f would not be onto. ■ 

Example  

The function 𝑓(𝑥)  =  2𝑥 from the set of natural numbers ℕ to the 

set of non-negative even numbers is a surjective function.  

However, 𝑓(𝑥)  =  2𝑥 from the set of natural numbers ℕ to ℕ is 

not surjective, because, for example, nothing in ℕ can be mapped 

to 3 by this function. ■ 

Example 

The function 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2 is not surjective 

because Im(𝑓) = [0 ,∞) ≠ℝ.  But, the function 𝑔 ∶  ℝ  →  ℝ  

defined by 𝑓(𝑥) = 𝑥3 is surjective because  Im(𝑓) =  ℝ. ■ 

Examples of Different Types of Correspondences. 
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● Bijective 

A function f (from set A to B) is bijective if, for every y in B, there 

is exactly one x in A such that f(x) = y. Alternatively, f is 

bijective if it is a one-to-one correspondence between those sets, 

in other words both injective and surjective. 

Example 

The function f(x) = x2 from the set of positive real numbers to 

positive real numbers is injective and surjective. Thus, it is also 

bijective.  But not from the set of real numbers ℝ because you 

could have, for example, both 𝑓(2) = 4 and  𝑓(−2) = 4. ■ 

Exercise. Which of the following functions is NOT injective? 

A) f(x) = x3 + 4 from ℝ to ℝ; B) f(x) = x3 + 4 from ℕ to ℕ 

C) f(x) = x2 + 4 from ℝ to ℝ; D) f(x) = x2 + 4 from ℕ to ℕ 

● Inverse function 

Let f  be a one-to-one correspondence from the set A to the set B. 

The inverse function of  f  is the function that assigns to an 

element b belonging to B the unique element a in A such that  

𝑓(𝑎) = 𝑏. The inverse function of f is denoted by 𝑓−1. Hence 

𝑓−1(𝑏) = 𝑎 when 𝑓(𝑎) = 𝑏. If a function f is not a one-to-one 

correspondence, we cannot define an inverse function of  f. When 

f is not one-to-one correspondence, either it is not one-to-one, or 

it is not onto. If f is not one-to-one, some element b in the 

codomain is the image of more than one element in the domain. If 
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f is not onto, for some element b in the codomain, no element a in 

the domain exists for which 𝑓(𝑎) = 𝑏. Consequently, if f is not a 

1-1 correspondence, we cannot assign to each element b in the 

codomain a unique element a in the domain such that 𝑓(𝑎) = 𝑏.  

Example 

Let f  be the function from {𝑎, 𝑏, 𝑐} to {1,2,3} such that 𝑓(𝑎)  =

 2, 𝑓(𝑏)  =  3, and 𝑓(𝑐)  =  1. The function f is invertible since it 

is one-to-one correspondence. The inverse function 𝑓−1 reverses 

the correspondence given by f, so that 𝑓−1(1) = 𝑐, 𝑓−1(2) = 𝑎 

and 𝑓−1(3) = 𝑏. ■ 

Example  

The function 𝑓: ℤ → ℤsuch that 𝑓(𝑥)  =  𝑥 +  1 has an inverse 

since it is a one-to-one correspondence. To reverse the 

correspondence, suppose y is the image of x, so that 𝑦 = 𝑥 + 1. 

Then 𝑥 =  𝑦 –  1. This means that 𝑦 –  1 is the unique element of 

ℤ that is sent to y by f. Consequently, 𝑓−1(𝑦) = 𝑦 − 1. ■ 

Example 

The function 𝑓: ℤ → ℤ with 𝑓(𝑥) = 𝑥2 is not invertible since f is 

not one-to-one, since, for instance, 𝑓(1)  =  𝑓(−1)  =  1. ■ 
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● Operations with Functions 

You can add, subtract, multiply and divide functions! 

The result will be a new function 

Let us try doing those operations on 𝑓(𝑥) and 𝑔(𝑥). 

Addition 

You can add two functions: (𝑓 + 𝑔)(𝑥)  =  𝑓(𝑥)  +  𝑔(𝑥) 

Note:put the 𝑓 + 𝑔 inside  ( ) so you know they both work on x.  

Example 

 Let 𝒇(𝒙)  =  𝟐𝒙 + 𝟑 and 𝒈(𝒙)  =  𝒙𝟐. Then, we have  

 (𝒇 + 𝒈)(𝒙)  =  (𝟐𝒙 + 𝟑) + (𝒙𝟐)  =  𝒙𝟐 + 𝟐𝒙 + 𝟑. ■ 

Example 

Let  𝒗(𝒙) =  𝟓𝒙 + 𝟏  and  𝒘(𝒙) =  𝟑𝒙 − 𝟐. Then, we have 

(𝒗 + 𝒘)(𝒙)  =  (𝟓𝒙 + 𝟏) + (𝟑𝒙 − 𝟐)  =  𝟖𝒙 − 𝟏. ■ 

The only other thing to worry about is the Domain (the set of 

numbers that go into the function), but I will talk about that later! 

Subtraction 

You can subtract two functions: 

 (𝑓 − 𝑔)(𝑥)  =  𝑓(𝑥)  −  𝑔(𝑥). 

Example 

 𝑓(𝑥)  =  2𝑥 + 3 and 𝑔(𝑥)  =  𝑥2. Then, we have  

(𝑓 − 𝑔)(𝑥)  =  (2𝑥 + 3) − (𝑥2). ■ 
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Multiplication 
You can multiply two functions: 

 (𝑓 · 𝑔)(𝑥)  =  𝑓(𝑥)  ·  𝑔(𝑥) 

Example 

𝑓(𝑥)  =  2𝑥 + 3 and 𝑔(𝑥)  =  𝑥2,  

   (𝑓 ∙ 𝑔)(𝑥) =  (2𝑥 + 3) (𝑥2) = 2𝑥3 + 3𝑥2. ■ 

Division 

And you can divide two functions: 

(𝑓/𝑔)(𝑥)  =  𝑓(𝑥) / 𝑔(𝑥). 

Example 

 𝑓(𝑥)  =  2𝑥 + 3 and 𝑔(𝑥)  =  𝑥2, 

(𝑓/𝑔)(𝑥) =  (2𝑥 + 3) /(𝑥2). ■ 

How to Work Out the New Domain 

When you do operations on functions, you end up with the 

restrictions of both. 

 

It is like cooking for friends: 

one can't eat peanuts,  the other can't eat 

dairy food. So what you cook can't have 

peanuts and also can't have dairy products. 

Example 

 𝑓(𝑥) = √𝑥 and 𝑔(𝑥) = √(3 − 𝑥) 

The domain for 𝑓(𝑥) = √𝑥 is from 0 onwards: 

 

The domain for 𝑔(𝑥) = √(3 − 𝑥) is up to and including 3: 
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The new domain (after adding or whatever) is therefore from 0 to 

3: 

 

If you choose any other value, then one or the other part of the 

new function won't work. In other words, you want to find where 

the two domains intersect.■ 

Note 

We can put this whole idea into one line using Set Builder 

Notation:  

Dom(𝑓 + 𝑔) = {𝑥 ∈ ℝ: 𝑥 ∈ Dom(𝑓) and 𝑥 ∈ Dom(𝑔)}. 

Which says "the domain of f  plus g is the set of all Real Numbers 

that are in the domain of f AND in the domain of g" 

The same rule applies when you add, subtract, multiply or divide, 

except divide has one extra rule. 

● An Extra Rule for Division  

There is an extra rule for division:  

As well as restricting the domain as above, when we divide: 

(𝑓/𝑔)(𝑥)  =  𝑓(𝑥) / 𝑔(𝑥) 

we must also make sure that 𝑔(𝑥) is not equal to zero (so we 

don't divide by zero). 

Example: 𝒇(𝒙) = √𝒙 and 𝒈(𝒙) = √𝟑 − 𝒙. (
𝒇

𝒈⁄ ) (𝒙) =
√𝒙

√𝟑−𝒙
. 

The domain for : 𝒇(𝒙) = √𝒙 is from 0 onwards: 

http://www.mathsisfun.com/sets/set-builder-notation.html
http://www.mathsisfun.com/sets/set-builder-notation.html
http://www.mathsisfun.com/numbers/dividing-by-zero.html
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The domain for 𝒈(𝒙) = √𝟑 − 𝒙 is up to and including 3: 

 

But we also have the restriction that √𝟑 − 𝒙 cannot be zero, so x 

cannot be 3: 

 

(Notice the open circle at 3, which means not including 3) 

So all together we end up with: 

 

● Composition of Functions 

"Function Composition" is applying one function to the results of 

another: 

 

The result of 𝑓() is sent through 𝑔() 

It is written: (𝑔 ∘ 𝑓)(𝑥). Which means: 𝑔(𝑓(𝑥)). 

Example 

 𝑓(𝑥)  =  2𝑥 + 3 and 𝑔(𝑥)  =  𝑥2. "x" is just a placeholder, and to 

avoid confusion let's just call it "input":  

 𝑓(input) = 2(input) + 3, 𝑔(input) = (input)2.  
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So, let's start: (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)). 

First we apply f, then apply g to that result: 

 

(𝑔 ∘ 𝑓)(𝑥) =  (2x+3)2 

What if we reverse the order of f and g? 

 (𝑓 ∘  𝑔)(𝑥) =  𝑓(𝑔(𝑥)).  

First we apply g, then apply f to that result: 

 

(𝑓 ∘  𝑔)(𝑥)  =  2𝑥2 + 3 

We got a different result! So be careful which function comes 

first.■ 

● Symbol 

The symbol for composition is a small circle: (𝑔 ∘ 𝑓)(𝑥). 

It is not a filled in dot: (𝑔. 𝑓)(𝑥) as that would mean multiply. 

● Composed With Itself 

You can even compose a function with itself! 

Example 

 𝑓(𝑥)  =  2𝑥 + 3.  (𝑓 ∘  𝑓)(𝑥)  =  𝑓(𝑓(𝑥)).  

First we apply 𝑓, then apply f to that result: 

 

(𝑓 ∘  𝑓)(𝑥)  =  2(2𝑥 + 3) + 3 =  4𝑥 +  9 
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You should be able to do this without the pretty diagram: 

(𝑓 ∘  𝑓)(𝑥) =  𝑓(𝑓(𝑥)) 

                    =  𝑓(2𝑥 + 3) 

                    =  2(2𝑥 + 3) + 3  

                    =  4𝑥 +  9. ■ 

● Domain of Composite Function 

You must get both Domains right (the composed function and 

the first function used). When doing, for example, (𝑔 ∘  𝑓)(𝑥)  =

 𝑔(𝑓(𝑥)): 

• Make sure you get the Domain for 𝑓(𝑥) right, 

• Then also make sure that 𝑔(𝑥) gets the correct Domain. 

Example 

 𝒇(𝒙)  = √𝒙 and 𝒈(𝒙)  =  𝒙𝟐 . The Domain of 𝒇(𝒙)  =  √𝒙 is all 

non-negative Real Numbers. The Domain of 𝒈(𝒙)  =  𝒙𝟐 is all 

the Real Numbers.  The composed function is: 

(𝑔 ∘  𝑓)(𝑥)  =  𝑔(𝑓(𝑥))  =  (√𝑥)2 =  𝑥 

Now, "x" would normally have the Domain of all Real Numbers 

...... but because it is a composed function you must also 

consider 𝑓(𝑥).  

So the Domain is all non-negative Real Numbers. ■ 
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Why Both Domains? 

Well, imagine the functions were machines ... the first one melts a 

hole with a flame (only for metal), the second one drills the hole a 

little bigger (works on wood or metal): 

 

What you see at the end is a drilled hole, and you may 

think "that should work for wood or metal". But if you 

put wood into 𝑔 ∘ 𝑓 then the first function f would 

make a fire and burn everything down! 

So what happens "inside the machine" is important. 

Example. 

Let  𝑓(𝑥) = 𝑥2  and 𝑔(𝑥) = 3𝑥 + 5. 

Find (𝑓 ∘ 𝑔)(𝑥) , (𝑔 ∘ 𝑓)(𝑥) Dom (𝑓 ∘ 𝑔) and Dom (𝑔 ∘ 𝑓). 

Solution. 

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(2𝑥 + 3) = (2𝑥 + 3)2 

(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑥2) = 2𝑥2 + 3 

It is obvious that Dom(𝑓) = ℝ    and  Dom(𝑔) = ℝ. So,               

Dom (𝑓 ∘ 𝑔) = {𝑥 ∶ 𝑥 ∈ Dom(𝑔), 𝑔(𝑥) ∈ Dom(𝑓)}      

                  = {𝑥 ∶ 𝑥 ∈ ℝ , 2𝑥 + 3 ∈ ℝ} = ℝ                        

Dom(𝑔 ∘ 𝑓) = {𝑥 ∶ 𝑥 ∈ Dom(𝑓), 𝑓(𝑥) ∈ Dom(𝑔)} 

                   = {𝑥 ∶ 𝑥 ∈ ℝ , 𝑥2  ∈ ℝ] = ℝ. ■ 
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Example. 

      Let 𝑓(𝑥) =
𝑥

𝑥+2
 , 𝑔(𝑥) =

𝑥−1

𝑥
.  

Find (𝑓 ∘ 𝑔)(𝑥) , (𝑔 ∘ 𝑓)(𝑥), Dom(𝑓 ∘ 𝑔) and Dom(𝑔 ∘ 𝑓).        

Solution. 

Note that  Dom(𝑓) = ℝ − {2},  and Dom(𝑔) = ℝ − {0} 

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓 (
𝑥 − 1

𝑥
) =

𝑥 − 1
𝑥

𝑥 − 1
𝑥

+ 2
=

𝑥 − 1

3𝑥 − 1
 

(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔 (
𝑥

𝑥 + 2
) =

𝑥
𝑥 + 2

− 1

𝑥
𝑥 + 2

=
−2

𝑥
 

Dom(𝑓 ∘ 𝑔)(𝑥) = {𝑥 ∶ 𝑥 ∈ Dom(𝑔), 𝑔(𝑥) ∈ Dom(𝑓)} 

                      = {𝑥: 𝑥 ≠ 0 ,
𝑥−1

𝑥
≠ −2} 

    = {𝑥: 𝑥 ≠ 0 , 𝑥 ≠
1

3
} = ℝ − {0 ,

1

3
}.  

Dom(𝑔 ∘ 𝑓)(𝑥) = {𝑥 ∶ 𝑥 ∈ Dom(𝑓), 𝑓(𝑥) ∈ Dom(𝑔)}

= {𝑥 ∶ 𝑥 ≠ −2 ,
𝑥

𝑥 + 2
≠ 0} 

                     = {𝑥 ∶ 𝑥 ≠ −2 , 𝑥 ≠ 0} = ℝ − {0 , −2}. ■ 
Remark 

(i) Composition of function is not abelian (commutative), i.e,  

(𝑓 ∘ 𝑔)(𝑥) ≠ (𝑔 ∘ 𝑓)(𝑥).  In general, Dom(𝑓 ∘ 𝑔) ≠ Dom(𝑔 ∘ 𝑓) 

(ii) Composition of function is associative:  

Dom(𝑓 ∘ (𝑔 ∘ ℎ)) = Dom((𝑓 ∘ 𝑔) ∘ ℎ) 

           = {𝑥 ∶ 𝑥 ∈ 𝐷(ℎ), ℎ(𝑥) ∈ Dom(𝑔), 𝑔(ℎ(𝑥)) ∈ Dom(𝑓)}. 

Also, (𝑓 ∘ (𝑔 ∘ ℎ))(𝑥) = (𝑓 ∘ 𝑔) ∘ ℎ(𝑥) = 𝑓(𝑔(ℎ(𝑥)). 

(iii) In the above example, we note that: 
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Dom(𝑔 ∘ 𝑓) = ℝ − {0 , −2} and (𝑔 ∘ 𝑓)(𝑥) = −
2

𝑥
   and 

Dom(−
2

𝑥
) = ℝ − {0}.     So, we cannot find the domain of the 

composite function by, addition, subtraction, product, quotient, or 

composition by final rule. 

● De-Composing Function 

You can go the other way and break up a function into a 

composition of other functions. For example: (𝑥 +  1/𝑥)2. 

That function could have been made from these two functions: 

𝑓(𝑥)  =  𝑥 +  1/𝑥,  𝑔(𝑥)  =  𝑥2 . And we would have: 

(𝑔 ∘  𝑓)(𝑥)  =  𝑔(𝑓(𝑥))  =  𝑔(𝑥 +  1/𝑥)  =  (𝑥 +  1/𝑥)2 

This can be useful if the original function is too complicated to 

work on. Note that the composition 𝑓 ∘ 𝑔 cannot be defined 

unless the range of g is a subset of the domain of f. Also, note that 

even though 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 are defined for the functions f and g. 

But 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 are not equal. In other words, the 

commutative law does not hold for the composition of functions.  

Remark.   

Suppose that 𝑓: 𝐴 → 𝐵 is a one-to-one correspondence. Then the 

inverse function 𝑓−1: 𝐵 → 𝐴 exists and a one-to-one 

correspondence.  𝑓−1 reverse the correspondence of  f, so that 

𝑓−1(𝑏) = 𝑎 when  f(a) = b and f(a) = b when 𝑓−1(𝑏) = 𝑎. Hence 

(𝑓−1 ∘ 𝑓)(𝑎) = 𝑓−1(𝑓(𝑎)) = 𝑓−1(𝑏) = 𝑎 and (𝑓 ∘ 𝑓−1)(𝑏) =

𝑓(𝑓−1(𝑏)) = 𝑓(𝑎) = 𝑏. Consequently, 𝑓−1 ∘ 𝑓 = 𝐼𝐴 and 𝑓 ∘
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𝑓−1 = 𝐼𝐵, where 𝐼𝐴  and  𝐼𝐵 are the identity function on sets A and 

B, respectively. That is (𝑓−1)−1 = 𝑓. 

● Cardinality 

We defined the cardinality of a finite set as the number of 

elements in the set. We use the cardinalities of finite sets to tell us 

when they have the same size, or when one is bigger than the 

other. In this section we extend this notion to infinite sets. We 

will be particularly interested in countably infinite sets, which are 

sets with the same cardinality as the set of positive integers. 

The concepts developed in this section have important 

applications to computer science. A function is called 

uncomputable if no computer program can be written to find all 

its values, even with unlimited time and memory. 

Definition 

The sets A and B have the same cardinality if and only if there is 

a one-to-one correspondence from A to B. When A and B have the 

same cardinality, we write |𝐴| = |𝐵|. 

Definition 

If there is a one-to-one function from A to B, the cardinality of A 

is less than or the same as the cardinality of B and we write |𝐴|  ≤

 |𝐵|. Moreover, when |𝐴|  ≤  |𝐵| and A and B have different 

cardinality, we say that the cardinality of A is less than the 

cardinality of B and we write |𝐴|  <  |𝐵|. 
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● Countable Set 

We will now split infinite sets into two groups, those with the 

same cardinality as the set of natural numbers and those with a 

different cardinality. The following graph shows a one-to-one 

correspondence between ℤ+ and the set of odd positive 

integers. 

 

Definition 

A set that is either finite or has the same cardinality as the set of 

positive integers is called countable. A set that is not countable is 

called uncountable. When an infinite set S is countable, we 

denote the cardinality of S by ∘ (where  is aleph, the first letter 

of the Hebrew alphabet). We write |𝑆|  =  ∘ and say that S has 

cardinality "aleph null". 

Example. 

Show that the set of odd positive integers is countable? 

Solution 

To show that the set of odd positive integers is countable, we will 

exhibit a one-to-one correspondence between this set and the set 

of positive integers.  
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Consider the function 

𝑓(𝑛)  =  2𝑛 –  1 

from ℤ+ to the set of odd positive integers. We show that f is a 

one-to-one correspondence by showing that it is both one-to-one 

and onto. To see that it is one-to-one, suppose that 𝑓(𝑛)  =

 𝑓(𝑚). Then 2𝑛 − 1 = 2𝑚 − 1, so 𝑛 =  𝑚. To see that it is onto, 

suppose that o is an odd positive integer. Then o is 1 less than an 

even integer 2𝑘, where 𝑘 is a natural number. Hence 𝑜 =  2𝑘 =

 𝑓(𝑘). We displayed this one-to-one correspondence in the above 

figure.■ 

Example 

Show that the set of all integers is countable.? 

Solution 

To show that the set of all integers is countable. we can list all 

integers in a sequence by starting with 0 and alternating between 

positive and negative integers; 0, 1, −1, 2,−2,…. Alternately, we 

could find a one-to-one correspondence between the set of 

positive integers and the set of all integers. We leave it to the 

reader to show that the function 𝑓(𝑛) = 𝑛 2⁄  when n is even and 

𝑓(𝑛) = − (𝑛 − 1) 2⁄  when n is odd is such a function. 

Consequently, the set of all integers is countable.■ 

     It is not surprising that the set of odd integers and the set of all 

integers are both countable sets. Now we show that the set of 

rational numbers also is countable. 
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Example 

Show that the set of positive rational numbers is countable.? 

Solution 

We can list the positive rational numbers as a sequence  

𝑟1, 𝑟2, . . . , 𝑟𝑛, . ...  

First note that every positive rational number is the quotient 𝑝 𝑞⁄  

of two positive integers. We can arrange the positive rational 

numbers by listing those with denominator 𝑞 =  1 in the first 

row, those with denominator 𝑞 =  2 in the second row, and so on, 

as displayed in the following figure. 

    The key to listing the rational numbers in a sequence is to first 

list the positive rational numbers 𝑝 𝑞⁄  with 𝑝 +  𝑞 =  2, followed 

by those with 𝑝 +  𝑞 =  3, followed by those with 𝑝 +  𝑞 =  4, 

and so on, following the path shown in below figure. Whenever 

we encounter a number 𝑝 𝑞⁄  that is already listed, we do not list it 

again. For example, when we come to 2 2⁄ = 1 we do not list it 

because we have already listed 1 1⁄ = 1. The initial terms in the 

list of positive rational numbers we have constructed are 

1, 1 2⁄ , 2,3, 1 3⁄ , 1 4, 2 3⁄ ,⁄  3 2⁄ , 4,5, and so on. These numbers 

are not deleted; the other numbers in the list are those we leave 

out because they are already listed. Because all positive rational 

numbers are listed once, as the reader can verify, we have shown 

that the set of positive rational numbers is countable.■ 
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Example.  

Prove that the set of real numbers is not countable. 

Solution 

To show that the set of real numbers is uncountable, we suppose 

that the set of real numbers is countable and arrive at a 

contradiction. Then, the subset of all real numbers that fall 

between 0 and 1 would also be countable (any subset of a 

countable set is also countable). Under this assumption, the real 

numbers between 0 and 1 can be listed in some order, say, 

𝑟1, 𝑟2, 𝑟3, . ... Let the decimal representation of these real numbers 

be 

𝑟1 = 0. 𝑑11𝑑12𝑑13𝑑14. .. 

𝑟1 = 0. 𝑑11𝑑12𝑑13𝑑14. .. 

𝑟3 = 0. 𝑑31𝑑32𝑑33𝑑34. .. 
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𝑟4 = 0. 𝑑41𝑑42𝑑43𝑑44. .. 

  

where 𝑑𝑖𝑗 ∈ {0,1,2,3,4,5,6,7,8,9}. (For example, if  𝑟1 =

0.23794102. .., we have 𝑑11 = 2, 𝑑12 = 3, 𝑑13 = 7, and so on). 

Then, form a new real number with decimal expansion 𝑟 =

0. 𝑑1𝑑2𝑑3𝑑4. .., where 

                       𝑑𝑖 = {
4 𝑖𝑓𝑑𝑖𝑖 ≠ 4
5 𝑖𝑓𝑑𝑖𝑖 = 4

 

(As an example, suppose that 𝑟1 = 0.23794102. .., 𝑟2 =

0.44590138. .., 𝑟3 = 0.09118764. .., 𝑟4 = 0.80553900. .., and so 

on. Then we have 𝑟 = 0. 𝑑1𝑑2𝑑3𝑑4. . . = 0.4544. .., where 𝑑1 = 4 

because 𝑑11 ≠ 4, 𝑑2 = 5 because 𝑑22 = 4, 𝑑3 = 4 because 𝑑33 ≠

4, 𝑑4 = 4because 𝑑44 ≠ 4, and so on). 

Every real number has a unique decimal expansion. Then the real 

number r is not equal to any of 𝑟1, 𝑟2, 𝑟3, . .. because the decimal 

expansion of r differs from the decimal expansion of 𝑟𝑖 in the ith 

place to the right of the decimal point, for each i. 

 Because there is a real number r between 0 and 1that is not in the 

list, the assumption that all the real numbers between 0 and 1 

cannot be listed, so the set of real numbers between 0 and 1 is 

uncountable. Any set with an uncountable subset is uncountable. 

Hence, the set of real numbers is uncountable.■ 

Theorem  

If A and B are countable sets, then 𝐴 ∪ 𝐵 is also countable. 
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Theorem (SCHRÖDER-BERNSTEIN THEOREM)  

If A and B are sets with |𝐴| ≤ |𝐵| and |𝐵|  ≤ |𝐴|, then |𝐴|  =

 |𝐵|. In other words, if there are one-to-one functions f from A to 

B and g from B to A, then there is a one-to-one correspondence 

between A and B. 

Example.  

Show that the |(0, 1)|  =  |(0, 1]|. 

Solution 

It is not at all obvious how to find a one-to-one correspondence 

between (0, 1) and (0, 1] to show that |(0, 1)|  =  |(0, 1]|. 

Fortunately, we can use the Schröder-Bernstein theorem 

instead. Finding a one-to-one function from (0, 1) to (0, 1] is 

simple. Because (0, 1)  ⊂  (0, 1], 𝑓 (𝑥)  =  𝑥 is a one-to-one 

function from (0, 1) to (0, 1]. Finding a one-to-one function from 

(0, 1] to (0, 1) is also not difficult. The function 𝑔(𝑥)  =  𝑥/2 is 

clearly one-to-one and maps (0, 1] to (0, 1/2]  ⊂  (0, 1). As we 

have found one-to-one functions from (0, 1) to (0, 1] and 

from (0, 1] to (0, 1), the Schröder-Bernstein theorem tells us that 

|(0, 1)|  =  |(0, 1]|.■ 

Definition 

We say that a function is computable if there is a computer 

program in some programming language that finds the values of 
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this function. If a function is not computable we say it is 

uncomputable. 

To show that there are uncomputable functions, we need to 

establish two results. First, we need to show that the set of all 

computer programs in any particular programming language is 

countable. This can be proved by noting that a computer 

programs in a particular language can be thought of as a string of 

characters from a finite alphabet (see Exercise 44). Next, we 

show that there are uncountably many different functions from a 

particular countably infinite set to itself. In particular, Exercise 

45 shows that the set of functions from the set of positive integers 

to itself is uncountable. This is a consequence of the 

uncountability of the real numbers between 0 and 1 (as shown in 

previous example). Putting these two results together (Exercise 

46) shows that there are uncomputable functions. 
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Exercise Set (1.2) 

1- The function f is defined on the real numbers by  𝑓(𝑥) = 2 +

𝑥 − 𝑥2 . What is the value of 𝑓(−3)? 

2- The function 𝑔 is defined on the real numbers by 𝑔(𝑥)  =

 (𝑥2  +  1)(3𝑥 −  5). What is the value of 𝑔(4)? 

3- The function f is defined on the real numbers by  𝑓(𝑥)  =

 𝑥2  −  𝑥 –  10. If 𝑓(𝑎)  =  −4, what is the value of a? 

4-The function f is defined on the real numbers by  𝑓(𝑥)  =

 2𝑥2  −  5𝑥 +  12. If 𝑓(𝑘)  =  10, what is the value of k? 

5- Which one of the following relations is not a function? 

 

6-What function is defined by the set of ordered pairs 

{. . . , (−2,−5), (−1,−8), (0,−9), (1,−8), (2,−5), . . . }?  

Choose. 

(a) 𝑓(𝑥)  =  𝑥2  −  9 on the set of integers;  

(b)  𝑓(𝑥)  =  𝑥2  −  9 on the set of whole numbers; 

(c) 𝑓(𝑥)  =  𝑥2  −  9 on the set of real numbers; 

(d) There is no such function. 



- 79 - 
 

7-Here is a set of ordered pairs: 

{. . . , (−2, 7), (−1, 1), (0,−1), (1, 1), (2, 7), . . . } 

Which function satisfies them? 

(a)  𝑓(𝑥)  =  2𝑥 −  1 on the set of integers; 

(b) 𝑓(𝑥)  =  −6𝑥 −  5 on the set of integers; 

(c) 𝑓(𝑥)  =  𝑥2  +  3 on the set of integers;    

(d) 𝑓(𝑥)  =  2𝑥2  −  1 on the set of integers. 

8-Which one of the following is not a function? 

(a)                                         (b) 

 

 

(c)                                                (d) 
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9-Which one of the following is not a function? 

(a)                                                  (b) 

        

(c)                                                (d) 

             

10- Why is f not a function from ℝ to ℝ if  

     (a) 𝑓(𝑥) =
1

𝑥
?; (b) 𝑓(𝑥) = √𝑥?;  (c) 𝑓(𝑥) = ±√𝑥2 + 1?. 

11- Determine whether f is a function from ℤ to ℝ if  

    (a) 𝑓(𝑛) = ±𝑛; (b) 𝑓(𝑛) = √𝑛2 + 1; (c) 𝑓(𝑛) =
1

(𝑛2−4)
. 

12- Find the domain and range of these functions 

 (a) The function that assigns to each nonnegative integer its last 

       digit; 

 (b) The function that assigns the next largest integer  to a positive 

      integer;  

 (c) The function that assigns to a bit string the number of one bits 

        in the string. 

 (d) The function that assigns to a bit string the number of bits in  
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       the string; 

(e) The function that assigns to each pair of positive integers the  

       maximum of these two integers. 

13- Find these values  

     (a) ⌊1.1⌋; (b) ⌈1.1⌉; (c) ⌊−0.1⌋; (d) ⌈−0.1⌉; (e) ⌈2.99⌉; 

     (f) ⌈−2.99⌉; (g) ⌊
1

2
+ ⌈

1

2
⌉⌋; (h) ⌈⌊

1

2
⌋ + ⌈

1

2
⌉ +

1

2
⌉. 

14- Determine whether each of these functions from ℤ to ℤ is  

       one-to- one. 

       (a) 𝑓(𝑛)  =  𝑛 –  1; (b) 𝑓(𝑛) = 𝑛2 + 1; 

      (c) 𝑓(𝑛) = 𝑛3; (d) 𝑓(𝑛) = ⌈
𝑛

2
⌉. 

15- Determine whether the function 𝑓: ℤ × ℤ → ℤ is onto if  

     (a) 𝑓(𝑚, 𝑛)  =  𝑚 +  𝑛; (b) 𝑓(𝑚𝑛) = 𝑚2 + 𝑛2; 

     (c) 𝑓(𝑚, 𝑛) = |𝑛|; (d) 𝑓(𝑚, 𝑛)  =  𝑚; (e) 𝑓(𝑚, 𝑛)  =  𝑚 –  𝑛. 

16- Determine whether each of these functions is a bijection 

      from ℝ   to ℝ: 

     (a) 𝑓(𝑥)  =  2 𝑥 +  1; (b) 𝑓(𝑥) = 𝑥2 + 1; 

     (c) 𝑓(𝑥) = 𝑥3; (d) 𝑓(𝑥) =
(𝑥2+1)

𝑥2+2
; 

17- Find 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓, where 𝑓(𝑥) = 𝑥2 + 1 and 

       𝑔(𝑥) = 𝑥 + 2 are functions from ℝ to ℝ. 

18- Let 𝑓(𝑥)  =  𝑎 𝑥 +  𝑏 and 𝑔(𝑥)  =  𝑐 𝑥 +  𝑑 where a, b, c 

       and d are constants.  

      Determine for which constants a, b, c and d it is true that 

𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓. 
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19- Show that the function 𝑓(𝑥)  =  𝑎 𝑥 +  𝑏 from ℝ to ℝ is 

     invertible, where a and b are constants with 𝑎 ≠ 0, and 

     find the inverse of  f. 

20- Let f be a function from the set A to the set B, let S and T  

      be subsets of A. show that  

     (a)𝑓(𝑆 ∪ 𝑇) = 𝑓(𝑆) ∪ 𝑓(𝑇);  (b)𝑓(𝑆 ∩ 𝑇) ⊆ 𝑓(𝑆) ∩ 𝑓(𝑇). 

21- Let f  be the function from ℝ to ℝ defined by  𝑓(𝑥) = 𝑥2. Find  

     (a) 𝑓−1({1}); (b) 𝑓−1({𝑥: 0 < 𝑥 < 1}); (c) 𝑓−1({𝑥: 𝑥 > 4}). 

22- Suppose that f is a function from A to B, where A and B are 

finite sets with |𝐴| = |𝐵|. Show that f is one-to-one if and 

only if it is onto. 

23- Determine whether each of these sets is countable or 

uncountable. For those that are countable, exhibit a one-to-

one correspondence between the set of natural numbers and 

the set. 

     (a) the integers greater than 10.   

    (b) the odd negative integers. 

    (c) the real numbers between 0 and 2.  

    (d) integers that are multiple of 10. 

    (e) all positive rational numbers that cannot be written with 

denominators less than 4.     

   (f) all bit strings not containing the bit 0.  
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24- Write an equation to represent the function from the following 

table 

 

(a) 𝑦 =  −2𝑥; (b) 𝑦 =  2𝑥; (c) 𝑦 =  𝑥 +  2; (d) 𝑦 =  𝑥2. 

25 - Write an equation to represent the function from the 

following table of values: 

 

(a) 𝑦 = −𝑥 + 2; (b) 𝑦 = 𝑥– 2; (c) 𝑦 = 𝑥 + 4; (d) 𝑦 = 𝑥– 4. 

26- The following shows part of graph of the function 𝑓(𝑥)  =

 0.05𝑥3 − 0.3𝑥2 + 7 .  

 

What are the Domain and Range of f? 
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(a) Domain =  ℝ, Range = ℝ;   

(b) Domain = {𝑥 ∈ ℝ |  − 10 <  𝑥 <  10}, Range = ℝ; 

(c) Domain = ℝ; Range = {𝑦 ∈ ℝ |  − 16 <  𝑦 <  16}; 

(d)  Domain = {𝑥 ∈ ℝ |  − 10 <  𝑥 <  10},  

        Range = {𝑦 ∈ ℝ |  − 16 <  𝑦 <  16}. 

27- The following shows part of graph of the function 𝑓(𝑥) =

2.5 sin (𝑥 −
𝜋

2
)   

 

What are the Domain and Range of f? 

(a) Domain = ℝ, Range = ℝ; 

(b) Domain = {𝑥 ∈ ℝ |  − 2𝜋 ≤  𝑥 ≤  2𝜋}, 

      Range = {𝑦 ∈ ℝ |  − 2.5 ≤  𝑦 ≤  2.5}; 

(b) Domain =  ℝ, Range = {𝑦 ∈ ℝ |  − 1 ≤  𝑦 ≤  1}; 

(d) Domain = ℝ, Range = {𝑦 ∈ ℝ |  − 2.5 ≤  𝑦 ≤  2.5}. 

28- If 𝑓(𝑥) = ln 𝑥 and 𝑔(𝑥) = 𝑥 + 1, what is the domain  

      of (𝑓 ∘ 𝑔)(𝑥)? 

(a) {𝑥 ∈ ℝ | 𝑥 ≥  −1}; (b) {𝑥 ∈ ℝ | 𝑥 >  −1};  

(c) {𝑥 ∈ ℝ | 𝑥 >  0};   (d) ℝ. 
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29- The function 𝑓(𝑥)  =  𝑥2 is defined from ℝ to ℝ. What is the 

Codomain? 

(a) {𝑦 ∈ ℝ|𝑦 ≥ 0}; (b) {𝑦 ∈ ℝ|𝑦 > 0}; (c) {𝑦 ∈ ℝ|𝑦 ≠ 0}; (d) ℝ. 

30- The function 𝑓(𝑥)  =  𝑒𝑥 + 3 is defined from ℝ to ℝ. What is 

the Range? 

(a) {𝑦 ∈ ℝ|𝑦 ≥ 3}; (b) {𝑦 ∈ ℝ|𝑦 > 3}; (c) {𝑦 ∈ ℝ|𝑦 ≥ 0}; (d) ℝ. 

31- The function 𝑓(𝑥)  =  floor(𝑥) is defined from ℝ to ℝ. What 

is the Range? 

32- Which one of these graphs does not illustrate a function? 

 

 

33- The following sets of ordered pairs represent relations from 

the set X to the set Y.  Which one is not a function? 

(a) {(1, 2), (2, 4), (3, 6), (4, 8)}; 

(b) {(1, 2), (1, 4), (1, 6), (1, 8)}; 

(c) {(1, 1), (2, 4), (3, 9), (4, 16)}; 

(d) {(1, 1), (2, 3), (3, 5), (4, 7)}. 

34- If 𝑓(𝑥) = √𝑥 − 3 and 𝑔(𝑥) = √4 − 𝑥, what is the domain of 

the function (𝑓 + 𝑔)(𝑥)? 

 



- 86 - 
 

35- If 𝑓(𝑥) = 𝑥 + 1 and 𝑔(𝑥) = √1 − 𝑥, what is the domain of 

the function (𝑓/𝑔)(𝑥)? 

36- If 𝑓(𝑥) =
1

𝑥−2
 and 𝑔(𝑥) =

1

𝑥+2
, what is the domain of the 

function (𝑓 − 𝑔)(𝑥)? 

37- If 𝑓(𝑥) = 3𝑥 − 15 and 𝑔(𝑥) = √𝑥 − 5, then what is the 

function (𝑓/𝑔)(𝑥) and what is its domain? 

38- If 𝑓(𝑥) = 𝑥2 + 𝑥 − 6 and 𝑔(𝑥) =
1

𝑥+3
, then what is the 

function (𝑓 ∙ 𝑔)(𝑥) and what is its domain? 

39- If 𝑓(𝑥) = 𝑥2 + 3 and 𝑔(𝑥) = √𝑥 − 3, then what is the 

function (𝑓 ∘ 𝑔)(𝑥) and what is its domain? 

40.  f and g are both defined on the set of real numbers, 𝑓(𝑥)  =

 𝑥2 and 𝑔(𝑥)  =  𝑥 +  2. For what value of x does (𝑓 ∘  𝑔)(𝑥)  =

 (𝑔 ∘ 𝑓)(𝑥)? 

41 . f and g are both defined on the set of real numbers and c is a 

constant, where 𝑓(𝑥)  =  𝑐𝑥 –  3, 𝑔(𝑥)  =  𝑐𝑥 +  5.  

If (𝑓 ∘ 𝑔)(𝑥) = (𝑔 ∘ 𝑓)(𝑥) for all x, what is the value of c? 

42 . If 𝑓(𝑥) = 𝑥 + 2 and 𝑔(𝑥) =
1

𝑥−2
, then what is the function 

(𝑔 ∘ 𝑓)(𝑥) and what is its domain? 

43 . 𝑓(𝑥) = 𝑥3 and 𝑔(𝑥) =
1

𝑥
+ 1. The domain for 𝑓 = ℝ and the 

domain for 𝑔 =  {𝑥 ∈ ℝ | 𝑥 ≠  0}. For what value of x does 

 (𝑓 ∘ 𝑔)(𝑥) = (𝑔 ∘ 𝑓)(𝑥) ? 
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44. Show that the set of all computer programs in a particular 

programming language is countable. 

[Hint: A computer program written in a programming language 

can be thought of as a string of symbols from a finite alphabet.] 

45. Show that the set of functions from the positive integers to the 

set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. 

[Hint: First set up a one-to-one correspondence between the set of 

real numbers between 0 and 1 and a subset of these functions. Do 

this by associating to the real number 0. 𝑑1𝑑2 . . . 𝑑𝑛 . .. the 

function f with 𝑓(𝑛) = 𝑑𝑛.] 

46. We say that a function is computable if there is a computer 

program that finds the values of this function. Use Exercises 44 

and 45 to show that there are functions that are not computable. 
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1.3 Relations 

Definition. 

A subset R of the Cartesian product 𝐴 × 𝐵 is called a relation 

from the set A to the set B. The elements of R are ordered pairs, 

where the first element belongs to A and the second element to B. 

We use the notation 𝑎𝑅𝑏 to denote that (𝑎, 𝑏)  ∈  𝑅 which means 

a is said to be related to b by R. Moreover, when (𝑎, 𝑏) ∉  𝑅  we 

mean, a is not related to b by R.   

Example 

𝑅 = {(𝑎, 0), (𝑎, 1), (𝑎, 3), (𝑏, 1), (𝑏, 2)} is a relation from the set 

{𝑎, 𝑏, 𝑐} to the set {0, 1, 2, 3}. ■ 

The Cartesian product,  𝐴 × 𝐵 and 𝐵 × 𝐴 are not equal, unless  

𝐴 = 𝜙 or 𝐵 = 𝜙 (so that 𝐴 × 𝐵 = 𝜙) or unless 𝐴 =  𝐵. 

Definition 

In mathematics, a binary relation on a set A is a collection of 

ordered pairs of elements of A. In other words, it is a subset of the 

Cartesian product 𝐴2  =  𝐴 ×  𝐴. More generally, a binary 

relation between two sets A and B is a subset of 𝐴 ×  𝐵.  

Example 

The "divides" relation between the set of prime numbers ℙ and 

the set of integers ℤ, in which every prime p is associated with 

every integer z that is a multiple of p (and not with any integer 

that is not a multiple of p). In this relation, for instance, the prime 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Ordered_pair
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Divides
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Divisibility
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2 is associated with numbers that include −4, 0, 6, 10, but not 1 or 

9; and the prime 3 is associated with numbers that include 0, 6, 

and 9, but not 4 or 13. ■ 

Binary relations are used in many branches of mathematics to 

model concepts like: 

"is greater than", "is equal to", and "divides" in arithmetic,  

"is congruent to" in geometry, 

 "is adjacent to" in graph theory,  

"is orthogonal to" in linear algebra.  

The concept of function is defined as a special kind of binary 

relation.  

A binary relation is the special case 𝑛 =  2 of an n-ary relation 

𝑅 ⊆  𝐴1  ×  … ×  𝐴𝑛, that is, a set of n-tuples where the jth 

component of each n-tuple is taken from the jth domain 𝐴𝑗 of the 

relation. 

Example 

Some Examples of Relations include: 

{ (0,1) , (55,22), (3, −50) };  

 {(0, 1) , (5, 2), (−3, 9) }; 

 { (−1,7) , (1, 7), (33, 7), (32, 7) }.■ 

Definition 

The domain of the relation is the set of all the first numbers of 

the ordered pairs. In other words, the domain is all of the x-

http://en.wikipedia.org/wiki/Inequality_(mathematics)
http://en.wikipedia.org/wiki/Equality_(mathematics)
http://en.wikipedia.org/wiki/Arithmetic
http://en.wikipedia.org/wiki/Congruence_(geometry)
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Finitary_relation
http://en.wikipedia.org/wiki/Tuple
http://www.mathwarehouse.com/ordered-pairs
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values. The range is the set of the second numbers in each pair, 

or the y-values.  

Example 

The relation {(0, 1), (3, 22), (90, 34)} its domain is { 0, 3, 90 }  

and the range is { 1, 22, 34 }. ■ 

Relations are often represented using arrow charts connecting the 

domain and range elements. 

Example 

 

Example 

Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation 

𝑅 =  {(𝑎, 𝑏) | 𝑎 divides 𝑏}? 

Solution 

Because (𝑎, 𝑏) is in R if and only if a and b are positive integers 

not exceeding 4 such that a divides b, we see that 

𝑅 =  {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. 

 

http://www.mathwarehouse.com/algebra/relation/math-function.php#domain
http://www.mathwarehouse.com/algebra/relation/math-function.php#range
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The pairs in this relation are displayed both graphically and in 

tabular form in the above figure. ■ 

The following are relations on an infinite set. 

Example 

Consider these relations on the set of integers: 

𝑅1  =  {(𝑎, 𝑏) | 𝑎 ≤  𝑏}, 

𝑅2  =  {(𝑎, 𝑏) | 𝑎 >  𝑏}, 

𝑅3  =  {(𝑎, 𝑏) | 𝑎 =  𝑏 𝑜𝑟 𝑎 =  −𝑏}, 

𝑅4  =  {(𝑎, 𝑏) | 𝑎 =  𝑏}, 

𝑅5  =  {(𝑎, 𝑏) | 𝑎 =  𝑏 +  1}, 

𝑅6  =  {(𝑎, 𝑏) | 𝑎 +  𝑏 ≤  3}. 

Which of these relations contain each of the pairs 

(1, 1), (1, 2), (2, 1), (1, −1), and (2, 2)? 

Solution  

The pair (1, 1) is in 𝑅1, 𝑅3, 𝑅4, and 𝑅6; 

The pair (1, 2) is in 𝑅1 and 𝑅6;  

The pair (2, 1) is in 𝑅2, 𝑅5, and 𝑅6; 

The pair (1,−1) is in 𝑅2, 𝑅3, and 𝑅6;  

The pair (2, 2) is in 𝑅1, 𝑅3, and 𝑅4. ■ 

It is not hard to determine the number of relations on a finite set, 

because a relation on a set A is simply a subset of 𝐴 ×  𝐴. 
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Example 

How many relations are there on a set with n elements? 

Solution 

A relation on a set A is a subset of 𝐴 ×  𝐴. Because 𝐴 ×  𝐴 has 

𝑛2 elements when A has n elements, and a set with m elements 

has 2𝑚 subsets, there are 2𝑛2
 subsets of 𝐴 ×  𝐴. Thus, there are 

2𝑛2
 relations on a set with n elements.  ■ 

Example 

There are 232
 =  29  =  512 relations on the set {𝑎, 𝑏, 𝑐}.■ 

●Functions as Relations 

Recall that a function f from a set A to a set B  assigns exactly 

one element of B to each element of A. The graph of f is the set of 

ordered pairs (𝑎, 𝑏) such that 𝑏 =  𝑓 (𝑎). Because the graph of f 

is a subset of 𝐴 ×  𝐵, it is a relation from A to B. 

Moreover, the graph of a function has the property that every 

element of A is the first element of exactly one ordered pair of the 

graph. 

Conversely, if R is a relation from A to B such that every element 

in A is the first element of exactly one ordered pair of R, then a 

function can be defined with R as its graph. This can be 

done by assigning to an element a of A the unique element 𝑏 ∈ 𝐵 

such that (𝑎, 𝑏) ∈ 𝑅. A relation can be used to express a one-to-

many relationship between the elements of the 
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sets A and B, where an element of A may be related to more than 

one element of B. A function represents a relation where exactly 

one element of B is related to each element of A. 

Relations are a generalization of graphs of functions; they can be 

used to express a much wider class of relationships between sets. 

(Recall that the graph of the function f from A to B is the set of 

ordered pairs (𝑎, 𝑓 (𝑎)) 𝑓𝑜𝑟 𝑎 ∈  𝐴.) 

What makes a relation a function? 

As soon as an element in the domain repeats, the relation is not a 

function. 

Example. 

Which relations below are functions?  

Relation #1 { (−1,2), (−4,51), (1,2), (8,−51) }; 

Relation #2 {(13, 14), (13, 5), (16,7), (18,13) }; 

Relation #3 { (3,90), (4,54), (6,71), (8,90) }. 

Solution 

Both Relation #1 and Relation #3 are functions, but Relation #2 is 

not a functions as the x-place 13 appeared twice. ■ 

Practice 

For the following relation to be a function, X cannot be what 

values? 

{(8 , 11), (34,5), (6,17), (𝑋 ,22) } 

 

 

http://www.mathwarehouse.com/algebra/relation/math-function.php#relation
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●Properties of Relations 

In some relations an element is always related to itself. For 

instance, let R be the relation on the set of all people consisting of 

pairs (𝑥, 𝑦), where x and y have the same mother and the same 

father. Then 𝑥𝑅𝑥 for every person 𝑥, which is defined as follows: 

Definition 

A relation R on a set A is called reflexive if (𝑎, 𝑎) ∈ 𝑅 for every 

element 𝑎 ∈ 𝐴.◄ 

Example  

Let 𝐴 =  {𝑎, 𝑏, 𝑐} and 𝑅 =  {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)}. Then R is a 

reflexive relation in A. ■ 

Example 

‘Equality’ is a reflexive relation, since an element equals itself. ■ 

In some relations an element is related to a second element if and 

only if the second element is also related to the first element. The 

relation consisting of pairs (𝑥, 𝑦), where x and y are students at 

your school with at least one common class has this property, 

which is defined as follows: 

Definition 

A relation R on a set A is called symmetric if (𝑏, 𝑎)  ∈  𝑅 

whenever (𝑎, 𝑏)  ∈  𝑅, for all 𝑎, 𝑏 ∈  𝐴.◄ 
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Example  

Let R be relation ‘is perpendicular to’ in the set of all straight 

lines, then R is a symmetric relation. ■ 

Other relations have the property that if an element is related to a 

second element, then this second element is not related to the 

first. The relation consisting of the pairs (𝑥, 𝑦), where x and y are 

students at your school, where x has a higher grade point average 

than y has this property, which is defined as follows: 

Definition 

A relation R on a set A such that for all 𝑎, 𝑏 ∈  𝐴, if (𝑎, 𝑏)  ∈  𝑅 

and (𝑏, 𝑎)  ∈  𝑅, then 𝑎 =  𝑏 is called antisymmetric.◄ 

Example. 

Let ℕ be the set of Natural Numbers R be a relation in ℕ, defined 

by ‘a is a divisor’ of b, i.e., 𝑎𝑅𝑏 if a divides b then R is 

antisymmetric since a divides b and b divides 𝑎 ⇒  𝑎 =  𝑏. ■ 

Let R be the relation consisting of all pairs (𝑥, 𝑦) of students at 

your school, where x has taken more credits than y. Suppose that x 

is related to y and y is related to z. This means that x has taken 

more credits than y and y has taken more credits than z. We can 

conclude that x has taken more credits than z, so that x is related 

to z. What we have shown is that R has the transitive property, 

which is defined as follows: 
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Definition. 

A relation R on a set A is called transitive if whenever (𝑎, 𝑏)  ∈  𝑅 

and (𝑏, 𝑐)  ∈  𝑅, then (𝑎, 𝑐)  ∈  𝑅, for all 𝑎, 𝑏, 𝑐 ∈  𝐴.◄ 

Example. 

Let A be the set of straight lines in a plane and R be a relation in A 

defined by ‘is parallel to’. Then R is a transitive relation in A. ■ 

Example. 

Let 𝐴 =  {1, 2, 3} and 𝑅 =  {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)} 

then R is transitive. ■ 

Example. 

Consider these relations on the set of integers: 

𝑅1  =  {(𝑎, 𝑏) | 𝑎 ≤  𝑏}; 

𝑅2  =  {(𝑎, 𝑏) | 𝑎 >  𝑏}; 

𝑅3  =  {(𝑎, 𝑏) | 𝑎 =  𝑏 𝑜𝑟 𝑎 =  −𝑏}; 

𝑅4  =  {(𝑎, 𝑏) | 𝑎 =  𝑏}; 

𝑅5  =  {(𝑎, 𝑏) | 𝑎 =  𝑏 +  1}; 

𝑅6  =  {(𝑎, 𝑏) | 𝑎 +  𝑏 ≤  3}. 

Which of these relations are: 

 (a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.? 

Solution.  

(a) The reflexive relations are 𝑅1 (because 𝑎 ≤  𝑎 for every 

integer a), 𝑅3, and 𝑅4. For each of the other relations in this 
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example it is easy to find a pair of the form (𝑎, 𝑎) that is not in 

the relation. 

(b) The relations 𝑅3, 𝑅4, and 𝑅6 are symmetric. 𝑅3 is symmetric, 

for if 𝑎 =  𝑏 or 𝑎 =  −𝑏, then 𝑏 =  𝑎 or 𝑏 =  −𝑎. 𝑅4 is 

symmetric because 𝑎 =  𝑏 implies that 𝑏 =  𝑎. R6 is symmetric 

because 𝑎 +  𝑏 ≤  3 implies that 𝑏 +  𝑎 ≤  3. The reader should 

verify that none of the other relations is symmetric. 

(c) The relations 𝑅1, 𝑅2, 𝑅4, and 𝑅5 are antisymmetric. 𝑅1 is 

antisymmetric because the inequalities 𝑎 ≤  𝑏 and 𝑏 ≤  𝑎 imply 

that 𝑎 =  𝑏. 𝑅2 is antisymmetric because it is impossible that 

𝑎 >  𝑏 and 𝑏 >  𝑎. 𝑅4 is antisymmetric, because two elements 

are related with respect to 𝑅4 if and only if they are equal. 𝑅5 is 

antisymmetric because it is impossible that 𝑎 =  𝑏 +  1 and 𝑏 =

 𝑎 +  1. The reader should verify that none of the other relations 

is antisymmetric.   

(d) The relations 𝑅1, 𝑅2, 𝑅3, and 𝑅4 are transitive. 𝑅1 is transitive 

because 𝑎 ≤  𝑏 and 𝑏 ≤  𝑐 imply that 𝑎 ≤  𝑐. 𝑅2 is transitive 

because 𝑎 >  𝑏 and 𝑏 >  𝑐 imply that 𝑎 >  𝑐. 𝑅3 is transitive 

because 𝑎 =  ±𝑏 and 𝑏 =  ±𝑐 imply that 𝑎 =  ±𝑐. 𝑅4 is clearly 

transitive, as the reader should verify. 𝑅5 is not transitive because 

(2, 1) and (1, 0) belong to 𝑅5, but (2, 0) does not. 𝑅6 is not 

transitive because (2, 1) and (1, 2) belong to 𝑅6, but (2, 2) does 

not. ■ 
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Example. 

Consider the following relations on {1, 2, 3, 4}: 

𝑅1  =  {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}, 

𝑅2  =  {(1, 1), (1, 2), (2, 1)}, 

𝑅3  =  {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)}, 

𝑅4  =  {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}, 

𝑅5  

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} 

 𝑅6  =  {(3, 4)}. 

Which of these relations are: 

 (a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.? 

Solution. 

(a) The relations 𝑅2 and 𝑅5 are reflexive because they both 

contain all pairs of the form (𝑎, 𝑎), namely, (1, 1), (2, 2), (3, 3), 

and (4, 4). The other relations are not reflexive because they do 

not contain all of these ordered pairs. In particular, 𝑅1, 𝑅2, 𝑅4, 

and 𝑅6 are not reflexive because (3, 3) is not in any of these 

relations. 

(b) The relations 𝑅2 and 𝑅3 are symmetric, because in each case 

(𝑏, 𝑎) belongs to the relation whenever (𝑎, 𝑏) does. For 𝑅2, the 

only thing to check is that both (2, 1) and (1, 2) are in the 

relation. For 𝑅3, it is necessary to check that both (1, 2) and 

(2, 1) belong to the relation, and (1, 4) and (4, 1) belong to the 
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relation. The reader should verify that none of the other 

relations is symmetric. This is done by finding a pair (𝑎, 𝑏) such 

that it is in the relation but (𝑏, 𝑎) is not. 

(c) 𝑅4, 𝑅5, and 𝑅6 are all antisymmetric. For each of these 

relations there is no pair of elements a and b with 𝑎 ≠  𝑏 such 

that both (𝑎, 𝑏) and (𝑏, 𝑎) belong to the relation. The reader 

should verify that none of the other relations is antisymmetric. 

This is done by finding a pair (𝑎, 𝑏) with 𝑎 ≠  𝑏 such that (𝑎, 𝑏) 

and (𝑏, 𝑎) are both in the relation.  

(d) 𝑅4, 𝑅5, and 𝑅6 are transitive. For each of these relations, we 

can show that it is transitive by verifying that if (𝑎, 𝑏) and (𝑏, 𝑐) 

belong to this relation, then (𝑎, 𝑐) also does. For instance, 𝑅4 is 

transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and 

(3, 1), and (4, 3) and (3, 2) are the only such sets of pairs, and 

(3, 1), (4, 1), and (4, 2) belong to 𝑅4. The reader should verify 

that 𝑅5 and 𝑅6 are transitive. 𝑅1 is not transitive because (3, 4) 

and (4, 1) belong to 𝑅1, but (3, 1) does not. 𝑅2 is not transitive 

because (2, 1) and (1, 2) belong to 𝑅2, but (2, 2) does not. 𝑅3 is 

not transitive because (4, 1) and (1, 2) belong to 𝑅3, but (4, 2) 

does not.■ 

Example. 

Is the “divides” relation on the set of positive integers:  

(a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.? 
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Solution. 

(a) Because 𝑎|𝑎 whenever a is a positive integer, the “divides” 

relation is reflexive. (Note that if we replace the set of positive 

integers with the set of all integers the relation is not reflexive 

because by definition 0 does not divide 0.)  

(b) This relation is not symmetric because 1|2, but 2 ∤  1.  

(c) It is antisymmetric, for if a and b are positive integers with 

𝑎|𝑏 and 𝑏|𝑎, then 𝑎 =  𝑏 (the verification of this is left as an 

exercise for the reader). 

(d) Suppose that a divides b and b divides c. Then there are 

positive integers k and l such that 𝑏 =  𝑎𝑘 and 𝑐 =  𝑏𝑙. Hence, 

𝑐 =  𝑎(𝑘𝑙), so a divides c. It follows that this relation is 

transitive. ■ 

Example. 

How many reflexive relations are there on a set with n elements? 

Solution. 

A relation R on a set A is a subset of 𝐴 ×  𝐴. Consequently, a 

relation is determined by specifying whether each of the 𝑛2 

ordered pairs in 𝐴 ×  𝐴 is in R. However, if R is reflexive, 

each of the n ordered pairs (𝑎, 𝑎) for 𝑎 ∈  𝐴 must be in R. Each 

of the other 𝑛(𝑛 −  1) ordered pairs of the form (𝑎, 𝑏), where 

𝑎 ≠  𝑏, may or may not be in R. Hence, by the product rule for 

counting, there are 2𝑛 (𝑛−1) reflexive relations [this is the number 
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of ways to choose whether each element (𝑎, 𝑏), with 𝑎 ≠  𝑏, 

belongs to R]. ■ 

● Operations on binary relations 

Because relations from A to B are subsets of 𝐴 ×  𝐵, two relations 

from A to B can be combined in any way two sets can be 

combined.  Consider the following examples. 

Example. 

Let 𝐴 =  {1, 2, 3} and 𝐵 =  {1, 2, 3, 4}. The relations 

 𝑅1  =  {(1, 1), (2, 2), (3, 3)} and 

𝑅2  =  {(1, 1), (1, 2), (1, 3), (1, 4)}  

can be combined to obtain 

𝑅1  ∪  𝑅2  =  {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)}, 

𝑅1  ∩  𝑅2  =  {(1, 1)}, 

𝑅1  −  𝑅2  =  {(2, 2), (3, 3)}, 

𝑅2  −  𝑅1  =  {(1, 2), (1, 3), (1, 4)}. ■ 

Example. 

Let A and B be the set of all students and the set of all courses at a 

school, respectively. Suppose that 𝑅1 consists of all ordered pairs 

(𝑎, 𝑏), where a is a student who has taken course b, and 𝑅2 

consists of all ordered pairs (𝑎, 𝑏), where a is a student who 

requires course b to graduate. 

What are the relations 𝑅1  ∪  𝑅2, 𝑅1  ∩  𝑅2, 𝑅1  ⊕ 𝑅2, 𝑅1  −  𝑅2, 

and 𝑅2  −  𝑅1? 
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Solution. 

The relation 𝑅1  ∪  𝑅2 consists of all ordered pairs (𝑎, 𝑏), where a 

is a student who either has taken course b or needs course b to 

graduate. 

𝑅1  ∩  𝑅2 is the set of all ordered pairs (𝑎, 𝑏), where a is a student 

who has taken course b and needs this course to graduate.  

Also, 𝑅1  ⊕ 𝑅2 consists of all ordered pairs (𝑎, 𝑏), where student 

a has taken course b but does not need it to graduate or needs 

course b to graduate but has not taken it. 

 𝑅1  −  𝑅2 is the set of ordered pairs (𝑎, 𝑏), where a has taken 

course b but does not need it to graduate; that is, b is an elective 

course that a has taken. 𝑅2  −  𝑅1 is the set of all ordered pairs 

(𝑎, 𝑏), where b is a course that a needs to graduate but has not 

taken. ■ 

Example. 

Let 𝑅1 be the “less than” relation on the set of real numbers and 

let 𝑅2 be the “greater than” relation on the set of real numbers, 

that is, 𝑅1  =  {(𝑥, 𝑦) | 𝑥 <  𝑦} and 𝑅2  =  {(𝑥, 𝑦) | 𝑥 >  𝑦}. 

What are the relations 

 𝑅1  ∪  𝑅2, 𝑅1  ∩  𝑅2, , 𝑅1  −  𝑅2, 𝑅2  −  𝑅1, and 𝑅1  ⊕ 𝑅2? 

Solution. 

We note that (𝑥, 𝑦)  ∈  𝑅1  ∪  𝑅2 if and only if (𝑥, 𝑦)  ∈  𝑅1 or 

(𝑥, 𝑦)  ∈  𝑅2. Hence, (𝑥, 𝑦)  ∈  𝑅1  ∪  𝑅2 if and only if 𝑥 <  𝑦 or 
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𝑥 >  𝑦. Because the condition 𝑥 <  𝑦 or 𝑥 >  𝑦 is the same as 

the condition 𝑥 ≠  𝑦, it follows that 𝑅1 ∪ 𝑅2 = {(𝑥, 𝑦) | 𝑥 ≠ 𝑦}. 

In other words, the union of the “less than” relation and the 

“greater than” relation is the “not equals” relation. 

Next, note that it is impossible for a pair (𝑥, 𝑦) to belong to both 

𝑅1 and 𝑅2 because it is impossible that 𝑥 <  𝑦 and 𝑥 >  𝑦. It 

follows that 𝑅1  ∩  𝑅2  =  𝜙.  

We also see that 𝑅1  −  𝑅2  =  𝑅1, 𝑅2  −  𝑅1 = 𝑅2,  

and 𝑅1  ⊕ 𝑅2  =  𝑅1  ∪  𝑅2  −  𝑅1  ∩  𝑅2 = {(𝑥, 𝑦) | 𝑥 ≠  𝑦}.■ 

Definition. 

Let R be a relation from a set A to a set B and S a relation from B 

to a set C. The composite of R and S is the relation consisting of 

ordered pairs (𝑎, 𝑐), where 𝑎 ∈  𝐴, 𝑐 ∈  𝐶, and for which there 

exists an element 𝑏 ∈  𝐵 such that (𝑎, 𝑏)  ∈  𝑅 and (𝑏, 𝑐)  ∈  𝑆. 

We denote the composite of R and S by 𝑆 ∘ 𝑅.◄ 

Computing the composite of two relations requires that we find 

elements that are the second element of ordered pairs in the first 

relation and the first element of ordered pairs in the second 

relation, as the following examples. 

Example. 

What is the composite of the relations R and S, where R is the 

relation from {1, 2, 3} to {1, 2, 3, 4} with 𝑅 =  {(1, 1), (1, 4), 
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(2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2, 3, 4} to 

{0, 1, 2} with 𝑆 =  {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}? 

Solution. 

𝑆 ∘ 𝑅 is constructed using all ordered pairs in R and ordered pairs 

in S, where the second element of the ordered pair in R agrees 

with the first element of the ordered pair in S. For example, the 

ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair 

(2, 1) in 𝑆 ∘ 𝑅. Computing all the ordered pairs in the composite, 

we find 𝑆 ∘  𝑅 =  {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}. ■ 

Example. 

Let R be the relation on the set of all people such that (𝑎, 𝑏) in R 

if a is a parent of b. Then (𝑎, 𝑐) in 𝑅 ∘  𝑅, if (𝑏, 𝑐) in R. This 

means that a is a grandparent of c. 

● Rn  

Definition. 

The power 𝑅𝑛, for 𝑛 =  1, 2, 3, . .. are defined by 𝑅1  =  𝑅, and 

𝑅𝑛+1  =  𝑅𝑛  ∘  𝑅 where R is a relation on the set A. ◄ 

The definition shows that 𝑅2 = 𝑅 ∘ 𝑅, 𝑅3 = 𝑅2 ∘ 𝑅 = 

(𝑅 ∘ 𝑅) ∘  𝑅, and so on. 

Example 

Let 𝐴 =  { 2, 4, 6 } and  𝐵 =  { 3, 6, 9 }  

𝐴 ×  𝐵 

=  { (2,3), (2,6), (2,9), (4,3), (4, 6), (4,9), (6, 3), (6, 6), (6,9)}  
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Let R be a relation from A to B such that  

𝑅1 = { (2, 3), (2, 6), (4, 3), (4, 9), (6, 6), (6, 9) }.  

𝑅2  =  { (2, 6), (2, 9), (6, 6), (6, 9) }  

𝑅3  =  { (2, 6), (2, 9), (6, 6), (6, 9) } etc. 

Example 

Let 𝑅 =  {(1, 1), (2, 1), (3, 2), (4, 3)}.  

Find the powers 𝑅𝑛, 𝑛 =  2, 3, 4, . .. . 

Solution  

Because 𝑅2 = 𝑅 ∘ 𝑅, we find 𝑅2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. 

Furthermore, 𝑅3 = (𝑅 ∘ 𝑅) ∘  𝑅 =  {(1, 1), (2, 1), (3, 1), (4, 1)}. 

Additional computation shows that 𝑅4 is the same as 𝑅3, so 𝑅4  =

 {(1, 1), (2, 1), (3, 1), (4, 1)}. It also follows that 𝑅𝑛  =  𝑅3 for  

𝑛 =  5, 6, 7, . .. . ■ 

Definition. 

A relation R on sets X and Y is said to be contained in a relation S 

on X and Y if R is a subset of S, that is, if 𝑥 𝑅 𝑦 always implies 

𝑥𝑆𝑦.  

In this case, if R and S disagree, R is said to be smaller than S. ◄ 

Example. 

 > is contained in ≥.■ 

Theorem.  

The relation R on a set A is transitive if and only if 𝑅𝑛 ⊆ 𝑅 for 

𝑛 =  1, 2, 3, . .. ▲ 

http://en.wikipedia.org/wiki/Subset
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If R is a binary relation over A and B, then the following is a 

binary relation over B and A: 

Definition 

Let R be a relation from A to B. Then the relation 𝑅−1 =

 { (𝑏, 𝑎) | (𝑎, 𝑏)  ∈  𝑅 } from B to A is called the inverse of R. ◄ 

Example 

"is less than" (<) is the inverse of "is greater than" (>).■ 

Example 

Let 𝐴 =  {1, 2, 3}, 𝐵 =  {4, 5} and 𝑅 =  {(1, 4), (2, 5), (3, 5)} be 

a relation from A to B. then 𝑅−1 = {(4, 1), (5, 2), (5, 3)}. ■ 

Theorem. 

A binary relation over a set is equal to its inverse if and only if it 

is symmetric. ▲ 

Definition 

If R is a binary relation over X and Y, then the following too: 

The complement 𝑅𝑐 is defined as 𝑥 𝑅𝑐  𝑦 if not 𝑥 𝑅 𝑦.  

Example 

On real numbers, ≤  is the complement of  >.■ 

Example 

Let 𝐴 =  {1, 2, 3} and 𝑅 =  {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)} 

Then 𝑅𝑐  =  {(2, 1), (2, 3), (3, 1), (3, 2)}. ■ 

The complement of the inverse is the inverse of the complement. 

If a relation is symmetric, the complement is too. 

http://en.wikipedia.org/wiki/Complement_(set_theory)
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● Equivalence Relations 

Example  

Let R be the relation on the set of real numbers such that 𝑎𝑅𝑏 if 

and only if 𝑎 –  𝑏 is an integer. Is R an equivalence relation? 

Solution 

Because 𝑎 –  𝑎 =  0 is an integer for all real numbers 𝑎, 𝑎𝑅𝑎 for 

all real numbers a. Hence, R is reflexive. Now suppose that 𝑎𝑅𝑏. 

Then 𝑎 –  𝑏 is an integer. Then 𝑏 –  𝑎 =  − (𝑏 –  𝑎) is an integer. 

Hence 𝑏𝑅𝑎. It follows that R is symmetric. If 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then 

𝑎 − 𝑏 and 𝑏 −  𝑐 are integers. Therefore 𝑎 –  𝑐 =  (𝑎 –  𝑏)  +

 (𝑏 –  𝑐) is also an integer. Hence 𝑎𝑅𝑐. Thus, R is transitive. 

Consequently, R is an equivalence relation. ■ 

Example (Congruence Modulo m).  

Let m be a positive integer with 𝑚 >  1. Show that the relation 

𝑅 = {(𝑎, 𝑏): 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚)} is an equivalence relation on the set 

of integers. Where 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) if and only if m divides 𝑎 –  𝑏.  

Solution 

Note that 𝑎 –  𝑎 =  0 is divisible by m, because 0 =  0 ∙  𝑚. 

Hence 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑚), so that congruence modulo m is reflexive. 

Now, suppose that 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚). Then a – b is divisible by m, 

so 𝑎 –  𝑏 =  𝑘 𝑚, k is an integer. It follows that 𝑏 –  𝑎 =

 (−𝑘) 𝑚, so that 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑚). So congruence modulo m is 

symmetric. Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑏 =  𝑐 (𝑚𝑜𝑑 𝑚). Then 
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there are integers k and ℓ with 𝑎 –  𝑏 =  𝑘 𝑚 and 𝑏 − 𝑐 = ℓ𝑚. 

Adding these two equations shows that 

 𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐) = 𝑘𝑚 + ℓ𝑚 = (𝑘 + ℓ)𝑚. Thus,  𝑎 ≡

𝑐(𝑚𝑜𝑑 𝑚). Therefore, congruence modulo m is transitive. It 

follows that congruence modulo m is an equivalence relation. ■ 

Discussion. 

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚), then by definition of congruence, 𝑚|(𝑎 − 𝑏). 

This means that there is an integer k such that 𝑎 − 𝑏 =  𝑘𝑚, so 

that 𝑎 = 𝑏 + 𝑘𝑚. Conversely, if there is an integer k such that 

𝑎 = 𝑏 + 𝑘𝑚, then 𝑘𝑚 = 𝑎 − 𝑏. Hence m divides 𝑎 –  𝑏, so that  

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚). From this discussion we can state that "Let m be 

a positive integer. The integers a and b are congruent modulo m if 

and only if there is an integer k such that 𝑎 = 𝑏 + 𝑘𝑚. 

Example    

Suppose ~ is relation on ℕ × ℕ 

                 (𝑚, 𝑛)~(𝑝, 𝑞) ⟺ 𝑚 + 𝑞 = 𝑝 + 𝑛 

Prove that ~  is an equivalence relation on ℕ × ℕ. 

Solution 

Since  𝑚 + 𝑛 = 𝑛 + 𝑚, then (𝑚, 𝑛)~(𝑚, 𝑛)∀𝑚, 𝑛 ∈ 𝑁. 

Therefore ~ is reflexive.  

Let (𝑚, 𝑛)~(𝑝, 𝑞). Then 𝑚 + 𝑞 = 𝑝 + 𝑛 or 𝑝 + 𝑛 = 𝑚 + 𝑞 

Therefore (𝑝, 𝑞)~(𝑚, 𝑛) and ~ is symmetric. 

 (𝑚, 𝑛)~(𝑝, 𝑞) and (𝑝, 𝑞)~(𝑟, 𝑠) ⟹ 
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            𝑚 + 𝑞 = 𝑝 + 𝑛 and 𝑝 + 𝑠 = 𝑞 + 𝑟.  

 Then   𝑚 + 𝑠 = 𝑛 + 𝑟 ⟹ (𝑚, 𝑛)~(𝑟, 𝑠) and ~ is transitive. 

Therefore, ~ is an equivalence relation. ■ 

Example.  

Let 𝑆 be a relation on ℝ defined as 

𝑥2 − 𝑦2 = 2(𝑦 − 𝑥) ⟺ (𝑥, 𝑦) ∈ 𝑆 

Prove that 𝑆 is an equivalence relation.  

Solution  

Not that 𝑥2 − 𝑦2 = 2(𝑦 − 𝑥) ⟺ 𝑥2 + 2𝑥 = 𝑦2 + 2𝑦. 

Since 𝑥2 + 2𝑥 = 𝑥2 + 2𝑥    ∀𝑥 ∈ ℝ ⟹ (𝑥, 𝑥) ∈ 𝑆 ⟹ 𝑆 is 

reflexive  

Let  (𝑥, 𝑦) ∈ 𝑆 ⟹ 𝑥2 + 2𝑥 = 𝑦2 + 2𝑦 ⟹ 

       𝑦2 + 2𝑦 =  𝑥2 + 2𝑥 ⟹ (𝑦, 𝑥)  ∈ 𝑆 is symmetric. 

Since (𝑥, 𝑦), (𝑦, 𝑧) ∈ 𝑆 ⟹ 𝑥2 + 2𝑥 =  𝑦2 + 2𝑦  and  

 𝑦2 + 2𝑦 =  𝑧2 + 2𝑧 ⟹ 𝑥2 + 2𝑥 =  𝑧2 + 2𝑧 ⟹ (𝑥, 𝑧) ∈ 𝑆  

Hence S is transitive. 

Therefore,  S is an equivalence relation.  ■ 

Example 

Let  ~ be a relation on ℚ+ such that: 𝑥~𝑦 ⟺
𝑥

𝑦
∈ ℚ+  

Prove that ~ is an equivalence relation.   

Solution  

Since 
𝑥

𝑥
= 1 ∈ ℚ+ ⟹ (𝑥, 𝑥) ∈ ~ or ~ is reflexive. 
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If    
𝑥

𝑦
∈ ℚ+ ⟹

𝑦

𝑥
∈ ℚ+ ⟹ ~ is symmetric. 

Since 
𝑥

𝑦
,
𝑦

𝑧
∈ ℚ+ ⟹

𝑥

𝑧
=

𝑥

𝑦
.
𝑦

𝑧
∈ ℚ+ ⟹ ~ is transitive. 

Hence ~ is an equivalence relation.  ■ 

● Equivalence Classes 

Let A be the set of all students in your school who graduated from 

high school. Consider the relation R on A that consists of all pairs 

(𝑥, 𝑦), where x and y graduated from the same high school. Given 

a student x, we can form the set of all students equivalent to x 

with respect to R. This set consists of all students who graduated 

from the same high school as x did. This subset of A is called an 

equivalence class of the relation. 

Definition 

Let R be an equivalence relation on a set A. The set of all 

elements that are related to an element a of A is called 

equivalence class of a. The equivalence class of a with respect to 

R is denoted by [𝑎]𝑅. When only one relation is under 

consideration, we can delete the subscript R and write [𝑎] for this 

equivalence class.  

In other words, if R is an equivalence relation on a set A, the 

equivalence class of the element a is [𝑎]𝑅 = {𝑠: (𝑎, 𝑠) ∈ 𝑅}. If 

𝑏 ∈ [𝑎]𝑅, then b is called a representative of this equivalence 

class. Any element of a class can be used as a representative of 

this class.◄ 
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Example 

What are the equivalence classes of 0 and 1 for congruence 

modulo 4?  

Solution  

The equivalence class of 0 contains all integers x such that 

𝑥 ≡ 0 (mod 4), 

i.e. the integers divisible by 4. So, the equivalence class of 0 is  

[ 0 ]4  =  { . . . , – 12, – 8, – 4, 0, 4, 8, 12, . . . }. 

The equivalence class of 1 contains all integers y such that 

𝑦 ≡  1 ( mod 4 ), 

i.e. the integers with remainder 1 when divided by 4. Hence, the 

equivalence class of 1 is  

[ 1 ]4 =  { . . . , – 11, – 7, – 3, 1, 5, 9, 13, . . . }.■ 

Definition     

The equivalence classes of the relation congruence modulo m are 

called the congruent classes modulo m. The congruence class of 

an integer a modulo m is denoted by [𝑎]𝑚. Hence,  

[𝑎]𝑚 = {. . . , 𝑎 − 2𝑚, 𝑎 − 𝑚, 𝑎, 𝑎 + 𝑚, 𝑎 + 2𝑚, . . . }.◄ 

Example 

From the above example it follows that  

[0]4 = {. . ., −8, −4, 0, 4, 8, . . . };   

[1]4 = {. . . , −7,−3, 1, 5, 9, . . . }; 

[2]4 = {. . ., −6, −2, 2, 6, 10, . . . }.■ 
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Example  

We have proved that ~ is an equivalence relation on ℕ × ℕ 

defined by  (𝑚, 𝑛)~(𝑝, 𝑞) ⟺ 𝑚 + 𝑞 = 𝑝 + 𝑛. So, we can find 

[(1,1)] and [(3,4)] as follows. 

[(1,1)] = {(𝑎, 𝑏) ∈ ℕ × ℕ: (𝑎, 𝑏)~(1,1)} 

            = {(𝑎, 𝑏) ∈ ℕ × ℕ: 𝑎 + 1 = 𝑏 + 1} 

            = {(𝑎, 𝑎): 𝑎 ∈ ℕ} = {(0,0), (1,1), (2,2), … . } 

[(3,4)] = {(𝑎, 𝑏) ∈ ℕ × ℕ: 𝑎 + 4 = 𝑏 + 3}            

            = {(𝑎, 𝑏) ∈ ℕ × ℕ: 𝑏 = 𝑎 + 1}            

            = {(0,1), (1,2), (2,3), … . . }. ■ 

Example  

Let 𝑆 be the equivalence relation on ℝ defined as 

𝑥2 − 𝑦2 = 2(𝑦 − 𝑥) ⟺ (𝑥, 𝑦) ∈ 𝑆 

We can find [0] and [1] as follows: 

[0] = {𝑥 ∈ ℝ: 𝑥𝑆0} 

      = {𝑥 ∈ ℝ: 𝑥2 + 2𝑥 = 02 + 2(0) = 0} 

      = {𝑥 ∈ ℝ: 𝑥(𝑥 + 2) = 0} 

       = {0,−2}. 

[1] = {𝑥 ∈ 𝑅: 𝑥2 + 2𝑥 = (1)2 + 2(1) = 3} 

      = {𝑥 ∈ 𝑅: 𝑥2 + 2𝑥 − 3 = 0} 

        = {1,−3}.■ 
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Example  

We find the equivalence classes for congruence modulo 5 as 

follows: 

 Let 𝑎 ∈ 𝑍  

[𝑎] = {𝑥 ∈ 𝑍: 𝑥 ≡ 𝑎 (mod5)} 

      = {𝑥 ∈ 𝑍: 5\𝑥 − 𝑎} 

       = {𝑥 ∈ 𝑍: 𝑥 − 𝑎 = 5𝑘, 𝑘 ∈ 𝑍} 

      = {𝑥 ∈ 𝑍: 𝑥 = 𝑎 + 5𝑘, 𝑘 ∈ 𝑍} 

[0] = {𝑥 ∈ 𝑍: 𝑥 = 5𝑘, 𝑘 ∈ 𝑍}  

      = {… ,−10,−5, 0, 5, 10,… . } 

[1] = {𝑥 ∈ 𝑍: 𝑥 = 1 + 5𝑘, 𝑘 ∈ 𝑍}  

      = {… ,−9,−4, 1, 6, 11,… } 

[2] = {𝑥 ∈ 𝑍: 𝑥 = 2 + 5𝑘, 𝑘 ∈ 𝑍} 

      = {… ,−8,−3, 2, 7, 12,… } 

[3] = ⋯. 

[4] = ⋯■ 

In the following section we will discuss two alternative methods 

for representing relations. One method uses zero-one matrices. 

The other method uses pictorial representations called directed 

graphs. 
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●Representing Relations Using Matrices  

A relation between finite sets can be represented using a zero-one 

matrix. Suppose that R is a relation from 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} to 

𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}. The relation R can be represented by the 

matrix 𝑀𝑅 = [𝑚𝑖𝑗],  where 

𝑚𝑖𝑗 = {
1 if (𝑎𝑖 , 𝑏𝑗) ∈ 𝑅

0 if (𝑎𝑖 , 𝑏𝑗) ∉ 𝑅
 

Example.  

Suppose that 𝐴 =  {1, 2, 3} and 𝐵 =  {1, 2}. Let R be the relation 

from A to B containing (𝑎, 𝑏) if 𝑎 ∈  𝐴, 𝑏 ∈  𝐵, and 𝑎 >  𝑏. 

What is the matrix representing R if 𝑎1  =  1, 𝑎2  =  2, and 

 𝑎3  =  3, and 𝑏1  =  1 and 𝑏2 =  2? 

Solution 

 Because 𝑅 = {(2, 1), (3, 1), (3, 2)}.  

The matrix representing R is 𝑀𝑅, where        

𝑀𝑅 = [

𝑚11 𝑚12

𝑚21 𝑚22

𝑚31 𝑚32

] = [
0 0
1 0
1 1

]. 

The 1s in 𝑀𝑅 show that the pairs (2, 1), (3, 1), and (3, 2) belong to 

R. The 0s show that no other pairs belong to R. ■ 

Example 

Let 𝐴 = {𝑎1, 𝑎2, 𝑎3} and 𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5}.  

The ordered pairs in the relation R represented by the matrix 
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𝑀𝑅 = [
0 1 0 0 0
1 0 1 1 0
1 0 1 0 1

] is: 

𝑅 =

{(𝑎1, 𝑏2), (𝑎2, 𝑏1), (𝑎2, 𝑏3), (𝑎2, 𝑏4),(𝑎3, 𝑏1), (𝑎3, 𝑏3), (𝑎3, 𝑏5)}. ■ 

The matrix of a relation on a set, which is a square matrix, can be 

used to determine whether the relation has certain properties. R is 

reflexive if and only if (𝑎𝑖 , 𝑎𝑖) ∈ 𝑅 for 𝑖 =  1,… , 𝑛, where  𝐴 =

{𝑎1, . . . , 𝑎𝑛} is the set on which the relation R defined.  

Hence R is reflexive if and only if 𝑚𝑖𝑖 = 1 for 𝑖 =  1,… , 𝑛.  

The form of the matrix for an reflexive relation is illustrated in the 

following figure. 

 

The relation R is symmetric if and only if (𝑎, 𝑏) ∈ 𝑅 implies 

(𝑏, 𝑎) ∈ 𝑅. Consequently the relation R on the set 𝐴 =

{𝑎1, 𝑎2, . . . , 𝑎𝑛} is symmetric if and only if (𝑎𝑗 , 𝑎𝑖) ∈ 𝑅 whenever 

(𝑎𝑖 , 𝑎𝑗) ∈ 𝑅. Thus R is symmetric if and only if 𝑚𝑗𝑖 = 1 

whenever 𝑚𝑖𝑗 = 1. This also means 𝑚𝑗𝑖 = 0 whenever 𝑚𝑖𝑗 = 0. 

Consequently  R  is symmetric if and only if  𝑚𝑖𝑗 = 𝑚𝑗𝑖 for all 

pairs i, j with 𝑖 =  1,… , 𝑛 and 𝑗 =  1,… , 𝑛.  The form of the 

matrix for an symmetric relation is illustrated in Figure (a). 
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The relation R is antisymmetric if and only if (𝑎, 𝑏)  ∈  𝑅 and 

(𝑏, 𝑎)  ∈  𝑅 imply that 𝑎 =  𝑏. Consequently, the matrix of an 

antisymmetric relation has the property that if 𝑚𝑖𝑗 = 1 with 

𝑖 ≠  𝑗, then 𝑚𝑗𝑖 = 0. Or, in other words, either 𝑚𝑖𝑗 = 0 or 𝑚𝑗𝑖 =

0 when 𝑖 ≠  𝑗. The form of the matrix for an antisymmetric 

relation is illustrated in Figure (b).  

 

Example 

Suppose that the relation R on a set is represented by the matrix 

𝑀𝑅 = [
1 1 0
1 1 1
0 1 1

].  

Since all diagonal elements of this matrix are equal to 1, R is 

reflexive. Moreover, 𝑀𝑅 is symmetric 𝑀𝑅 = (𝑀𝑅)𝑇, it follows 

that R is symmetric. It is easy to see that R is not antisymmetric. ■ 
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Definition 

Let 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] be 𝑛 × 𝑛 zero-one matrices. Then the 

join of A and B, denoted by 𝐴 ∨ 𝐵, is the zero-one matrix with (i, 

j)th entry 𝑎𝑖𝑗 ∨ 𝑏𝑖𝑗 .  

The meet of A and B, denoted by 𝐴 ∧ 𝐵, is the zero-one matrix 

with (i, j)th entry 𝑎𝑖𝑗 ∧ 𝑏𝑖𝑗. 

Definition.  

Let 𝐴 = [𝑎𝑖𝑗] be an 𝑚 × 𝑘 zero-one matrix and 𝐵 = [𝑏𝑖𝑗] be 

𝑘 × 𝑛 zero-one matrix. Then the Boolean product of A and B, 

denoted by𝐴 ⊗ 𝐵 is the 𝑚 × 𝑛 matrix with (i, j)th entry [𝑐𝑖𝑗], 

where 𝑐𝑖𝑗 = (𝑎𝑖1 ∧ 𝑏1𝑗) ∨ (𝑎𝑖2 ∧ 𝑏2𝑗) ∨. . .∨ (𝑎𝑖𝑘 ∧ 𝑏𝑘𝑗). 

Example.  

The join and meet of the zero-one matrices of A and B, where 

𝐴 = [
1 0 1
0 1 0

] , 𝐵 = [
0 1 0
1 1 0

] are 𝐴 ∨ 𝐵 and 𝐴 ∧ 𝐵 and given 

as follows: 

𝐴 ∨ 𝐵 = [
1 ∨ 0 0 ∨ 1 1 ∨ 0
0 ∨ 1 1 ∨ 1 0 ∨ 0

] = [
1 1 1
1 1 0

] 

and  

𝐴 ∧ 𝐵 = [
1 ∧ 0 0 ∧ 1 1 ∧ 0
0 ∧ 1 1 ∧ 1 0 ∧ 0

] = [
0 0 0
0 1 0

]. ■ 

Example 

The Boolean product 𝐴 ⊗ 𝐵 of A and B, where  
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𝐴 = [
1 0
0 1
1 0

] , 𝐵 = [
1 1 0
0 1 1

] is:  

𝐴 ⊗ 𝐵 = [

(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)
(0 ∧ 1) ∨ (1 ∧ 0) (0 ∧ 1) ∨ (1 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1)
(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

] 

                 = [
1 ∨ 0 1 ∨ 0 0 ∨ 0
0 ∨ 0 0 ∨ 1 0 ∨ 1
1 ∨ 0 1 ∨ 0 0 ∨ 0

] = [
1 1 0
0 1 1
1 1 0

]. ■ 

     The Boolean operations join and meet can be used to find the 

matrices representing the union and the intersection of two 

relations as follows: 

 𝑀𝑅1∪𝑅2
= 𝑀𝑅1

∨ 𝑀𝑅2
and 𝑀𝑅1∩𝑅2

= 𝑀𝑅1
∧ 𝑀𝑅2

 

Example.  

Suppose that the relations 𝑅1 and 𝑅2on a set A are represented by 

the matrices  

𝑀𝑅1
= [

1 0 1
1 0 0
0 1 0

] and 𝑀𝑅2
= [

1 0 1
0 1 1
1 0 0

] 

The matrices representing 𝑅1 ∪ 𝑅2 and 𝑅1 ∩ 𝑅2 are 

𝑀𝑅1∪𝑅2
= 𝑀𝑅1

∨ 𝑀𝑅2
= [

1 0 1
1 1 1
1 1 0

] 

𝑀𝑅1∩𝑅2
= 𝑀𝑅1

∧ 𝑀𝑅2
= [

1 0 1
0 0 0
0 0 0

]. ■ 

We now turn our attention to determining the matrix for the 

composite of relations. This matrix can be found using the 

Boolean product of the matrices as follows: 𝑀𝑆∘𝑅 = 𝑀𝑅 ⊗ 𝑀𝑆 
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Example 

The matrix representing the relation 𝑆 ∘ 𝑅 where the matrices 

representing R and S are  

𝑀𝑅 = [
1 0 1
1 1 0
0 0 0

] and 𝑀𝑆 = [
0 1 0
0 0 1
1 0 1

]: 

is given as follows: 

𝑀𝑆∘𝑅 = 𝑀𝑅 ⊗ 𝑀𝑆 = [
1 1 1
0 1 1
0 0 0

]. ■ 

The matrix representing the composite of two relations can be 

used to find the matrix for 𝑀𝑅𝑛. In particular, 𝑀𝑅𝑛  =  𝑀𝑅
[𝑛]

. 

Example 

Find the matrix representing the relation 𝑅2, where the matrix 

representing R is 𝑀𝑅 = [
0 1 0
0 1 1
1 0 0

] 

Solution 

The matrix for 𝑅2 is 𝑀𝑅2  =  𝑀𝑅
[2]

= [
0 1 1
1 1 1
0 1 0

]. ■ 
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● Representing Relations Using Digraphs 

There is another way of representing a relation on a set using a 

pictorial representation. Each element of the set is represented by 

a point and each ordered pair is represented using an arc with its 

direction indicated by an arrow.  

●A directed graph 

 Definition 

A directed graph, or digraph, consists of a set of vertices V (or 

nodes) together with a set E of ordered pairs of elements of V 

called edges (or arcs). The vertex a is called the initial vertex of 

the edge (a, b) and the vertex b is called the terminal vertex of 

this edge. An edge of the form (a, a) is represented using an arc 

from the vertex a back to itself. It is called a loop.◄ 

Example 

The directed graph with vertices 𝑎, 𝑏, 

 𝑐, and d, and edges (𝑎, 𝑏), (𝑎, 𝑑),  

(𝑏, 𝑏), (𝑏, 𝑑), (𝑐, 𝑎), (𝑐, 𝑏), and 

(𝑑, 𝑏) is displayed in the given  

figure. ■ 

The relation R on a set A is represented by the directed graph that 

has the elements of A as its vertices and the ordered pairs (𝑎, 𝑏), 

where (𝑎, 𝑏) ∈ 𝑅, as edges. This assignment sets up a one-to-one 

correspondence between the relations on a set A and the directed 
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graphs with A as their set of vertices. Thus, every statement about 

relations corresponds to a statement about directed graphs, and 

vice versa. Directed graphs give a visual display of information 

about relations. As such, they are often used to study relations and 

their properties. (Note that relations from a set A to a set B can be 

represented by a directed graph where there is a vertex for each 

element of A and a vertex for each element of B, as shown above. 

However, when 𝐴 = 𝐵, such representation provides much less 

insight than the digraph representations described here.) The use 

of directed graphs to represent relations on a set is illustrated in 

the following examples. 

Example 

The directed graph of the relation 

𝑅 =  {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4),  

(3, 1), (3, 2), (4, 1)} on the set 

{1, 2, 3, 4}  

is shown in the given figure. ■ 

Example 

What are the ordered pairs in the relation R 

represented by the directed graph shown in 

the given figure? 

Solution 

The ordered pairs (𝑥, 𝑦) in the relation are 
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𝑅 =

{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}. 

Each of these pairs corresponds to an edge of the directed graph, 

with (2, 2) and (3, 3) corresponding to loops. ■ 

Example  

The less than relation R on the 

set of integers 𝐴 =  {1, 2, 3, 4} 

is 𝑅 = {(1, 2), (1, 3), (1, 4),  

(2, 3), (2, 4), (3, 4) }  and it can 

be represented by the given 

digraph. ■ 

 

♣The directed graph representing a relation can be used to 

determine whether the relation has various properties. For 

instance, a relation is reflexive if and only if there is a loop at 

every vertex of the directed graph, so that every ordered pair of 

the form (𝑥, 𝑥) occurs in the relation. 

A relation is symmetric if and only if for every edge between 

distinct vertices in its digraph there is an edge in the opposite 

direction, so that (𝑦, 𝑥) is in the relation whenever (𝑥, 𝑦) is in the 

relation. Similarly, a relation is antisymmetric if and only if there 

are never two edges in opposite directions between distinct 

vertices. Finally, a relation is transitive if and only if whenever 

there is an edge from a vertex x to a vertex y and an edge from a 
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vertex y to a vertex z, there is an edge from x to z (completing a 

triangle where each side is a directed edge with the correct 

direction). 

Example  

The following figures show the digraph of relations with different 

properties.  

 

 

(a) is reflexive, antisymmetric, symmetric and transitive.  

(b) is not reflexive, and it is antisymmetric, symmetric and 

transitive.  

(c) has none of the four properties.  

(d) symmetric, but none of the other three.  

(e) is antisymmetric and transitive but neither reflexive nor 

symmetric.■ 

 

 



- 124 - 
 

Example  

Determine whether the relations for the directed graphs shown in 

the following figure  are reflexive, symmetric, antisymmetric, 

and/or transitive. 

 

Solution 

Because there are loops at every vertex of the directed graph of R, 

it is reflexive. R is neither symmetric nor antisymmetric because 

there is an edge from a to b but not one from b to a, but there are 

edges in both directions connecting b and c. Finally, R is not 

transitive because there is an edge from a to b and an edge from b 

to c, but no edge from a to c. 

Because loops are not present at all the vertices of the directed 

graph of S, this relation is not reflexive. It is symmetric and not 

antisymmetric, because every edge between distinct vertices 

is accompanied by an edge in the opposite direction. It is also not 

hard to see from the directed graph that S is not transitive, 

because (𝑐, 𝑎) and (𝑎, 𝑏) belong to S, but (𝑐, 𝑏) does not belong 

to S. ■ 
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Example 

Consider the set 𝑆 = {1, 2, 3}. We construct the Hasse diagrams 

of the partial order ⊆ among the subsets of S as follows: 

 

Example 

The ordered pairs in the relation R represented by the directed 

graph shown in the following figure: 

 

are 𝑅 =  { (1,2), (1,4), (2,4), (3,2), (3,1), (4,3)}.■ 

 

 

 

http://en.wikipedia.org/wiki/File:Hasse_diagram_of_powerset_of_3.svg
http://en.wikipedia.org/wiki/File:4node-digraph-embed.svg
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Exercises Set (1.3) 

1- List the ordered pairs in the relation R from 𝐴 = {0, 1, 2, 3, 4} 

to 𝐵 = {0, 1, 2, 3},  where (𝑎, 𝑏) ∈ 𝑅 if and only if  

    (a) 𝑎 = 𝑏; (b) 𝑎 + 𝑏 = 4;  (c) 𝑎 > 𝑏; (d) 𝑎 | 𝑏. 

2- For each of these relations on the set {1, 2, 3, 4}, decide 

whether it is reflexive, symmetric, antisymmetric or transitive.   

    (a) {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}; 

    (b) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}; 

    (c) {(1,2), (2,3), (3,4)}; 

    (d) {(1,1), (2,2), (3,3), (4,4)}. 

3- Determine whether the relation R on the set of all 

people is reflexive, symmetric, antisymmetric or 

transitive, where (𝑎, 𝑏) ∈ 𝑅 if and only if  

 (a) a is taller than b; 

 (b) a and b were born on the same day; 

 (c) a has the same first name as b; 

 (d) a and b have a common grandparent.  

4- Determine whether the relation R on the set of all integers is  

     reflexive, symmetric, antisymmetric or transitive, where   

     (𝑎, 𝑏) ∈ 𝑅 if and only if   

 (a) 𝑥 ≠ 𝑦; (b) 𝑥𝑦 ≥ 1; (c) 𝑥 =  𝑦  +  1 or 𝑥 =  𝑦 − 1; 

 (d) 𝑥 ≡ 𝑦(mod7);  (e) x is a multiple of y; 

 (f) x and y are both negative or both nonnegative; 

 (g) 𝑥 = 𝑦2; (h) 𝑥 ≥ 𝑦2. 
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5- Consider these relations on the set of real numbers  

𝑅1 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 > 𝑏}; 

𝑅2 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 ≥ 𝑏}; 

𝑅3 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 < 𝑏}; 

𝑅4 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 ≤ 𝑏}; 

𝑅5 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 ≠ 𝑏}; 

𝑅6 = {(𝑎, 𝑏) ∈ 𝑅2: 𝑎 ≠ 𝑏}. 

Find:  

(a) 𝑅1 ∪ 𝑅3, 𝑅1 ∪ 𝑅5, 𝑅2 ∩ 𝑅4, 𝑅1 − 𝑅2; 

(b) 𝑅2 ∪ 𝑅4, 𝑅3 ∪ 𝑅6, 𝑅3 ∩ 𝑅6, 𝑅6 − 𝑅3,   𝑅2 ⊕ 𝑅6; 

(c) 𝑅1 ∘ 𝑅1, 𝑅1 ∘ 𝑅2, 𝑅1 ∘ 𝑅3, 𝑅2 ∘ 𝑅3, 𝑅3 ∘ 𝑅3; 

(d) 𝑅2 ∘ 𝑅1, 𝑅2 ∘ 𝑅2, 𝑅3 ∘ 𝑅6, 𝑅5 ∘ 𝑅3. 

6- Let 𝑅1 and 𝑅2 be the "divides" and ' is multiple of" relations on 

the set of all positive integers, respectively.  

That is 𝑅1 = {(𝑎, 𝑏): 𝑎 divides 𝑏} and 

          𝑅2 = {(𝑎, 𝑏): 𝑎 is a multiple of 𝑏}.  

Find 

     (a) 𝑅1 ∪ 𝑅2; (b) 𝑅1 ∩ 𝑅2; (c) 𝑅1 − 𝑅2;  

     (d) 𝑅2 − 𝑅1; (e) 𝑅1 ⊕ 𝑅2. 

7- Suppose that R and S are reflexive relations on a set A.  

       Prove or disprove each of these statements 

    (a) 𝑅 ∪ 𝑆 is reflexive;    b) 𝑅 ∩ 𝑆 is reflexive; 

    (c) 𝑅 –  𝑆 is reflexive;    (d) 𝑅 ∘ 𝑆 is reflexive. 
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8- Represent each of these relations on {1, 2, 3} with a matrix  

(a) {(1,1), (1,2), (1,3)}; 

(b) {(1,2), (2,1), (2,2), (3,3)}; 

(c) {(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)}; 

(d) {(1,3), (3,1)}. 

9- List the ordered pairs in the relation on {1,2,3} corresponding 

to these matrices (where the rows and columns correspond to the 

integers listed in increasing order).  

    (a) [
1 0 1
0 1 0
1 0 1

]; (b) [
0 1 0
0 1 0
0 1 0

]; (c) [
1 1 1
1 0 1
1 1 1

]. 

10- Let 𝑅1, 𝑅2 be relations on a set A represented by the matrices  

    𝑀𝑅1
= [

0 1 0
1 1 1
1 0 0

] and 𝑀𝑅2
= [

0 1 0
0 1 1
1 1 1

].     

Find the matrices that represent  

(a) 𝑅1 ∪ 𝑅2; (b) 𝑅1 ∩ 𝑅2; (c) 𝑅2 ∘ 𝑅1; (d) 𝑅1 ∘ 𝑅1; (e)𝑅1 ⊕ 𝑅2. 

11- Represent each of these relations on {1, 2, 3, 4} with a matrix 

(with the elements of this set listed in increasing order.) 

         (a) {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}; 

         (b) {(1,1), (1,4), (2,2), (3,3), (4,1)}; 

         (c) {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2)}; 

         (d) {(2,4), (3,1), (3,2), (3,4)}. 
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12- List the ordered pairs in the relations on {1,2,3,4} 

corresponding to these matrices ( where the rows and columns 

correspond to the integers listed in increasing order.) 

(a) [

1 1 0 1
1 0 1 0
0 1 1 1
1 0 1 1

];    (b)  [

1 1 1 0
0 1 0 0
0 0 1 1
1 0 0 1

];     

(c) [

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

]. 

13- Draw the digraph representing each of the relations from 

Exercises 2 and 5. 

14- Draw the digraph represents the relation 

{(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑏), (𝑐, 𝑑), (𝑑, 𝑎), (𝑑, 𝑏)}. 

15- Picture the divisibility relation on {1, 2, … , 12} by a digraph. 

16- Determine whether each of the following relations are 

reflexive, symmetric and transitive: 

(i) Relation R in the set 𝐴 = {1, 2, 3…13, 14} defined as  

𝑅 =  {(𝑥,  𝑦): 3𝑥 −  𝑦 =  0}; 

(ii) Relation R in the set ℕ of natural numbers defined as  

𝑅 =  {(𝑥,  𝑦):  𝑦 =  𝑥 +  5 and 𝑥 <  4}; 

(iii) Relation R in the set 𝐴 = {1, 2, 3, 4, 5, 6} as  

𝑅 =  {(𝑥,  𝑦):  𝑦 is divisible by 𝑥}.; 

(iv) Relation R in the set ℤ of all integers defined as  

𝑅 =  {(𝑥,  𝑦):  𝑥 −  𝑦 is as integer}; 
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(v) Relation R in the set A of human beings in a town at a 

particular time given by 

(a) R = {(x, y): x and y work at the same place}; 

(b) R = {(x, y): x and y live in the same locality}; 

(c) R = {(x, y): x is exactly 7 cm taller than y}; 

(d) R = {(x, y): x is wife of y}; 

(e) R = {(x, y): x is father of y}; 

17- Show that the relation R in the set ℝ of real numbers, defined 

as 𝑅 =  {(𝑎,  𝑏):  𝑎 ≤  𝑏2} is neither reflexive nor symmetric nor 

transitive. 

18- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} 

as 𝑅 =  {(𝑎,  𝑏):  𝑏 =  𝑎 +  1} is reflexive, symmetric or 

transitive. 

19- Show that the relation R in ℝ defined as 𝑅 =

 {(𝑎,  𝑏):  𝑎 ≤  𝑏}, is reflexive and transitive but not symmetric. 

20-  Check whether the relation R in ℝ defined as 𝑅 =

 {(𝑎,  𝑏):  𝑎 ≤  𝑏3} is reflexive, symmetric or transitive. 

21- Show that the relation R in the set {1, 2, 3} given by 𝑅 =

 {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive. 

22- Show that the relation R in the set 𝐴 = {1, 2, 3, 4, 5} given by 

𝑅 = {(𝑎, 𝑏): |𝑎 − 𝑏| is even}, is an equivalence relation. Show 

that all the elements of {1, 3, 5} are related to each other and all 

the elements of {2, 4} are related to each other. But no element of 

{1, 3, 5} is related to any element of {2, 4}. 



- 131 - 
 

23. Given an example of a relation. Which is 

(i) Symmetric but neither reflexive nor transitive. 

(ii) Transitive but neither reflexive nor symmetric. 

(iii) Reflexive and symmetric but not transitive. 

(iv) Reflexive and transitive but not symmetric. 

(v) Symmetric and transitive but not reflexive. 

24- What are the ordered pairs in the relation R represented by the 

directed graph shown in the following figure? 

 

  

25- What are the ordered pairs in the relation R represented by the 

directed graph shown in the following figure? 

 

http://en.wikipedia.org/wiki/File:4node-digraph-natural.svg
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26. Given the directed graphs representing two relations, how 

can the directed graph of the union, intersection, symmetric 

difference, difference, and composition of these relations be 

found?                          
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Mathematical Logic 

The rules of mathematical logic specify methods of 

reasoning mathematical statements. Greek philosopher, 

Aristotle, was the pioneer of logical reasoning. Logical 

reasoning provides the theoretical base for many areas of 

mathematics and consequently computer science. It has 

many practical applications in computer science like 

design of computing machines, artificial intelligence, 

definition of data structures for programming languages 

etc. 

2.1 Propositional Calculus 

Propositional Logic is concerned with statements to 

which the truth values, “true” and “false”, can be 

assigned. The purpose is to analyze these statements 

either individually or in a composite manner. 

Definition.   

In logic, a proposition (or a statement) is a meaningful 

declarative sentence that is either true or false, but not 

both.  
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The truth value of a proposition is True "T or 1" if it is a 

true proposition and false "F or 0" if it is a false 

proposition. Letters 𝑝, 𝑞, 𝑟 , … are used to denote 

proposition and are called propositional variables. 

* The following propositions are true  

  (i) A triangle has three sides. 

  (ii) 7 is odd. 

  (iii) 2 divides 24. 

* The following propositions are false:  

   (i) 5 + 3 = 9. 

   (ii) Makkah is the capital of Saudi Arabia. 

   (iii) 2 divides 7.  

* The following are not proposition: 

   (1) Who are you?   

            Not declarative sentences  

   (2) Help yourself! 

            Not declarative sentence. 

   (3)  𝑢 − 2 = 1 

          Neither true nor false. 

   (4) 𝑢 − 𝑣 = 𝑤. 

          Neither true nor false. 
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   (5) Broccoli tastes good. 

Meaningful declarative sentences, but is not proposition 

but rather matters of opinion or taste. 

Definition.   

A formula (or a compound proposition) A formula is 

formed from existing propositions using connectives. 

Definition.   

Since we need to know the truth value of a proposition in 

all possible scenarios, we consider all the possible 

combinations of the propositions which are joined 

together by Logical Connectives to form the given 

compound proposition. This compilation of all possible 

scenarios in a tabular format is called a truth table.  

In particular, truth tables can be used to tell whether a 

propositional expression is true or false for all legitimate 

input values. Practically, a truth table is composed of one 

column for each input variable (for example, p and q), 

and one final column for all of the possible results of the 

logical operation that the table is meant to represent (for 

example, 𝑝 → 𝑞). Each row of the truth table therefore 

contains one possible configuration of the input variables 
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(for instance, p is true (written 1 or T) q is false (written 0 

or F)), and the result of the operation for those values. 

 Logical Connectives  

Connectives are either unary operations like logical 

identity and logical negation, or binary operations like 

logical conjunction, logical disjunction and logical 

implication. 

Definition. (Logical identity and logical Negation).  

Let 𝑝 be a proposition.  

● Logical identity 

Logical identity is an operation on one logical value, 

typically the value of a proposition that produces a value 

of true if its operand is true and a value of false if its 

operand is false. The truth table for the logical identity 

operator is as follows: 

Logical Identity 

𝑝 𝑝 

Operand Value 

1 1 

0 0 

http://en.wikipedia.org/wiki/Identity_function
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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● Logical negation 

Logical negation is an operation on one logical value, 

typically the value of a proposition, which produces a 

value of true if its operand is false and a value of false if 

its operand is true.  

The truth table for logical negation (written as ¬p or ~p) 

is as follows: 

Logical negation 

𝑝 ¬𝑝 

1 0 

0 1 

Example.  

The negation of the proposition "The sun shines on the 

screen" is  "The sun does not shine on the screen".∎ 

We will now introduce the logical connectives (binary 

operations) that are used to form formulas.  

Definition. (Logical Conjunction" ∧ ")  

Logical conjunction is an operation on two logical 

values, typically the values of two propositions, that 

produces a value of true if both of its operands are true.  

http://en.wikipedia.org/wiki/Logical_negation
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Logical_negation
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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The truth table for p AND q (written as p ∧ q) is as 

follows: 

Logical Conjunction 

𝑝 𝑞 𝑝 ∧ 𝑞  

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Example.  

Let p be the proposition “It is sunny today” and q be the 

proposition “The sun shines on the screen”. Then the 

conjunction of these propositions, 𝑝 ∧  𝑞 , is the 

proposition “It is sunny today and the sun shines on the 

screen”. This proposition is true when the day is sunny 

and the sun shines on the screen. It is false otherwise.  ∎ 

Definition. (Logical Disjunction" ∨ ")  

Logical disjunction is an operation on two logical 

values, typically the values of two propositions, that 

produces a value of true if at least one of its operands is 

true.  

 

http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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The truth table for p OR q (written as 𝑝 ∨  𝑞) is as 

follows: 

Logical disjunction 

𝑝 𝑞 𝑝 ∨ 𝑞  

1 1 1 

1 0 1 

0 1 1 

0 0 0 

Example.  

The disjunction of the propositions p and q where p and q 

are the same propositions as in the above example, 𝑝 ∨ 𝑞, 

is the proposition “It is sunny today or the sun shines on 

the screen”. This proposition is true on any day that is 

either sunny day or the sun shines on the screen 

(including both). It is only false on days that are not 

sunny and when it also does not shine on the screen. ∎ 

Definition.  

(“Logical Implication” or “Conditional Statement” " → ")  

Logical implication is associated with an operation on 

two logical values, typically the values of two 

propositions, that produces a value of false just in the 

singular case the first operand is true and the second 

operand is false.  

http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
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The truth table associated with the Logical implication if 

p then q (symbolized as 𝑝 →  𝑞) is as  

Logical implication 

 

 

 

 

It may also be useful to note that 𝑝 →  𝑞 and ¬𝑝 ∨  𝑞 

have the same truth table. A variety of terminology is 

used to express 𝑝 → 𝑞. Some of them are: “if p, then q”, 

“p implies q”, “if p, q” ,   “p only if q”, “p is sufficient for 

q”,    “a sufficient condition for q is p”,  “q if p”,  “q 

whenever p”,  “q when p” ,  “q is necessary for p”   

“a necessary condition for p is q” , “q follows from p”  

and "q unless ¬𝑝. 

Example.  

Let p the proposition "Aly study well" and q the 

proposition "Aly will be a Computer Science student". 

Then the formula  𝑝 → 𝑞 -as a formula in English- is "If 

Aly study well, then he will be a Computer Science 

student ". ∎ 

𝑝 𝑞 𝑝 ⟶ 𝑞 

1 1 1 

1 0 0 

0 1 1 

0 0 1 



- 142 - 
 

Definition. (Converse, Contra-positive and Inverse)  

There are some related conditional statements that can be 

formed from 𝑝 → 𝑞. The conditional statement 𝑞 → 𝑝 is 

called the converse of 𝑝 → 𝑞. The contra-positive of 

𝑝 → 𝑞 is the conditional statement ¬𝑞 → ¬𝑝.   

The statement   ¬𝑝 → ¬𝑞 is called the inverse of 𝑝 → 𝑞. 

The contra-positive, ¬𝑞 → ¬𝑝, of a conditional statement  

𝑝 → 𝑞 has the same truth value as 𝑝 → 𝑞.  

On the other hand, neither the converse,  𝑞 → 𝑝, nor the 

inverse ¬𝑝 → ¬𝑞, has the same truth value as 𝑝 → 𝑞 for 

all possible truth values of p and q.  

Example.  

What are the contra-positive, the converse, and the 

inverse of the conditional statement “The home team 

wins whenever it is raining”. 

Solution. 

Because “q whenever p” is one of the ways to express the 

conditional statement 𝑝 → 𝑞, the original statement can 

be rewritten as “If it is raining, then the home team wins”. 
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Consequently, the contra-positive of this conditional 

statement is “If the home team does not win, then it is not 

raining”.  

The converse is “If the home team wins, then it is 

raining”. 

The inverse “If it is not raining, then the home team does 

not win”. Only the contrapositive is equivalent to the 

original statement. ∎ 
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We now introduce another way to combine propositions.  

Definition. (Biconditional " ").  

Biconditional (also known as logical equality) is an 

operation on two logical values, typically the values of 

two propositions, that produces a value of true if both 

operands are false or both operands are true. 

The truth table for p XNOR q (written as 𝑝 ↔  𝑞) is as 

follows: 

Logical Equality 

 

 

 

 

So 𝑝 ↔ 𝑞 is true if p and q have the same truth value 

(both true or both false), and false if they have different 

truth values. There are some other ways to express 𝑝 ↔ 𝑞  

“p is necessary and sufficient for q”;   “p iff q” where 

“iff” is the abbreviation for “if and only if” and  " if p 

then q and conversely ". 

 

𝑝 𝑞 𝑝 ↔ 𝑞 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

http://en.wikipedia.org/wiki/Logical_equality
http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Logical_value
http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Truth_value
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Example.  

Let p be the statement “You can pass the exam.” and let q 

be the statement “You study well”. Then 𝑝 ↔ 𝑞 is the 

statement “You can pass the exam if and only if you 

study well”. ∎ 

Remark.  

The previous operators (¬, ∧, ∨, →, ↔) are the 

common operators which we will focus on. 

Definition. (Exclusive Or" ⊕ ").  

Truth table for Exclusive Or " ⊕ " 
 

Logical Equality 

 
 
 
 
 
 
 

Actually, this operator can be expressed by using other 

operators: 

𝑝 ⊕ 𝑞 is the same as ¬ (𝑝 ↔  𝑞). 

⊕ is used often in CSE. So we have a symbol for it. 

 

𝑝 𝑞 𝑝 ⊕ 𝑞 

1 1 0 

1 0 1 

0 1 1 

0 0 0 
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● Order of precedence 

As a way of reducing the number of necessary 

parentheses, one may introduce precedence rules for 

operators. ¬ has higher precedence than  ∧, ∧ higher than 

∨, and ∨ higher than →.  

Here is a table that shows a commonly used precedence 

of logical operators. 

The order of precedence determines which connective is 

the "main connective" when interpreting a formula. 

 

Example. 

¬𝑝 ∧ 𝑞 means (¬𝑝) ∧ 𝑞; 

𝑝 ∧ 𝑞 ⟶ 𝑟 means (𝑝 ∧ 𝑞) ⟶ 𝑟; 

 𝑝 ∨ 𝑞 ∧ ¬𝑟 → 𝑠 is short for [𝑝 ∨ (𝑞 ∧ (¬𝑟))] → 𝑠.   

When in doubt, use parenthesis. ∎ 

 

http://en.wikipedia.org/wiki/Order_of_operations


- 147 - 
 

Example.  

Find the truth table for the following formula: "If you 

studied discrete Mathematics well and did not neglect 

studying logic, you would gain high marks in the exam". 

Solution. 

Suppose that 

 𝑝: studied discrete Mathematics well; 

𝑞: neglect studying logic; 

𝑟: gain high mark in the exam. 

The formula is 𝑝 ∧ ¬𝑞 ⟶ 𝑟 

𝑝 𝑞 𝑟 ¬𝑞 𝑝 ∧ ¬𝑞 𝑝 ∧ ¬𝑞 ⟶ 𝑟 

1 1 1 0 0 1 

1 1 0 0 0 1 

1 0 1 1 1 1 

1 0 0 1 1 0 

0 1 1 0 0 1 

0 1 0 0 0 1 

0 0 1 1 0 1 

0 0 0 1 0 1 

∎ 
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● Tautologies and Contradictions    

Definition.  

A formula that is always true, no matter what the truth 

values of the propositions that occur in it, is called a 

tautology.   

A formula that is always false is called contradiction.  

A formula that is neither a tautology nor a contradiction 

is called a contingency.  

Example. 

We can construct examples of tautologies and 

contradictions using just one proposition. Consider the 

truth tables of 𝑝 ∨ ¬p and 𝑝 ∧ ¬p. Since 𝑝 ∨ ¬p is always 

true, it is a tautology. Since 𝑝 ∧ ¬p  is always false, it is a 

contradiction. 

Example of a tautology and a contradiction 

p ¬p 𝑝 ∨ ¬p 𝑝 ∧ ¬p 

1 0 1 0 

0 1 1 0 

∎ 
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● Logical Equivalence 

Definition.  

Two formulas p and q are logically equivalent, denoted 

by 𝑝 ≡  𝑞, if and only if they have the same truth values 

for all possible combination of truth values for the 

propositional variables. Also,  

Definition.  

Two formulas p and q are called logically equivalent if 

𝑝 ↔ 𝑞 is a tautology. 

 

Example. 

The formulas 𝑝 → 𝑞 and ¬𝑝 ∨ 𝑞 are logically equivalent. 

  𝑝 𝑞 ¬p 𝑝 → 𝑞 ¬𝑝 ∨ 𝑞 

1 1 0 1 1 

1 0 0 0 0 

0 1 1 1 1 

0 0 1 1 1 

∎ 
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Example.  

The formulas ¬(𝑝 ∨  𝑞) and ¬𝑝 ∧  ¬𝑞 are logically 

equivalent. 

  𝑝 𝑞 ¬p ¬𝑞 𝑝 ∨ 𝑞 ¬(𝑝 ∨ 𝑞) ¬𝑝 ∧ ¬𝑞 

1 1 0 0 1 0 0 

1 0 0 1 1 0 0 

0 1 1 0 1 0 0 

0 0 1 1 0 1 1 

Since the truth values of the formulas ¬(𝑝 ∨  𝑞)  and 

¬𝑝 ∧ ¬𝑞 agree for all possible combinations of the truth 

values of 𝑝 and 𝑞, it follows that ¬(𝑝 ∨  𝑞) ↔ ¬𝑝 ∧ ¬𝑞  

is a tautology and these formulas are logically equivalent. 

Similarly, we can prove that ¬(𝑝 ∧  𝑞) ≡ ¬𝑝 ∨ ¬𝑞.■ 
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Theorem. (Algebraic properties of connectives)  

(1) Commutative rules:  

(a)  𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝,    (b) 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ p. 

(2) Associative rules:  

     (a) (𝑝 ∧ 𝑞) ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟), 

     (b)  (𝑝 ∨ 𝑞) ∨ 𝑟 ≡ 𝑝 ∨ (𝑞 ∨ 𝑟). 

(3) Distributive rules:  

(a)  𝑝 ∧ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟),  

(b)   𝑝 ∨ (𝑞 ∧ 𝑟) ≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟). 

(4) Identity rules: 

(a)  𝑝 ∨ 0 ≡ 𝑝,       (b)  𝑝 ∧ 1 ≡ 𝑝 

(5) Negation rules: 

       𝑝 ∧ ¬𝑝 ≡ 0  and  𝑝 ∨ ¬𝑝 ≡ 1 .  

(6) Double negation rule:   

       ¬(¬𝑝)  ≡ 𝑝. 

(7) Idempotent rules:   

     𝑝 ∨ 𝑝 ≡ 𝑝  and  𝑝 ∧ 𝑝 ≡ 𝑝 .  

(8)   De Morgan's rules:   

      (a)  ¬(𝑝 ∧ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞 , 

      (b) ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞. 
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(9) Universal rules: 

     𝑝 ∧ 0 ≡ 0      and   𝑝 ∨ 1 = 1. 

(10) Absorption rules: 

       (a) 𝑝 ∨ (𝑝 ∧ 𝑞) ≡ 𝑝,        

       (b) 𝑝 ∧ (𝑝 ∨ 𝑞) ≡ 𝑝. 

(11) Alternative proof rule: 

  (a) 𝑝 ⟶ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ ¬𝑞) ⟶ 𝑟 ≡ (𝑝 ∧ ¬𝑟) ⟶ 𝑞. 

   (b) 𝑝 ∨ 𝑞 ⟶ 𝑟 ≡ (𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟). 

(12) Conditional rules:  

   (a) 𝑝 ⟶ 𝑞 ≡ ¬𝑝 ∨ 𝑞    

   (b) ¬(𝑝 ⟶ 𝑞) ≡ 𝑝 ∧ ¬𝑞. 

(13) Biconditional rules: 

          (a) 𝑝 ↔ 𝑞 ≡ (𝑝 ⟶ 𝑞) ∧ (𝑞 ⟶ 𝑝) 

          (b) 𝑝 ↔ 𝑞 ≡ (𝑝 ∧ 𝑞) ∨ (¬𝑝 ∧ ¬𝑞) 

          (c) 𝑝 ↔ 𝑞 ≡ (¬𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬q) 

(14) Rules of contrapositive: 

                        𝑝 ⟶ 𝑞 ≡ ¬ 𝑞 ⟶ ¬𝑝 

(15) Exportation – importation rule: 

                  𝑝 ⟶ (𝑞 ⟶ 𝑟) ≡ 𝑝 ∧ 𝑞 ⟶ 𝑟 

Proof.  Exercise. ◄ 
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Example.   

Use the algebraic properties of connectives to prove: 

(a) ¬(𝑝 ∧ (¬𝑝 ∨ 𝑞)) ≡ ¬𝑝 ∨ ¬𝑞; 

(b) [(𝑝 ∨ 𝑞) ∧ (𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟)] ⟶ 𝑟 is a tautology. 

Solution. 

(a) Exercise. 

(b)  [(𝑝 ∨ q) ∧ ((𝑝 ⟶ 𝑟) ∧ (𝑞 ⟶ 𝑟))] ⟶ 𝑟 

     ≡ [(𝑝 ∨ 𝑞) ∧ ((𝑝 ∨ 𝑞) ⟶ 𝑟)] → 𝑟  

Alternative proof rule 

          ≡ [(𝑝 ∨ q) ∧ (¬(𝑝 ∨ 𝑞) ∨ r)] ⟶ 𝑟  

Conditional rule         

        ≡ [((𝑝 ∨ 𝑞) ∧ (¬(𝑝 ∨ 𝑞))) ∨ ((𝑝 ∨ 𝑞) ∧ 𝑟)] ⟶ 𝑟     

 Distributive rule 

          ≡ [0 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑟)] ⟶ 𝑟   Negation rule                  

          ≡ [(𝑝 ∨ 𝑞) ∧ 𝑟] ⟶ 𝑟     Identity rule 

          ≡ ¬[(𝑝 ∨ 𝑞) ∧ 𝑟] ∨ 𝑟     Conditional rule 

          ≡ [¬(𝑝 ∨ 𝑞) ∨ ¬𝑟] ∨ 𝑟  De Morgan's rule 

          ≡ ¬(𝑝 ∨ 𝑞) ∨ [¬r ∨ 𝑟]   Associative rule 

          ≡ ¬(𝑝 ∨ 𝑞) ∨ 1              Negation rule 

          ≡ 1                                 Idempotent rules. ■  
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Exercise Set (2.1)  

1- Which of the following are propositions? 

(a) Buy Premium Bonds! 

(b) The Apple Macintosh is a 16-bit computer. 

(c) There is a largest even number. 

(d) Why are we here?   

(e) 8 +  7 =  13.  

(f) 𝑎 +  𝑏 =  13. 

2- p is "1024 bytes is known as 1MB" and q is "A 

computer keyboard is an example of a data input device". 

Express the following formulas as English sentences in as 

natural a way as you can. Are the resulting propositions 

true or false?         

(a)  𝑝 ∧ 𝑞;  (b) )  𝑝 ∨ 𝑞;  ; (c) ¬𝑝. 

3- p is "𝑥 <  50"; q is "𝑥 >  40".  

Write as simply as you can: 

(a) ¬𝑝; (b) ¬𝑞; (c) 𝑝 ∧ 𝑞; (d) 𝑝 ∨  𝑞; (e) ¬𝑝 ∧ 𝑞; 

(f) ¬𝑝 ∧ ¬𝑞. 

One of these compound propositional functions always 

produces the output true, and one always outputs false. 

Which ones? 
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4- p is "I like Math" and q is "I am going to spend at least 

6 hours a week on Math". Write in as simple English as 

you can: 

(a) (¬𝑝)  ∧ 𝑞;  (b) (¬𝑝)  ∨  𝑞;   

(c) ¬(¬𝑝);  (d) (¬𝑝)  ∨  (¬𝑞);   

(e) ¬(𝑝 ∨  𝑞);  (f) (¬𝑝)  ∧ (¬𝑞);   

(g) 𝑝 → 𝑞 ; (h)  𝑝 ∧ 𝑞. 

5- Construct a truth table for each of these formulas: 

(a) 𝑝 ∧ ¬𝑝;   

(b) 𝑝 ∨ ¬𝑝; 

(c) (𝑝 ∨ ¬𝑞) → 𝑞;   

(d) (𝑝 ∨ 𝑞) → (𝑝 ∧ 𝑞); 

(e) 𝑝 → ¬𝑝;    

(f) 𝑝 ↔ ¬𝑝.  

6- Show that each of these implications is a tautology by 

using truth tables.  

 (a)  [∼ 𝑝 ∧ (𝑝 ∨ 𝑞)] → 𝑞.  

 (b)  [(𝑝 → 𝑞) ∧ (𝑞 → 𝑟)] ∧ (𝑝 → 𝑟) 
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7- Show that each implication in Exercise 6 is a tautology 

without using truth tables.  

8- Show that every pair in the following are logically 

equivalent:  

(a) 𝑝 → 𝑞 and ¬𝑞 → ¬𝑝  

(b)¬𝑝 ↔ 𝑞and𝑝 ↔ ¬𝑞 

     (c)    ¬(𝑝 ↔ 𝑞) and¬𝑝 ↔ ¬𝑞 

(d) (𝑝 → 𝑞) ∧ (𝑝 → 𝑟) and𝑝 → (𝑞 ∧ 𝑟) 

(e) (𝑝 → 𝑞) ∨ (𝑝 → 𝑟) and𝑝 → (𝑞 ∨ 𝑟) 

9- Show that(𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑟) → (𝑞 ∨ 𝑟) is a tautology. 

10- Show that   (𝑝 → 𝑞) → 𝑟 and   𝑝 → (𝑞 → 𝑟)  are not 

logically equivalent. 

11-Prove that:  

(a)  𝑝 ⟶ 𝑞 ≡ ¬ 𝑞 ⟶ ¬𝑝; 

(b)  ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞; 

(c)  𝑝 ⟶ 𝑞 ≡ ¬𝑝 ∨ 𝑞; 

(d)  (𝑝 ∧ 𝑞) ⟶ 𝑟 ≡ ¬𝑟 ⟶ (¬𝑝 ∨ ¬𝑞). 
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2.2 Predicates and Quantifiers 

(A) Predicates 

Predicates  are statements involving variables ( called 

predicate variables), such as: 

"𝑥 >  3", "𝑥 =  𝑦 + 3", "𝑥 +  𝑦 =  𝑧". 

They are not propositions because the truth value you 

give them will depend on the values assigned to the 

variables x and y. The domain of a predicate variable is 

the set of all values that may be substituted in place of the 

variable. 

In English you may have statements like this: 

1- She is Tall and Fair. 

2- x was born in a city y in the  year z. 

Often pronouns (I, he, she, you etc.) are used in place of 

variables. 

In the first case - we cannot say if the statement is true 

because that depends of who she is and in the second case 

the statement will get a truth value depending on variable 

x, y and z. 

Predicate are noted something like this 𝑃(𝑥, 𝑦, 𝑧).  
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For example 

𝑃(𝑥, 𝑦, 𝑧).  This stands for the predicate "𝑥 +  𝑦 =  𝑧". 

𝑀(𝑥, 𝑦). This stands for "x is married to y".  

In general, you have predicates in the form of: 

𝑃(𝑥) - this is a unary predicate (has one variable). 

𝑃(𝑥, 𝑦) - this is a binary predicate (has two variables). 

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛) - this is an n-ray or n-place predicate – 

(has n individual variables in a predicate). 

You have to choose the values for the variables - these 

can be from a set of humans - a specific human, a set of 

places or a place, a set of integers or an integer, a set of 

real numbers or a real number and so on. 

The values are chosen from a particular domain of values 

called a universe or a universe of discourse. 

If we take a look at this again: 

x was born in a city y in the year z. x is taken from a set of 

human beings, y is taken from a set of cities and z is taken 

from a set of years. This is called the underlying universe. 

Looking at this again: 

𝑃(𝑥, 𝑦, 𝑧).The values for the variables x, y and z will be 

taken from a set of integers or negative integers. 
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In some cases, you will have to specify the underlying 

universe because a certain predicate may be true for real 

numbers but false for not real numbers. 

In the case x has to be a human being and y has to be a 

city and z has to be a year. You cannot have y as an 

integer or z a colour for example. 

If you assign a particular value to each of the n place 

values in 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) then the predicate becomes a 

proposition and takes a truth value - true or false. 

Again the statement “x is greater than 3” has two parts. 

The first part, the variable x, is the subject of the 

statement. The second part, the predicate, “is greater 

than 3”, refers to a property that the subject of the 

statement can have. We can denote the statement “x is 

greater than 3” by 𝑃(𝑥) where P denotes the predicate 

“is greater than 3” and x is the variable. Once a value 

has been assigned to the variable x, the statement 𝑃(𝑥) 

becomes a proposition and has a truth value.  
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Example.  

Let 𝑃(𝑥) denote the statement “𝑥 >  3”. What are the 

truth values of the propositions 𝑃(4) and 𝑃(2)? 

Solution.  

We obtain the proposition 𝑃(4) by setting 𝑥 =  4 in the 

statement “𝑥 >  3”. Hence 𝑃(4), which is the proposition 

“4 >  3” is true.  

However, 𝑃(2) which is the proposition“ 2 >  3”, is 

false.∎ 

Example.  

Let 𝑄(𝑥, 𝑦) denote the statement "𝑥 =  𝑦 +  3." What 

are the truth values of the propositions 𝑄(1, 2) and 

𝑄(3, 0)? 

Solution. 

To obtain proposition 𝑄(1,2), set 𝑥 =  1 and 𝑦 =  2 in 

the statement 𝑄(𝑥, 𝑦). Hence𝑄(1, 2) is the proposition 

"1 =  2 +  3" which is false.  

The proposition 𝑄(3, 0) is the proposition "3 =  0 +  3" 

which is true. ∎ 
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Example.  

What are the truth values of the propositions 𝑃(1, 2, 3) 

and 𝑃(0, 0, 1), where 𝑃(𝑥, 𝑦, 𝑧) denote the statement 

“ 𝑥 +  𝑦 =  𝑧”? 

Solution. 

The proposition 𝑃(1, 2, 3) is obtained by setting 𝑥 =

 1, 𝑦 =  2, and 𝑧 =  3 in the statement 𝑃(𝑥, 𝑦, 𝑧). We see 

that 𝑃(1, 2, 3) is the proposition"1 +  2 =  3", which is 

true.  

Also, note that 𝑃(0, 0, 1), which is the proposition"0 +

 0 =  1" is false.∎ 

Definition. 

If 𝑃(𝑥) is a predicate and x has domain D, the truth set 

of 𝑃(𝑥) is the set of all elements of D that make 𝑃(𝑥) 

true when they are substituted for x. The truth set of 𝑃(𝑥) 

is denoted {𝑥 ∈  𝐷 ∶  𝑃(𝑥)} and we read as “the set of all 

x in D such that 𝑃(𝑥).” 
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Example.  

Let 𝑄(𝑛) be the predicate “n is a factor of 8.” Find the 

truth set of 𝑄(𝑛) if: 

(a) the domain of n is ℤ+, the set of all positive integers. 

(b) the domain of n is ℤ, the set of all integers. 

Solution. 

(a) The truth set is {1, 2, 4, 8} because these are exactly 

the positive integers that divide 8 evenly. 

(b) The truth set is {1, 2, 4, 8, −1, −2, −4, −8} because 

the negative integers −1,−2, −4, and −8 also divide into 

8 without leaving a remainder. ■ 

Definition. 

Let 𝑃(𝑥) and 𝑄(𝑥) be predicates with common domain D 

of x. The notation 𝑃(𝑥) ⇒ 𝑄(𝑥) means that every 

element in the truth set of 𝑃(𝑥) is in the truth set of 𝑄(𝑥). 

Similarly, 𝑃(𝑥) ⇔ 𝑄(𝑥) means that 𝑃(𝑥) and 𝑄(𝑥) have 

identical truth sets. 

Example.  

Let 𝑃(𝑥) be “x is a factor of 8”,  

𝑄(𝑥) be “x is a factor of 4”, 
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𝑅(𝑥) be “ 𝑥 <  5 and 𝑥 ≠ 3”, 

and let the domain of x be set of positive integers. Then 

Truth set of 𝑃(𝑥) is {1, 2, 4, 8}. 

Truth set of 𝑄(𝑥) is {1, 2, 4}. 

Since every element in the truth set of 𝑄(𝑥) is in the truth 

set of 𝑃(𝑥), then 𝑄(𝑥) ⇒ 𝑃(𝑥). 

Further, truth set of 𝑅(𝑥) is {1, 2, 4}, which is identical to 

the truth set of 𝑄(𝑥). Hence 𝑅(𝑥) ⇔ 𝑄(𝑥). ∎ 
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(B) Quantifiers 

(i) The Universal Quantifier " ∀ " 

One sure way to change predicates into propositions is to 

assign specific values to all their variables.  

For example, if x represents the number 35, the sentence 

“x is divisible by 5” is a true proposition.  

Another way to obtain propositions from predicates is to 

add quantifiers. Quantifiers are words that refer to 

quantities such as “some” or “all” and tell for how many 

elements a given predicate is true. 

The symbol ∀ is called the universal quantifier. 

Depending on the context, it is read as “for every,” “for 

each,” “for any,” “given any,” or “for all.”  

For example, another way to express the sentence  

“Every human being is mortal” 

 or 

“All human beings are mortal”  

is to write 

“∀ human beings x, x is mortal”, 

 

which you would read as 



- 165 - 
 

“For every human being x, x is mortal.” 

 If you let D be the set of all human beings, then you can 

symbolize the statement more formally by writing 

“∀𝑥 ∈ 𝐷, x is mortal”. 

In sentences containing a mixture of symbols and words, 

the ∀ symbol can refer to two or more variables.  

For instance, you could symbolize  

“For all real numbers x and y, 𝑥 + 𝑦 =  𝑦 + 𝑥.” 

as  

“∀ real numbers x and y, 𝑥 + 𝑦 =  𝑦 + 𝑥.” 

Definition.  

Let 𝑃(𝑥)  be a predicate and D the domain of x. A 

universal quantification of 𝑃(𝑥) is a proposition  

of the form “∀𝑥 ∈ 𝐷, 𝑃(𝑥).” It is defined to be true if, and 

only if, 𝑃(𝑥) is true for each individual x in D. It is 

defined to be false if, and only if, 𝑃(𝑥) is false for at least 

one x in D.  

The notation ∀𝑥𝑃(𝑥) is used for the universal 

quantification of 𝑃(𝑥) when the domain is known.  

Here ∀  is called the universal quantifier.  
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Example.  

Let 𝑃(𝑥) be the statement “𝑥 + 1 >  𝑥”. What is the 

truth value of the quantification ∀𝑥𝑃(𝑥), where the 

domain consists of all real numbers?  

Solution. 

Since 𝑃(𝑥) is true for all real numbers x, the 

quantification ∀𝑥𝑃(𝑥) is true. ∎ 

Example.  

Let 𝑄(𝑥) be the statement “𝑥 <  2”. What is the truth 

value of the quantification ∀𝑥𝑄(𝑥), where the domain 

consists of all real numbers?  

Solution. 

𝑄(𝑥) is not true for every real number x, since, for 

instance, 𝑄(3) is false. Thus ∀𝑥𝑄(𝑥)is false. ∎ 

Note. 

When all the elements in the universe of discourse can be 

listed, say 𝑥1, 𝑥2, … , 𝑥𝑛 it follows that the universal 

quantification ∀𝑥𝑃(𝑥) is the same as the conjunction 

𝑃(𝑥1) ∧ 𝑃( 𝑥2) ∧  … ∧ 𝑃( 𝑥𝑛). 
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Example.  

What is the truth value of ∀𝑥𝑃(𝑥), where 𝑃(𝑥) is the 

statement "𝑥2 < 10" and the universe of discourse 

consists of positive integers not exceeding 4? 

Solution. 

The statement ∀𝑥𝑃(𝑥) is the same as the conjunction 

𝑃(1) ∧ 𝑃(2) ∧ 𝑃(3) ∧ 𝑃(4). Since 𝑃(4),which is the 

statement"42 < 10" , is false, so ∀𝑥𝑃(𝑥) is false. ∎ 

To show that a statement of the form ∀𝑥𝑃(𝑥) is false, 

where 𝑃(𝑥) is a propositional function, we need only find 

one value of x in the universe of discourse for which 

𝑃(𝑥) is false. Such a value of x is called a 

counterexample to the statement ∀𝑥𝑃(𝑥). 

Example.  

Suppose that 𝑃(𝑥) is "𝑥2 > 0". To show the statement 

∀𝑥𝑃(𝑥) is false where the universe of discourse consists 

of all integers, we give a counterexample. We see that 

𝑥 =  0 is a counterexample since 𝑥2 = 0 when 𝑥 =  0 so 

that 𝑥2 is not greater than 0 when 𝑥 =  0.∎ 
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(ii) The Existential Quantifier “ ∃ ” 

The symbol ∃ denotes “there exists” and is said to be the 

existential quantifier. For example, the sentence  

“There is a student in Math211” 

can be written as 

“∃ a person x such that x is a student in Math211”, 

or, more formally, 

“∃𝑥 ∈ 𝑃 such that x is a student in Math211”, 

where 𝑃 is the set of all people.  

The domain of the predicate variable is generally 

indicated either between the ∃ symbol and the variable 

name or immediately following the variable name, and 

the words such that are inserted just before the predicate. 

Some other expressions that can be used in place of there 

exists are there is a, we can find a, there is at least 

one, for some, and for at least one.  

In a sentence such as  

“∃ integers m and n such that 𝑚 + 𝑛 = 𝑚 ∙ 𝑛,”  

the ∃ symbol is understood to refer to both m and n.   
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In more formal versions of symbolic logic, the words 

such that are not written out (although they are 

understood) and a separate ∃ symbol is used for each 

variable: “∃𝑚 ∈  ℤ (∃𝑛 ∈  ℤ(𝑚 + 𝑛 =  𝑚 ∙ 𝑛)).” 

Definition.  

Let 𝑃(𝑥)  be a predicate and D the domain of x. An 

existential statement is a statement of the form  

“∃𝑥 ∈ 𝐷 such that 𝑃(𝑥).” 

It is defined to be true if, and only if, 𝑃(𝑥) is true for at 

least one x in D. It is false if, and only if, 𝑃(𝑥) is false for 

all x in D. 

We use the notation ∃𝑥𝑃(𝑥) for the existential 

quantification of 𝑃(𝑥). 

Here ∃ is called the existential quantifier. 

      A domain must always be specified when a statement 

∃𝑥𝑃(𝑥) is used. Furthermore, the meaning of ∃𝑥𝑃(𝑥) 

changes when the domain changes. Without specifying 

the domain, the statement ∃𝑥𝑃(𝑥) has no meaning. The 

existential quantification ∃𝑥𝑃(𝑥) is read as:  

"There is an x such that 𝑃(𝑥)","There is at least one x 

such that 𝑃(𝑥)"  or   "For some 𝑥 𝑃(𝑥)". 
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Example.  

Let 𝑃(𝑥) denote the statement “𝑥 >  3”. What is the truth 

value of the quantification ∃𝑥𝑃(𝑥), where the domain 

consists of all real numbers? 

Solution.  

Because “𝑥 >  3” is sometimes true - for instance, when 

𝑥 =  4 , the existential quantification ∃𝑥𝑃(𝑥) of 𝑃(𝑥) is 

true.∎ 

Example.  

Let 𝑄(𝑥) denote the statement "𝑥 =  𝑥 +  1". What is 

the truth value of the quantification ∃𝑥𝑃(𝑥), where the 

domain consists of all real numbers?  

Solution.  

Because 𝑄(𝑥) is false for every real number x, the 

existential quantification of 𝑄(𝑥) which is ∃𝑥𝑃(𝑥) is 

false.∎ 

When all elements in the domain can be listed say 

𝑥1, 𝑥2, … , 𝑥𝑛 the existential quantification ∃𝑥𝑃(𝑥) is the 

same as the disjunction 𝑃(𝑥1) ∨ 𝑃( 𝑥2) ∨  …∨ 𝑃( 𝑥𝑛) 
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because this disjunction is true if and only if at least 

𝑃(𝑥1), 𝑃(𝑥2), … , 𝑃( 𝑥𝑛) is true. 

Example.  

What is the truth value of ∃𝑥𝑃(𝑥), where 𝑃(𝑥) is the 

statement "𝑥2 > 10" and the domain consists of the 

positive integers not exceeding 4? 

Solution.  

As the domain is {1, 2, 3, 4}, the proposition ∃𝑥𝑃(𝑥) is 

the disjunction 𝑃(1)  ∨  𝑃(2)  ∨  𝑃(3)  ∨ 𝑃(4).  

Because 𝑃(4), which is the statement "42 > 10", is true, 

it follows that ∃𝑥𝑃(𝑥) is true.∎ 
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●Translating from Formal to Informal Language 

Example.  

Rewrite the following formal statements in a variety of 

equivalent but more informal ways. Do not use the 

symbol ∀ or ∃. 

(a) ∀𝑥 ∈ ℝ, 𝑥2 ≥  0; 

(b) ∀𝑥 ∈ ℝ, 𝑥2 ≠ −1; 

(c) ∃𝑚 ∈ ℤ such that 𝑚2 = 𝑚.  

Solution.  

(a) Every real number has a nonnegative square. 

Or: All real numbers have nonnegative squares. 

Or: Any real number has a nonnegative square. 

Or: The square of each real number is nonnegative. 

(b) All real numbers have squares that do not equal −1. 

Or: No real numbers have squares equal to −1. 

(The words none are or no … are equivalent to the words 

all are not.) 

(c) There is a positive integer whose square is equal to 

itself. 

Or: We can find at least one positive integer equal to its 

own square. 
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Or: Some positive integer equals its own square. 

Or: Some positive integers equal their own squares. ∎ 

Another way to restate universal and existential 

statements informally is to place the quantification at the 

end of the sentence. For instance, instead of saying “For 

any real number x, 𝑥2 is nonnegative,” you could say “𝑥2 

is nonnegative for any real number x.” In such a case the 

quantifier is said to “trail” the rest of the sentence. 

●Trailing Quantifiers 

Example.  

Rewrite the following statements so that the quantifier 

trails the rest of the sentence. 

(a) For any integer 𝑛, 2𝑛 is even. 

(b) There exists at least one real number 𝑥 such that 𝑥2 ≤

0. 

Solution. 

(a) 2𝑛 is even for any integer 𝑛. 

(b) 𝑥2 ≤ 0 for some real number x. 

Or: 𝑥2 ≤ 0  for at least one real number x. ∎ 
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●Translating from Informal to Formal Language 

Example.  

Rewrite each of the following statements formally. Use 

quantifiers and variables. 

(a) All triangles have three sides. 

(b) No dogs have wings. 

(c) Some programs are structured. 

Solution. 

(a) ∀ triangle t, t has three sides. 

Or: ∀𝑡 ∈ 𝑇, t has three sides (where T is the set of all 

triangles). 

(b) ∀ dog d, d does not have wings. 

Or: ∀𝑑 ∈ 𝐷, d does not have wings (where D is the set of 

all dogs). 

(c) ∃ a program p such that p is structured. 

Or: ∃𝑝 ∈ 𝑃 such that p is structured (where P is the set of 

all programs). ■ 
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●Universal Conditional Statements 

A reasonable argument can be made that the most 

important form of statement in mathematics is the 

universal conditional statement: 

∀𝑥, if 𝑃(𝑥) then 𝑄(𝑥). 

Familiarity with statements of this form is essential if you 

are to learn to speak mathematics. 

●Writing Universal Conditional Statements Informally 

Example.  

Rewrite the following statement informally, without 

quantifiers or variables. 

∀𝑥 ∈ ℝ, if 𝑥 > 2, then 𝑥2 > 4. 

Solution.  

If a real number is greater than 2, then its square is 

greater than 4. 

Or: Whenever a real number is greater than 2, its square 

is greater than 4. 

Or: The square of any real number greater than 2 is 

greater than 4. 

Or: The squares of all real numbers greater than 2 are 

greater than 4. ■ 
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Example.  

Rewrite each of the following statements in the form 

∀……., if……., then……… . 

(a) If a real number is an integer, then it is a rational 

number. 

(b) All bytes have eight bits. 

(c) No fire trucks are green.  

Solution.  

(a) ∀ real number x, if x is an integer, then x is a rational 

number. 

Or: ∀𝑥 ∈ ℝ, if 𝑥 ∈ ℤ then 𝑥 ∈ ℚ. 

(b) ∀𝑥, if x is a byte, then x has eight bits. 

(c) ∀𝑥, if x is a fire truck, then x is not green. ■ 
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●Equivalent Forms of Universal and Existential 

Statements 

Observe that the two statements  

“∀ real number x, if x is an integer then x is rational” 

and 

“∀ integer x, x is rational” 

mean the same thing because the set of integers is a 

subset of the set of real numbers. Both have informal 

translations  

“All integers are rational.” 

In fact, a statement of the form 

∀𝑥 ∈ 𝑈, if 𝑃(𝑥) then 𝑄(𝑥) 

can always be rewritten in the form 

∀𝑥 ∈ 𝐷, 𝑄(𝑥) 

by narrowing U to be the subset D consisting of all values 

of the variable x that make 𝑃(𝑥) true. Conversely, a 

statement of the form 

∀𝑥 ∈ 𝐷, 𝑄(𝑥) 

can be rewritten a 

∀𝑥, if x is in D then  𝑄(𝑥) 
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Example.  

Rewrite the following statement in the two forms 

“∀𝑥, if…….. then………. ” 

and 

“∀………𝑥,………. ”: 

 “All squares are rectangles” . 

Solution.  

 “∀𝑥, if x is a square  then x is a rectangle”.  

and 

“∀ square x, x is a rectangle”. ■ 

Similarly, a statement of the form 

“∃𝑥 such that 𝑃(𝑥) and 𝑄(𝑥)” 

can be rewritten as 

“∃𝑥 ∈ 𝐷 such that 𝑄(𝑥),” 

where D is the set of all x for which 𝑃(𝑥) is true. 

Example.  

A prime number is an integer greater than 1 whose only 

positive integer factors are itself and 1.  

Consider the statement  

“There is an integer that is both prime and even.”  

Let 𝑃(𝑛) be “n is prime” and 𝐸(𝑛) be “n is even.”  
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Use the notation 𝑃(𝑛) and 𝐸(𝑛) to rewrite this statement 

in the following two forms: 

a. ∃𝑛 such that ………∧ ………. 

b. ∃………𝑛 such that ………. 

Solution.  

(a) ∃𝑛 such that 𝑃(𝑛) ∧ 𝐸(𝑛). 

(b) Two answers:  

∃ a prime number n such that 𝐸(𝑛). 

∃ an even number n such that 𝑃(𝑛). ■ 

Example.  

What do the following statements mean, where the 

domain in each case consists of the real numbers? 

(1)  ∀𝑥 < 0(𝑥2 > 0); 

(2)  ∀𝑦 ≠ 0(𝑦3 ≠ 0); 

(3) and ∃𝑧 > 0(𝑧2 = 2). 

Solution. 

(1) The statement ∀𝑥 < 0(𝑥2 > 0) states that for every 

real number x with 𝑥 <  0, 𝑥2 > 0. That is, it states  

"The square of a negative real number is positive".  

This statement is the same as ∀𝑥(𝑥 < 0 → (𝑥2 > 0)). 
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(2) The statement ∀𝑦 ≠ 0 (𝑦3 ≠ 0), states that for every 

real number y with 𝑦 ≠ 0, we have 𝑦3 ≠ 0 that is, it 

states  

"the cube of every nonzero real number is nonzero."  

Note that this statement is equivalent to 

∀𝑦(𝑦 ≠ 0 ⟶ 𝑦3 ≠ 0). 

(3) The statement ∃𝑧 > 0(𝑧2 = 2) states that there exists 

a real number z with 𝑧 > 0 such that 𝑧2 = 2. That is, it 

states  

"there is a positive root of 2." 

This statement is equivalent to ∃𝑧(𝑧 > 0 ∧ 𝑧2 = 2).∎ 

● Precedence of Quantifiers 

     The quantifiers  and  have higher precedence than 

all logical operators from propositional calculus. For 

example, ∀𝑥𝑃(𝑥) ∨ 𝑄(𝑥) is the disjunction of ∀𝑥𝑃(𝑥) 

and 𝑄(𝑥). In other words, it means (∀𝑥𝑃(𝑥)) ∨ 𝑄(𝑥) 

rather than ∀𝑥(𝑃(𝑥) ∨ 𝑄(𝑥)). 
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Logical Equivalence Involving Quantifiers 

Definition.  

Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 

truth value no matter which predicates are substituted into 

these statements. We use the notation 𝑆  𝑇 to indicate 

that two statements S and T involving predicates and 

quantifiers are logically equivalent. 

Example. 

Show that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) and ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) are 

logically equivalent, where the same domain is used 

throughout. 

Solution. 

To show that these statements are logically equivalent, 

we must show that they always take the same truth value, 

no matter what predicate 𝑃 and 𝑄 are, and no matter 

which domain of discourse is used.  

Suppose we have particular predicates 𝑃 and 𝑄, with a 

common domain. We can show that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) 

and ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) are logically equivalent by doing 
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two things. First, we show that if ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is 

true, then ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true.  

Second, we show that if ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true, then 

∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true. 

     So, suppose that ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true. This means 

that if a is in the domain, then 𝑃(𝑎)  𝑄(𝑎) is true. Hence 

𝑃(𝑎) is true and 𝑄(𝑎). Because 𝑃(𝑎) is true and 𝑄(𝑎) for 

every element in the domain, we can conclude that 

 ∀𝑥𝑃(𝑥) and ∀𝑥𝑄(𝑥) are both true. This means that 

∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true. 

     Next, suppose that ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) is true. It 

follows that ∀𝑥𝑃(𝑥) is true and ∀𝑥𝑄(𝑥) is true. Hence if 

a is in the domain, then 𝑃(𝑎) is true and 𝑄(𝑎) is true. It 

follows that for all a, 𝑃(𝑎)  ∧  𝑄(𝑎) is true. It follows that 

∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) is true.  

Therefore ∀𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) ≡ ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥). ∎ 

Exercise.  

Prove that ∃𝑥(𝑝(𝑥) ∨ 𝑄(𝑥)) ≡ ∃𝑥𝑝(𝑥) ∨ ∃𝑥𝑄(𝑥), 

where the same domain is used throughout. 
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● Negating Quantifier Expressions 

We will often want to consider the negation of a 

quantified expression. For instance, consider the negation 

of the statement 

     “Every student in your class has taken a course in 

calculus”  

This statement is a universal quantification, namely 

∀𝑥𝑃(𝑥), where 𝑃(𝑥) is the statement  

“x has taken a course in calculus” 

and the domain consists of the students in your class. The 

negation of this statement is  

“It is not the case that every student in your class has 

taken a course in calculus”.  

This is equivalent to  

“There is a student in your class who has not taken a 

course in calculus”.  

And this is simply the existential quantification of the 

negation of the original propositional function, namely, 

∃𝑥¬𝑃(𝑥). This example illustrates the following 

equivalence 

¬∀𝑥𝑃(𝑥) ≡ ∃𝑥¬𝑃(𝑥). 
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Example.  

Prove that: 

¬∀𝑥𝑃(𝑥) ≡ ∃𝑥¬𝑃(𝑥). 

Where the same domain is used throughout. 

Proof. 

To show that ¬∀𝑥𝑃(𝑥) and ∃𝑥¬𝑃(𝑥) are logically 

equivalent no matter what the propositional function 

𝑃(𝑥) is and what the domain is. 

First note that ¬∀𝑥𝑃(𝑥) is true if and only if ∀𝑥𝑃(𝑥) is 

false.  

Next, note that ∀𝑥𝑃(𝑥) is false if and only if there is an 

element x in the domain for which 𝑃(𝑥) is false.  

This holds if and only if there is an element x in the 

domain for which ¬𝑃(𝑥) is true.  

Finally, note that there is an element x in the domain for 

which ¬𝑃(𝑥)  is true if and only if ∃𝑥¬𝑃(𝑥) is true.  

It follows that ¬∀𝑥𝑃(𝑥) and ∃𝑥¬𝑃(𝑥) are logically 

equivalent. ∎  
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Suppose we wish to negate an existential quantification. 

For instance, consider the statement  

“There is a student in this class who has taken a course in 

calculus”. 

This is the existential quantification ∃𝑥𝑄(𝑥) where 𝑄(𝑥) 

is the statement  

“x has taken a course in calculus”. 

The negation of this statement is  

“It is not the case that there is a student in this class who 

has taken calculus” 

which is just the universal quantification of the negation 

of the original propositional function, or, ∀𝑥¬𝑄(𝑥).  

This example illustrates the equivalence: 

¬∃𝑥𝑄(𝑥) ≡ ∀𝑥¬𝑄(𝑥). 

Exercise.  

Prove that: 

¬∃𝑥𝑄(𝑥) ≡ ∀𝑥¬𝑄(𝑥), 

where the same domain is used throughout. 
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Example.  

What is the negation of the following statements 

(a) ∀𝑥(𝑥2 > 𝑥); 

(b) ∃𝑥(𝑥2 = 2). 

Solution.  

(a) The negation of ∀𝑥(𝑥2 > 𝑥) is the statement 

¬∀𝑥(𝑥2 > 𝑥), which is equivalent to ∃𝑥¬(𝑥2 > 𝑥).  

This can be rewritten as ∃𝑥(𝑥2 ≤ 𝑥).  

(b) The negation of ∃𝑥(𝑥2 = 2) is the statement 

¬∃𝑥(𝑥2 = 2), which is equivalent to ∀𝑥¬(𝑥2 = 2). 

This can be rewritten as ∀𝑥(𝑥2 ≠ 2). 

The truth values of the statements in (1) and (2) depend 

on the domain of discourse. ∎ 
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♣ Now, we give some examples to show how to translate 

sentences into logical expressions.  

Example.  

Express the statement  

“Every student in this class has studied calculus” 

using predicates and quantifiers.  

Solution.  

First, we rewrite the statement so that we can clearly 

identify the appropriate quantifiers to use. Doing so, we 

obtain:  

“For every student in this class, that student has studied 

calculus”. 

Next, we introduce a variable x so that our statement 

becomes  

“for every student x in this class, x has studied calculus”. 

Continuing, we introduce the predicate 𝐶(𝑥), which is the 

statement  

“x has studied calculus”. 

Consequently, if the domain of discourse for x consists of 

the students in the class, we can translate our statement as 

∀𝑥𝐶(𝑥).∎ 
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Example.  

Express the statement  

“Some student in this class has visited Cairo”, 

and  

“Every student in this class has visited either Cairo or 

Alexandria”. 

Solution.  

The statement “Some student in this class has visited 

Cairo” means that “There is a student in this class with 

the property that the student has visited Cairo”. 

We can introduce a variable x, so that our statement 

becomes “There is a student x in this class having the 

property x has visited Cairo”. We introduce the predicate 

𝑀(𝑥), which is the statement “x has visited Cairo”. If the 

domain of discourse of x consists of the students in this 

class, we can translate this first statement as ∃𝑥𝑀(𝑥). 

Similarly, the second statement can be expressed as 

∀𝑥(𝐶(𝑥) ∨ 𝑀(𝑥)), where the domain of discourse of x 

consists of all students in this class, 𝑀(𝑥) be the 

statement “x visited Cairo” and 𝐶(𝑥) be the statement “x 

visited Alexandria”.∎ 
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Example.  

Write formal negations for the following statements: 

(a) ∀ primes p, p is odd; 

(b) ∃ a triangle T such that the sum of the angles of T 

equals 200°. 

Solution. 

(a) By applying the rule for the negation of a ∀ statement, 

you can see that the answer is ∃ a prime p such that p is 

not odd. 

(b) By applying the rule for the negation of a ∃ statement, 

you can see that the answer is ∀ triangles T, the sum of 

the angles of T does not equal 200°. ■ 

Example.  

Rewrite the following statements formally. Then write 

formal and informal negations. 

(a) No politicians are honest; 

(b) The number 1357 is not divisible by any integer 

between 1 and 37. 
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Solution 

(a) Formal version: ∀ politicians x, x is not honest. 

Formal negation: ∃ a politician x such that x is honest. 

Informal negation: Some politicians are honest. 

(b) This statement has a trailing quantifier.  

Written formally it becomes: 

∀ integer n between 1 and 37, 1357 is not divisible by n. 

Its negation is therefore 

∃ an integer n between 1 and 37 such that 1357 is 

divisible by n. 

An informal version of the negation is 

The number 1,357 is divisible by some integer between 1 

and 37. ■ 

Example.  

Write informal negations for the following statements: 

a. All computer programs are finite. 

b. Some computer hackers are over 40. 

Solution. 

a. What exactly would it mean for this statement to be 

false? The statement asserts that all computer programs 

satisfy a certain property. So for it to be false, there 
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would have to be at least one computer program that does 

not satisfy the property. Thus the answer is 

There is a computer program that is not finite. 

Or: Some computer programs are infinite. 

b. This statement is equivalent to saying that there is at 

least one computer hacker with a certain property. So for 

it to be false, not a single computer hacker can have that 

property. Thus the negation is 

No computer hackers are over 40. 

Or: All computer hackers are 40 or under. ■ 
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●Negations of Universal Conditional Statements 

Negations of universal conditional statements are of 

special importance in mathematics. The form of such 

negations can be derived from facts that have already 

been established. By definition of the negation of a for all 

statement, ¬∀𝑥(𝑃(𝑥) → 𝑄(𝑥)) ≡ ∃𝑥¬(𝑃(𝑥) → 𝑄(𝑥)); 

But the negation of an if-then statement is logically 

equivalent to an and statement. More precisely, 

¬(𝑃(𝑥) → 𝑄(𝑥)) ≡ 𝑃(𝑥) ∧ ¬𝑄(𝑥). 

Therefore, ¬∀𝑥(𝑃(𝑥) → 𝑄(𝑥)) ≡ ∃𝑥(𝑃(𝑥) ∧ ¬𝑄(𝑥)). 

Example.  

Write a formal negation for statement (a) and an informal 

negation for statement (b). 

a. ∀ person p, if p is blond then p has blue eyes. 

b. If a computer program has more than 100,000 lines, 

then it contains a bug. 

Solution. 

a. ∃ a person p such that p is blond and p does not have 

blue eyes. 

b. There is at least one computer program that has more 

than 100,000 lines and does not contain a bug.■ 
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Variants of Universal Conditional Statements  

Recall that a conditional statement has a contrapositive, a 

converse, and an inverse. The definitions of these terms 

can be extended to universal conditional statements. 

 

Example.  

Write a formal and an informal contrapositive, converse, 

and inverse for the following statement: 

If a real number is greater than 2, then its square is 

greater than 4. 

Solution.  

The formal version of this statement is: 

∀𝑥 ∈ ℝ(𝑥 > 2 → 𝑥2 > 4). 

Contrapositive: ∀𝑥 ∈ ℝ(𝑥2 ≤ 4 → 𝑥 ≤ 2). 

Or: If the square of a real number is less than or equal to 

4, then the number is less than or equal to 2. 
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Converse: ∀𝑥 ∈ ℝ(𝑥2 > 4 → 𝑥 > 2). 

Or: If the square of a real number is greater than 4, then 

the number is greater than 2. 

Inverse: ∀𝑥 ∈ ℝ(𝑥 ≤ 2 → 𝑥2 ≤ 4).. 

Or: If a real number is less than or equal to 2, then the 

square of the number is less than or equal to 4. 

Note that in solving this example, we have used the 

equivalence of “𝑥 ≯ 𝑎” and “𝑥 ≤ 𝑎” for all real numbers 

𝑥 and 𝑎. ■ 

Exercise. 

(a) Prove that a universal conditional statement is 

logically equivalent to its contrapositive. 

(b) Prove that a universal conditional statement is not 

logically equivalent to its converse. 

(c) Prove that a universal conditional statement is not 

logically equivalent to its inverse. 

Note that answering of both (b) and (c) is by giving  

counterexamples. 
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●Necessary and Sufficient Conditions, Only If 

The definitions of necessary, sufficient, and only if can 

also be extended to apply to universal conditional 

statements. 

 

Example.  

Rewrite each of the following as a universal conditional 

statement, quantified either explicitly or implicitly. Do 

not use the word necessary or sufficient. 

a. Squareness is a sufficient condition for rectangularity. 

b. Being at least 35 years old is a necessary condition for 

being president of the Egypt. 

Solution. 

a. A formal version of the statement is: 

∀𝑥, if x is a square, then x is a rectangle. 

Or, with implicit universal quantification: 

If a figure is a square, then it is a rectangle. 

b. Using formal language, you could write the answer as 
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∀ person x, if x is younger than 35, then x 

cannot be president of the Egypt. 

Or, by the equivalence between a statement and its 

contrapositive: 

∀ person x, if x is president of the United States, 

then x is at least 35 years old. ■ 

Example.  

Rewrite the following as a universal conditional 

statement: 

A product of two numbers is 0 only if one of the numbers 

is 0. 

Solution. 

Using informal language, you could write the answer as 

If it is not the case that one of two numbers is 0, then the 

product of the numbers is not 0. In other words, If neither 

of two numbers is 0, then the product of the numbers is 

not 0. Or, by the equivalence between a statement and its 

contrapositive. If a product of two numbers is 0, then one 

of the numbers is 0. ■ 

 

 



- 197 - 
 

 Nested Quantifiers  

In this section, we will study nested quantifiers, which 

are quantifiers that occur within the scope of other 

quantifiers, such as in the statement 

∀𝑥∃𝑦(𝑥 + 𝑦 = 0). 

Nested quantifiers commonly occur in mathematics and 

computer science.  

Example.  

Assume that the domain for the variables x and y consists 

of all real numbers. The statement 

∀𝑥∀𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) 

says that 𝑥 +  𝑦 =  𝑦 +  𝑥 for all real numbers x and y. 

This is the commutative law for addition of real numbers. 

Likewise, the statement ∀𝑥∃𝑦(𝑥 + 𝑦 = 0) says that for 

every real number x there is a real number y such that 

𝑥 +  𝑦 =  0. This states that every real number has an 

additive inverse. The statement 

∀𝑥∀𝑦∀𝑧[𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧] 

is the associative law for addition of real numbers.∎ 
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Example.  

Translate into English (Informal Language)  the 

statement 

∀𝑥∀𝑦(𝑥 > 0) ∧ (𝑦 < 0) ⟶ (𝑥𝑦 < 0), 

where domain for both variables consists of all real 

numbers. 

Solution.  

This statement says that for every real number x and for 

every real number y, if 𝑥 > 0 and 𝑦 < 0, then 𝑥𝑦 < 0. 

That is, this statement says that for real numbers x and y, 

if x is positive and y is negative, then 𝑥 𝑦 is negative. This 

can be stated more succinctly as  

“The product of a positive real number and a negative 

real number is a negative real number”. ∎ 

Example.  

The reciprocal of a real number a is a real number b such 

that 𝑎𝑏 = 1. The following two statements are true. 

Rewrite them formally using quantifiers and variables. 

a. Every nonzero real number has a reciprocal. 

b. There is a real number with no reciprocal. 

 



- 199 - 
 

Solution. 

a. ∀ nonzero real number 𝑢, ∃ a real number 𝑣 such that 

𝑢𝑣 = 1. 

Equivalently, 

∀𝑢∃𝑣(𝑢𝑣 = 1), 

where domain for both variables consists of all real 

numbers. 

b. ∃ a real number c such that ∀ real number 𝑑, 𝑐𝑑 ≠ 1. 

Equivalently, 

∃𝑢∀𝑣(𝑢𝑣 ≠ 1), 

where domain for both variables consists of all real 

numbers. ■ 

Example.  

Consider the statement  

“There is a smallest positive integer.” 

Write this statement formally using both symbols ∃ and 

∀. 

Solution. 

To say that there is a smallest positive integer means that 

there is a positive integer 𝑚 with the property that no 

matter what positive integer 𝑛 a person might pick, 𝑚 
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will be less than or equal to 𝑛: 

∃ a positive integer 𝑚 such that ∀ positive integer 𝑛, 𝑚 ≤

𝑛. 

Equivalently, 

∃𝑚∀𝑛(𝑚 ≤ 𝑛), where 𝑚, 𝑛 ∈ ℤ+. 

Note that this statement is true because 1 is a positive 

integer that is less than or equal to every positive integer. 

■ 

Example.  

Consider the statement  

“There is no smallest positive real number.” 

Write this statement formally using both symbols ∃ and 

∀. 

Solution. 

∀ positive real number 𝑥, ∃ positive real number 𝑦, such 

that 𝑦 < 𝑥. 

Equivalently, 

∀𝑥∃𝑦(𝑦 < 𝑥), where 𝑥, 𝑦 ∈ ℝ+. 

Note that this statement is true.  
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Imagine the positive real numbers on the real number 

line. These numbers correspond to all the points to the 

right of 0. Observe that no matter how small a real 

number 𝑥 is, the number 𝑥/2 will be both positive and 

less than 𝑥. 

 

■ 

● The Order of Quantifiers 

Many mathematical statements involve multiple 

quantifications of propositional functions involving more 

than one variable. It is important to note that the order of 

the quantifiers is important, unless all the quantifiers are 

universal quantifiers or all are existential quantifiers. 

Example.  

Consider the following two statements: 

∀ person x, ∃ a person y such that x loves y. 

∃ a person y such that ∀ person x, x loves y. 

Note that except for the order of the quantifiers, these 

statements are identical. However, the first means that 

given any person, it is possible to find someone whom 
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that person loves, whereas the second means that there is 

one amazing individual who is loved by all people. 

(Reread the statements carefully to verify these 

interpretations!) The two sentences illustrate an 

extremely important property about statements with two 

different quantifiers. ■ 

Example.  

Consider the commutative property of addition of real 

numbers, for example: 

∀  real number x and ∀  real number y, 𝑥 + 𝑦 =  𝑦 + 𝑥. 

∀𝑥∀𝑦 (𝑥 + 𝑦 =  𝑦 + 𝑥). 

This means the same as 

∀  real number y and ∀  real number x, 𝑥 + 𝑦 =  𝑦 + 𝑥. 

∀𝑥∀𝑦 (𝑥 + 𝑦 =  𝑦 + 𝑥). ■ 

Example.  

Translate the statement 

∀𝑥(𝐶(𝑥) ∨ ∃𝑦(𝐶(𝑦) ∧ 𝐹(𝑥, 𝑦))) 

into English, where 𝐶(𝑥) is “x has a computer”, 𝐹(𝑥, 𝑦) 

is “x and y are friends” and the domain for both x and y 

consists of all students in your faculty.  
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Solution.  

The statement says that for every student x in your faculty 

x has a computer or there is a student y such that y has a 

computer and x and y are friends. In other words, every 

student in your faculty has a computer or has a friend 

who has a computer.∎ 

Example.  

Express the statement “If a person is female and is a 

parent, then this person is someone’s mother” as a logical 

expression involving predicates, quantifiers with a 

domain consisting of all people.  

Solution.  

The statement “If a person is female and is a parent, then 

this person is someone’s mother” can be expressed as 

“For every person x, if person x is female and person x is 

a parent, then there exists a person y such that person x is 

the mother of person y”. We introduce the predicates 

𝐹(𝑥) to represent “x is female” 𝑃(𝑥) to represent “x is a 

parent” and 𝑀(𝑥, 𝑦) to represent “x is the mother of y”. 

The original statement can be represent by  
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∀𝑥(𝐹(𝑥) ∧ 𝑃(𝑥) ⟶ ∃𝑦𝑀(𝑥, 𝑦)) 

We can move ∃𝑦 all the way to the left, because y does 

not appear in 𝐹(𝑥) ∧ 𝑃(𝑥), to obtain an equivalent 

expression  ∀𝑥∃𝑦(𝐹(𝑥) ∧ 𝑃(𝑥) ⟶ 𝑀(𝑥, 𝑦)).∎ 

Example.  

Express the statement “Everyone has exactly one best 

friend” as a logical expression involving predicates, 

quantifiers with a universe of discourse consisting of all 

people and logical connectives.  

Solution.  

The given statement can be expressed as “For every 

person x, person x has exactly one best friend”. 

Introducing the universal quantifier, we see that this 

statement is the same as “∀𝑥(person x has exactly one 

best friend)” where the universe of discourse consists of 

all people. To say that x has exactly one best friend 

means that there is a person y who is the best friend of x, 

and furthermore, that for every person z, if person z is not 

person y, then z is not the best friends of x. When we 

introduce the predicate 𝐵(𝑥, 𝑦) to be the statement “y is 
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the best friend of x” the statement x has exactly best 

friend can be represented as  

∃𝑦 ((𝐵(𝑥, 𝑦) ∧ ∀𝑧((𝑧 ≠ 𝑦) ⟶ ¬𝐵(𝑥, 𝑧))) 

Consequently, our original statement can be expressed as 

∀𝑥∃𝑦 (𝐵(𝑥, 𝑦) ∧ ∀𝑧((𝑧 ≠ 𝑦) ⟶ ¬𝐵(𝑥, 𝑧))). ■ 

Example. 

Let 𝑃(𝑥, 𝑦) be the statement “𝑥 +  𝑦 =  𝑦 +  𝑥”. What is 

the truth value of the quantifications ∀𝑥∀𝑦𝑃(𝑥, 𝑦) and 

∀𝑦∀𝑥𝑃(𝑥, 𝑦),  where the domain for all variables consists 

of all real numbers?  

Solution. 

The quantification ∀𝑥∀𝑦𝑃(𝑥, 𝑦) denotes the proposition 

“for all real numbers x and for all real numbers y, 𝑥 +

𝑦 = 𝑦 + 𝑥". Since 𝑃(𝑥, 𝑦) is true for all real numbers x 

and y, the proposition ∀𝑥∀𝑦𝑃(𝑥, 𝑦)  is true. Note that 

∀𝑦∀𝑥𝑃(𝑥, 𝑦)  says "For all real numbers y, for all real 

numbers x,  𝑥 + 𝑦 = 𝑦 + 𝑥”.  This has the same meaning 

as the statement as  “For all real numbers x and for all 

real numbers  𝑦, 𝑥 + 𝑦 = 𝑦 + 𝑥”.  That is, ∀𝑥∀𝑦𝑃(𝑥, 𝑦) 
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and ∀𝑦∀𝑥𝑃(𝑥, 𝑦)  have the same meaning, and both are 

true. ∎ 

Example. 

Let 𝑄(𝑥, 𝑦) denote “𝑥 + 𝑦 =  0”.What are the truth value 

of the quantifications ∃𝑦∀𝑥𝑄(𝑥, 𝑦) and ∀𝑥∃𝑦𝑄(𝑥, 𝑦), 

where the domain for all variables consists of all real 

numbers? 

Solution.  

The quantification ∃𝑦∀𝑥𝑄(𝑥, 𝑦) denotes the proposition 

“there is a real number y such that for every real number 

𝑥, 𝑄(𝑥, 𝑦)”. No matter what value of y is chosen, there is 

only one value of x for which 𝑥 +  𝑦 =  0.  Since there is 

no real number y such that 𝑥 +  𝑦 =  0 for all real 

numbers x, the statement ∃𝑦∀𝑥𝑄(𝑥, 𝑦) is false. 

The quantification ∀𝑥∃𝑦𝑄(𝑥, 𝑦) denotes the proposition 

“for every real number x there is a real number y such 

that 𝑥 +  𝑦 =  0, namely 𝑦 =  − 𝑥. Hence the statement 

∀𝑥∃𝑦𝑄(𝑥, 𝑦) is true. ∎ 

Note. The above example illustrates that the statements 

∃𝑦∀𝑥𝑄(𝑥, 𝑦) and ∀𝑥∃𝑦𝑄(𝑥, 𝑦) are not logically 

equivalent.  
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●Negating Nested Quantifiers 

Statements involving nested quantifiers can be negated by 

successively applying the rules for negating statements 

involving a single quantifier.  

Example. 

Write a negation for each of the following statements, 

and determine which is true, the given statement or its 

negation. 

(a) For every square x, there is a circle y such that x and y 

have the same color. 

(b) There is a triangle x such that for every square y, x is 

to the right of y. 

Solution. 

(a) First version of negation:  

∃ a square x such that , ¬ (∃ a circle y such that x and y 

have the same color). 

Final version of negation:  

∃ a square x such that ∀ circle y, x and y do not have 

the same color. 

(b) First version of negation: 
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 ∀ triangle x, ¬ (∀ square y, x is to the right of y). 

Final version of negation:  

∀ triangle x, ∃ a square y such that x is not to the right 

of y. ■ 

Example. 

Express the negation of the statement ∀𝑥∃𝑦(𝑥𝑦 = 1) so 

that no negation precedes a quantifier.  

Solution. 

  ¬∀𝑥∃𝑦(𝑥𝑦 = 1) ≡ ∃𝑥¬(∃𝑦(𝑥𝑦 = 1)) 

≡ ∃𝑥∀𝑦¬(𝑥𝑦 = 1) ≡ ∃𝑥∀𝑦(𝑥𝑦 ≠ 1). ∎  

The following table summarizes the meanings of the 

different possible quantifications involving two variables. 

Statement When True? When False? 

∀𝑥∀𝑦𝑃(𝑥, 𝑦) 

∀𝑦∀𝑥𝑃(𝑥, 𝑦) 

𝑃(𝑥, 𝑦) is true for every 

pair 𝑥, 𝑦 

There is a pair 𝑥, 𝑦 for 

which 𝑃(𝑥, 𝑦) is false 

 

∀𝑥∃𝑦𝑃(𝑥, 𝑦) 
 

For every x there is a y 

for which 𝑃(𝑥, 𝑦) is true 

There is an x such that 

𝑃(𝑥, 𝑦) is false for 

every y. 

 

∃𝑥∀𝑦𝑃(𝑥, 𝑦) 
 

There is an x for which 

𝑃(𝑥, 𝑦) is true for every 

y. 

For every x there is a y 

for which 𝑃(𝑥, 𝑦) is 

false. 

∃𝑥∃𝑦𝑃(𝑥, 𝑦) 
∃𝑦∃𝑥𝑃(𝑥, 𝑦) 

 

There is a pair 𝑥, 𝑦 for 

which 𝑃(𝑥, 𝑦) is true. 

𝑃(𝑥, 𝑦) is false for 

every pair 𝑥, 𝑦. 
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Solved problems 

1. Determine whether the following proposition are true 

or false: 

(a)  ∀𝑥 ∈ 𝐷(2𝑥 < 𝑥!) , 𝐷 = {1,2,3} ; (false :𝑥 = 1) 

(b) ∃𝑥 ∈ 𝐷(2𝑥 < 𝑥!) , 𝐷 = {1,2,3,4,5}; (true : 𝑥 = 1) 

(c)  ∀𝑥 ∈ 𝐷(2𝑥 < 𝑥!) , 𝐷 = {4,5,6} ;  (true :        ) 

(d) ∀𝑥 ∈ 𝐷 (𝑥 >
1

𝑥
), 𝐷 = ℝ∗     (false : 𝑥 >

1

𝑥
 ) 

(e)  ∃𝑥 ∈ 𝐷 (𝑥 >
1

𝑥
), 𝐷 = ℝ  (true: 𝑥 = 2 )  

(f) ∀𝑥 ∈ 𝐷(𝑥2 ≠ 𝑥 + 2) , 𝐷 = ℚ   (false: 𝑥 = 2 ) 

(g) ∃𝑥 ∈ 𝐷(𝑥2 = 2) ,   𝐷 = ℚ  (false: 𝑥 = ±√2) 

(h) ∀𝑥 ∈ 𝐷(𝑥2 + 𝑋 + 41 is prime) (false :𝑥 = 41) 

(k) ∃𝑥 ∈ 𝐷(𝑥2 + 𝑥 + 1 = 0), 𝐷 = ℝ  (false: 𝑥 =
−1±√3

2
 ) 

2. Prove that: 

(a) ¬(∃𝑥𝑃(𝑥)) ≡ ∀𝑥(¬𝑃(𝑥)), 

¬(∀𝑥𝑃(𝑥)) ≡ ∃𝑥¬𝑃(𝑥) 

(b) ¬(∀𝑥𝑃(𝑥) ⟶ 𝑄(𝑥)) ≡ ∃𝑥(𝑃(𝑥) ∧ ¬𝑄(𝑥)), 

¬(∃𝑥(𝑃(𝑥) ∧ 𝑄(𝑥))) ≡ ∀𝑥(𝑃(𝑥) ⟶ ¬𝑄(𝑥)) 

Solution. 

(b) ¬[∀𝑥(𝑃(𝑥) ⟶ 𝑄(𝑥))] ≡ ¬∀𝑥(¬𝑃(𝑥) ∨ 𝑄(𝑥)) 
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≡ ∃𝑥¬(¬𝑃(𝑥) ∨ 𝑄(𝑥)) ≡ ∃𝑥(¬¬𝑃(𝑥) ∧ ¬𝑄(𝑥)) 

≡ ∃𝑥(𝑃(𝑥) ∧ ¬𝑄(𝑥)) .∎ 

3. Negate the following statements: 

(a)  There is no one in the island;  

(b) Every real number 𝑥  satisfies 𝑥2 = 1; 

(c)  Students who likes Mathematics likes physics, too; 

(d) All student and staff came to the meeting. 

Solution.  

(a) Let 𝑀(𝑥) is "𝑥 is one", 𝐼(𝑥) is "𝑥 is in the island" so , 

the given statement is ∀𝑥(𝑀(𝑥) ⟶ ¬𝐼(𝑥)).  

Therefore 

∀𝑥(𝑀(𝑥) ⟶ ¬𝐼(𝑥)) ≡ ∀𝑥(¬𝑀(𝑥) ∨ ¬𝐼(𝑥)) 

                                    ≡ ∀𝑥¬(𝑀(𝑥) ∧ 𝐼(𝑥)) 

                          ≡ ¬∃𝑥(𝑀(𝑥) ∧ 𝐼(𝑥)) 

Then, the negation of the given statement is 

∃𝑥(𝑀(𝑥) ∧ 𝐼(𝑥)) ,  

or "There is someone in the island". 

(b) The given statement is ∀𝑥(𝑅(𝑥) ⟶ 𝑥2 = 1), where 

𝑅(𝑥): is x real.  

So, its negation is   
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¬∀𝑥(𝑅(𝑥) ⟶ 𝑥2 = 1) ≡ ¬∀𝑥(¬𝑅(𝑥) ∨ 𝑥2 = 1) 

                              ≡ ∃𝑥(𝑅(𝑥) ∧ 𝑥2 ≠ 1).  

Therefore, the negation of our statement is 

"There exists a real number x such that 𝑥2 ≠ 1" 

(c) "Students who likes Math. likes Phys., too " is  

∀𝑥(𝑀(𝑥) ⟶ 𝑃(𝑥)), where 𝑥 is student, 𝑀(𝑥): likes 

Math., 𝑃(𝑥): likes phys.  Therefore 

¬∀𝑥(𝑀(𝑥) ⟶ 𝑃(𝑥)) ≡ ∃𝑥(𝑀(𝑥) ∧ ¬𝑃(𝑥)) 

or 

"Some students like Mathematics but not like Physics” 

(d) 𝑆(𝑥) ∶ 𝑥 is student;  𝑇(𝑥) ∶ 𝑥 is a teacher  

𝑀(𝑥) ∶ 𝑥 came to the meeting  

The given statement is  

∀𝑥[(𝑆(𝑥) ⟶ 𝑀(𝑥)) ∧ (𝑇(𝑥) ⟶ 𝑀(𝑥))] . 

Therefore 

¬∀𝑥[(𝑆(𝑥) ⟶ 𝑀(𝑥)) ∧ (𝑇(𝑥) ⟶ 𝑀(𝑥))] 

≡ ∃𝑥¬[(𝑆(𝑥) ⟶ 𝑀(𝑥)) ∧ (𝑇(𝑥) ⟶ 𝑀(𝑥))] 

≡ ∃𝑥¬[(¬𝑆(𝑥) ∨ 𝑀(𝑥)) ∧ (¬𝑇(𝑥) ∨ 𝑀(𝑥))] 

≡ ∃𝑥[¬(¬𝑆(𝑥) ∨ 𝑀(𝑥) ) ∨ ¬(¬𝑇(𝑥) ∨ 𝑀(𝑥) ) ] 

≡ ∃𝑥[(𝑆(𝑥) ∧ ¬𝑀(𝑥)) ∨ (𝑇(𝑥) ∧ ¬𝑀(𝑥))] 
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≡ ∃𝑥 ((𝑆(𝑥) ∨ 𝑇(𝑥)) ∧ ¬𝑀(𝑥)) 

Or, 

"Some students or some staffs do not come to the 

meeting".   ∎ 

4. Translate each of these statements into logical 

expressions using predicates, quantifiers and logical 

connectives. 

(a) Every real number is complete square. 

(b) There is a real number between each pair of distinct 

real numbers. 

(c) There is a multiple integer for the number 5 but not a    

               multiple for 7.   

Solution. 

(a) (∀𝑥)(∃𝑦)(𝑥 = 𝑦2) . The domain for𝑥, 𝑦 is ℝ. 

(b) (∀𝑥)(∀𝑦) (𝑥 ≠ 𝑦 ⟶ ∃𝑧((𝑥 < 𝑧 ∧ 𝑧 < 𝑦) ∨

(𝑦 < 𝑧 ∧ 𝑧 < 𝑥))) 

(c) ∃𝑥(∃𝑦(𝑥 = 5𝑦) ∧ ∀𝑧(𝑥 ≠ 7𝑧) ),  

where the domain of 𝑥, 𝑦, 𝑧 is ℤ.∎ 

5. Translate the following statements into ordinary 

language, where the domain for 𝑥, 𝑦 is ℝ. 
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(a) (∃𝑥)(∀𝑦)(𝑦 < 𝑥);  

(b) (∀𝑥)(∃𝑦)(𝑥 < 𝑦). 

Solution. 

(a) There is a real number greater than all real. 

 (b) For each real number, there is another real number 

greater than it. 

6. Express the following statement using logical 

operators, predicate and quantifiers. 

     (a) "For every real ℇ > 0, We can find integer k such 

that : if 𝑛 > 𝑘, then 𝑎𝑛 lies between 𝐿 + ℇ and 𝐿 − ℇ.  

        (b) Negate the statement in (a). 

Solution. 

∀ℇ(ℇ > 0 → (∃𝑘)(∀𝑛)(𝑛 > 𝑘

→ (𝐿 − ℇ < 𝑎𝑛) ∧ (𝑎𝑛 < 𝐿 + ℇ))) 

The domain of ℇ is ℝ and the domain of k, n is ℤ. 

The negation: 

¬∀ℇ(ℇ > 0 → (∃𝑘)(∀𝑛)(𝑛 > 𝑘

→ (𝐿 − ℇ < 𝑎𝑛) ∧ (𝑎𝑛 < 𝐿 + ℇ))) 

≡ ¬∀ℇ(¬(ℇ > 0) ∨ (∃𝑘)(∀𝑛)(𝑛 > 𝑘

→ (𝐿 − ℇ < 𝑎𝑛) ∧ (𝑎𝑛 < 𝐿 +  ℇ))) 
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≡ ∃ℇ(ℇ > 0 ∧ ¬(∃𝑘)(∀𝑛)(𝑛 > 𝑘

→ (𝐿 − ℇ < 𝑎𝑛) ∧ (𝑎𝑛 < 𝐿 +  ℇ))) 

≡ ∃ℇ(ℇ > 0 ∧ (∀𝑘)(∃𝑛)¬(𝑛 > 𝑘

→ (𝐿 − ℇ < 𝑎𝑛) ∧ (𝑎𝑛 < 𝐿 +  ℇ))) 

≡ ∃ℇ(ℇ > 0 ∧ (∀𝑘)(∃𝑛)(𝑛

> 𝑘 ∧ (𝐿 − ℇ ≥ 𝑎𝑛) ∨ (𝑎𝑛 ≥ 𝐿 +  ℇ))) 

There is 𝜀 > 0 such that for every integer k there exist 

𝑛 > 𝑘 with either 𝐿 − 𝜀 ≥ 𝑎𝑛 or 𝑎𝑛 ≥ 𝐿 +  𝜀. ∎ 

6. Determine whether the following proposition are true 

or false:  

(a) 𝑄(𝑥, 𝑦) = (∀𝑥)(∃𝑦)(𝑥 ≤ 𝑦), 𝐷𝑥 = 𝐷𝑦 = ℝ. 

(b) 𝑃(𝑥, 𝑦) = (∀𝑥)(∀𝑦)(𝑥 ≤ 𝑦 ⟶ ¬(𝑥 ≤ 𝑦)), 

𝐷𝑥 = 𝐷𝑦 = ℝ 

(c) 𝑅(𝑥, 𝑦) = (∃𝑥)(∃𝑦)(𝑥 + 5 = 𝑦2), 𝐷𝑥 = 𝐷𝑦 = ℝ. 

(d) 𝑍(𝑥, 𝑦) = (∃𝑥)(∃𝑦)(𝑥2 = 2𝑦2), 𝐷𝑥 = 𝐷𝑦 = ℤ. 

Solution. 

(a) True  

(b) False because 2 ≤ 3 ⟶ ¬(2 ≤ 3) is false . 

    (c) True because R(4,3) is true. 

   (d) False because √2 is irrational. ■ 
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7. Negate the following statements 

(a)  All numbers are even  

(b)  For every integer 𝑥 , either there exists integer 

y such that 𝑥 + 𝑦2 = 𝑥2  or 𝑥 = 0 

8. Let 𝑇(𝑥), 𝐶(𝑥), and 𝑆(𝑥) mean “x is a triangle,” “x is a 

circle,” and “x is a square”; let 𝐵(𝑥), 𝐺(𝑥), and 𝑌(𝑥) 

mean “x is blue,” “x is gray,” and “x is yellow”; let 

𝑅𝑂(𝑥, 𝑦), 𝐴𝐵(𝑥, 𝑦), and 𝑆𝐶(𝑥, 𝑦) mean “x is to the right 

of y,” “x is above y,” and “x has the same color as y”; and 

use the notation 𝑥 =  𝑦 to denote the predicate “x is 

equal to y.” Let the common domain D of all variables be 

the set of all the objects in the Tarski world. Use formal 

logical notation to write each of the following statements, 

and write a formal negation for each statement. 

(a) For every circle x, x is above f. 

(b) There is a square x such that x is yellow. 

(c) For every circle x, there is a square y such that x and y 

have the same color. 

(d) There is a square x such that for every triangle y, x is 

to the right of y. 
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Solution. 

(a) Statement: ∀𝑥(𝐶(𝑥) → 𝐴𝐵(𝑥, 𝑓)) 

     Negation:¬(∀𝑥 (𝐶(𝑥) → 𝐴𝐵(𝑥, 𝑓))) 

                      ≡ ∃𝑥¬(𝐶(𝑥) → 𝐴𝐵(𝑥, 𝑓)) 

                                by the law for negating a ∀ statement 

                       ≡ ∃𝑥(𝐶(𝑥) ∧ ¬𝐴𝐵(𝑥, 𝑓)) 

                       by the law of negating an if-then statement 

(b) Statement: ∃𝑥(𝑆(𝑥) ∧ 𝑌(𝑥)) 

      Negation:¬(∃𝑥(𝑆(𝑥) ∧ 𝑌(𝑥))) 

                        ≡ ∀𝑥¬(𝑆(𝑥) ∧ 𝑌(𝑥)) 

                             by the law for negating a ∃ statement 

                        ≡ ∀𝑥(¬𝑆(𝑥)  ∨ ¬𝑌(𝑥)) 

by De Morgan’s law 

(c) Statement: ∀𝑥(𝐶(𝑥) → ∃𝑦(𝑆(𝑦) ∧ 𝑆𝐶(𝑥, 𝑦))) 

     Negation: ¬(∀𝑥(𝐶(𝑥) → ∃𝑦(𝑆(𝑦) ∧ 𝑆𝐶(𝑥, 𝑦)))) 

                      ≡ ∃𝑥¬(𝐶(𝑥) → ∃𝑦(𝑆(𝑦) ∧ 𝑆𝐶(𝑥, 𝑦))) 

                                by the law for negating a ∀ statement 

                      ≡ ∃ 𝑥(𝐶(𝑥)  ∧  ¬(∃𝑦(𝑆(𝑦) ∧ 𝑆𝐶(𝑥, 𝑦)))) 

                       by the law for negating an if-then statement 

                      ≡ ∃𝑥(𝐶(𝑥) ∧ ∀𝑦(¬(𝑆(𝑦) ∧ 𝑆𝐶(𝑥, 𝑦)))) 

                                by the law for negating a ∃ statement 
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                      ≡ ∃𝑥(𝐶(𝑥)  ∧  ∀𝑦(¬𝑆(𝑦) ∨ ¬𝑆𝐶(𝑥, 𝑦))) 

                                                         by De Morgan’s law 

(d) Statement: ∃𝑥(𝑆(𝑥) ∧ ∀𝑦(𝑇(𝑦) → 𝑅𝑂(𝑥, 𝑦))) 

       Negation: ¬(∃𝑥(𝑆(𝑥) ∧ ∀𝑦(𝑇(𝑦)  →  𝑅𝑂(𝑥, 𝑦)))) 

                          ≡ ∀𝑥¬(𝑆(𝑥) ∧ ∀𝑦(𝑇(𝑥)  →  𝑅𝑂(𝑥, 𝑦))) 

                                 by the law for negating a ∃ statement 

                   ≡ ∀𝑥(¬𝑆(𝑥)  ∨  ¬(∀𝑦(𝑇(𝑦)  →  𝑅𝑂(𝑥, 𝑦)))) 

                                                          by De Morgan’s law 

                   ≡ ∀𝑥(¬𝑆(𝑥)  ∨  ∃𝑦¬(𝑇(𝑦)  →  𝑅𝑂(𝑥, 𝑦)))) 

                                by the law for negating a ∀ statement 

                   ≡ ∀𝑥(¬𝑆(𝑥)  ∨  ∃𝑦(𝑇(𝑦)  ∧ ¬ 𝑅𝑂(𝑥, 𝑦)))) 

                 by the law for negating an if-then statement. ■ 

 

 

Exercise Set (2.2) 

1- Let 𝑃(𝑥) denote the statement “𝑥 ≤ 4”.  

What are the truth values?   

        (a) 𝑃(0); (b) 𝑃(4); (c) 𝑃(6). 

2- Let 𝑃(𝑥) be the statement “x spends more than five 

hours every week day in class”, where the universe of 

discourse for x consists of all students.  
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Express each of these quantifications in ordinary 

language? 

∃𝑥𝑃(𝑥); ∀𝑥𝑃(𝑥); ∃𝑥¬𝑃(𝑥);  ∀𝑥¬𝑃(𝑥). 

3- Translate these statements into ordinary language, 

where 𝐶(𝑥) is “x is a comedian” and 𝐹(𝑥) is “x is funny” 

and the universe of discourse consists of all people.  

(a)∀𝑥(𝐶(𝑥) → 𝐹(𝑥)); 

(b)∀𝑥(𝐶(𝑥) ∧ 𝐹(𝑥)); 

(c)∃𝑥(𝐶(𝑥) → 𝐹(𝑥)); 

(d)∃𝑥(𝐶(𝑥) ∧ 𝐹(𝑥)).  

4- Let 𝑄(𝑥) be the statement “𝑥 + 1 > 2𝑥”. If the 

universe of discourse consists of all integers, what are 

these truths? 

(a) 𝑄(0);  (b) 𝑄(−1); (c) 𝑄(1); (d) ∃𝑥𝑄(𝑥). 

(e) ∀𝑥𝑄(𝑥); (f) ∃𝑥¬𝑄(𝑥); (g) ∀𝑥¬𝑄(𝑥). 

5- Suppose that the universe of discourse of the 

propositional function 𝑃(𝑥) consists of the integers 1, 2, 

3, 4 and 5. Express these statements without using 

quantifiers, instead using only negation, disjunction and 

conjunction.  

(a) ∃𝑥𝑃(𝑥); (b) ∀𝑥𝑃(𝑥); (c) ¬∃𝑥𝑃(𝑥); 
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(d) ¬∀𝑥𝑃(𝑥); (e) ∀𝑥((𝑥 ≠ 3) → 𝑃(𝑥)) ∨ ∃𝑥¬𝑃(𝑥). 

6- Translate in two ways each of these statements into 

logical expressions using predicates, quantifiers and 

logical connectives. First, let the universe of discourse 

consist of the student in your class and second, let it 

consist of all people.  

   (a) Someone in your class can speak English; 

    (b) Everyone in your class is friendly; 

    (c) There is a person in your class who was not born 

in Assiut. 

7- Translate the following statements into logical 

expressions using   predicates, quantifiers and logical 

connectives.  

               (a) No one is perfect; 

               (b) Not everyone is perfect; 

               (c) All your friends are perfect; 

               (d) One of your friends is perfect.  

8- Express each of the following statements using logical 

operators, predicate and quantifiers: 

(a) Some propositions are tautologies. 

(b) The negation of a contradiction is a tautology. 
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(c) The disjunction of two contingencies can be a  

tautology. 

(d) The conjunction of two tautologies is a 

tautology.  

9- Express each of these statements using quantifiers. 

Then form the negation of the statement, so that no 

negation is to before a quantifier. Next, express the 

negation in ordinary language (Do not simply use the 

words “It is not being case that”). 

(a) Some old dogs can learn new tricks.  

(b) No rabbit knows calculus.  

(c) Every bird can fly.  

(d) There is no dog that can talk. 

(e) There is no one in this class who knows French           

and Russian.  

10- Translate these statements into ordinary language, 

where the universe of discourse for each variable consists 

of all real numbers. 

     (a)  ∀𝑥∃𝑦(𝑥 < 𝑦); 

     (b) ∀𝑥∀𝑦(𝑥 ≥ 0 ∧ 𝑦 ≥ 0 → 𝑥𝑦 ≥ 0); 

     (c) ∀𝑥∀𝑦∀𝑧(𝑥𝑦 = 𝑧). 
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11- Let 𝑄(𝑥, 𝑦) be the statement “x has sent an e-mail 

message to y”,  where the universe of discourse for both x 

and y consists of all students in your class. Express each 

of these quantification in English.  

(a) ∃𝑥∃𝑦𝑄(𝑥, 𝑦);   

(b) ∃𝑥∀𝑦𝑄(𝑥, 𝑦).  

12- Let 𝑄(𝑥, 𝑦) be the statement “𝑥 +  𝑦 =  𝑥 –  𝑦”. If 

the universe of discourse for both variables consists of all 

integers, what are the truth values of each of the 

following?  

 (a) 𝑄(1, 1); (b) 𝑄(2, 0); (c) ∀𝑦𝑄(1, 𝑦);  

          (d) ∃𝑥𝑄(𝑥, 2); (e) ∃𝑥∃𝑦𝑄(𝑥, 𝑦).  

13- Determine the truth value of each of these statements 

if the universe of discourse of each variable consists of all 

real numbers.  

(a) ∀𝑥∃𝑦(𝑥2 = 𝑦); 

(b) ∀𝑥∃𝑦(𝑥 = 𝑦2);  

(c) ∃𝑥∀𝑦(𝑥𝑦 = 0);  

(d)  ∃𝑥∃𝑦(𝑥 + 𝑦 ≠ 𝑦 + 𝑥); 

(e) ∀𝑥(𝑥 ≠ 0 → (𝑥 + 𝑦 = 1)). 
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2.3 Rules of inference 

◦ Arguments and Validity  

Proofs in mathematics are valid arguments. 

An argument is a sequence of statements that end with a 

conclusion.  

♣ Many claims come to us as the conclusion of 

arguments. By "conclusion," we mean the claim that the 

argument is meant to defend.  

♣ We will understand an argument as a finite list of logic 

forms (compound proposition), one of which is the 

conclusion, and the others are offered as reasons to 

believe the conclusion is true. We will call these other 

logic forms "premises." presented as follows: 

𝐴1

𝐴2

⋮
⋮

𝐴𝑛

∴  𝐵
 

The logic forms above the bar are called premises while 

B is called the conclusion. (The symbol ∴ is read 

"therefore") 
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♣ We need to determine what makes an argument valid. 

Look at some examples.  

(a) Premise 1: If Nixon was President, then Nixon  

                       was Commander in Chief.  

      Premise 2: Nixon was President.  

      Conclusion: Nixon was Commander in Chief.  

(b) Premise 1: If Lincoln was an organism from deep 

              in the sea, then Lincoln had three eyes.  

      Premise 2: Lincoln was an organism from deep in 

                        the sea.  

      Conclusion: Lincoln had three eyes.  

(c) Premise 1: If Lincoln was President, then Lincoln 

                 had at least one portrait made of him.  

       Premise 2: Lincoln had at least one portrait made of  

                        him.  

      Conclusion: Lincoln was President.  

♣ What is remarkable about the first argument is that if 

the premises are true it seems the conclusion must be 

true. That is an excellent standard to have for arguments, 

since it describes a clear relation between premises and a 

conclusion.  
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A valid argument 

Definition.  

A valid argument is an argument in which if the premises 

are true then the conclusion must be true.  

♣ Note that the second argument is absurd. Both premises 

and the conclusion are false. Does that mean it is a bad 

argument.?  

Well, we could define a bad argument to be one where all 

the logic forms are false, but this would confuse the 

structure of the argument with the truth value of the logic 

forms that compose it. Our interest, right now, is 

argumentation itself. In that case, we must recognize that 

the second argument is valid. If the premises were true, 

the conclusion would have to be true. Valid arguments 

can have false conclusions if some of their premises are 

false.  

♣ It is useful, therefore, to distinguish valid arguments 

with true premises from valid arguments with some false 

premises. We will call arguments like the first argument 

above "sound."  
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A sound argument 

Definition.  

A sound argument is an argument which is valid and 

which has true premises. An argument that is not sound is called unsound.  

♣ Note that the third argument, even though each logic 

form in it is true, is invalid. It is not the case that if one 

has a portrait one was President. But that is the reasoning 

that underlies the leap from premise 2 to the conclusion. 

Be aware that invalid arguments can contain all true 

statements. They are invalid because other arguments of 

the exact same form could have true premises and a false 

conclusion.  

● Propositional Logic and Connectives 

♣ Logic is a formal method which provides a way to 

rigorously test arguments for validity. We will look at 

one part of logic -- propositional logic -- in order to 

illustrate and clarify the nature of validity and good 

reasoning in arguments.  

♣ Propositional logic is formulated out of propositions 

and "connectives." Connectives are ways of putting 

propositions together to make new propositions.  
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♣ We will represent propositions with letters p, q, r, ... 

♣ Thus, the 3 arguments above could be represented: 

(a) Premise 1: If p, then q.  

     Premise 2: p.  

    Conclusion: q.  

(b) Premise 1: If r, then s.  

     Premise 2: r.  

    Conclusion: s. 

(c) Premise 1: If t, then v.  

      Premise 2: v.  

    Conclusion: t.  

Assuming that we interpret our letters to be standing for 

the propositions:  

o p: Nixon was President  

o q: Nixon was Commander in Chief.  

o r: Lincoln was an organism from deep in the sea.  

o s: Lincoln had three eyes.  

o t: Lincoln was President.  

o v: Lincoln had at least one portrait made of him.  

These arguments use the connective "if ... then ....". 
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To further abbreviate our logic, we will replace these 

English words with a single arrow: →.  

Thus, instead of "If p, then q" we will write "𝑝 → 𝑞".  

Our first argument would then look like:  

Premise 1: 𝑝 → 𝑞.  

Premise 2: p.  

Conclusion: q.  

●Methods to Test Validity of an Argument 

First Method to prove validity 

Definition. 

A valid argument is a finite set of propositions 

𝑝1,  𝑝2, … , 𝑝𝑟  (premises), together with a proposition c, 

the conclusion, such that the propositional form  

(𝑝1 ∧  𝑝2 ∧ …∧ 𝑝𝑟) → 𝑐 is a tautology. 

We say c follows logically from, or is a logical 

consequence of the premises. 

We write 𝑝1,  𝑝2, … , 𝑝𝑟 ⊢ 𝑐. The symbol ⊢ is called the 

turnstile. 
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Example.  

Determine whether the following argument is valid or 

invalid. 

Premises 1: "if you have a current password, then you can 

log onto the network". 

Premises 2: "you have a current password". 

Therefore 

Conclusion: "you can log onto the network". 

Solution.  

Let 𝑝 represent: "you have a current password"  

and 

𝑞 represent: "you can log onto the network" 

Then the argument has the form  

𝑝 ⟶ 𝑞
𝑝

∴  𝑞
 

When 𝑝 and 𝑞 are proposition variables, the statement 

[(𝑝 → 𝑞) ∧ 𝑝] → 𝑞 is a tautology.  

In this case we say that this argument is valid.■ 
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Example.  

Let 𝑝1 =  “John graduates” 

𝑝2 = “Mary graduates” 

𝑝3 = “John gets a job” 

𝑝4 = “Mary gets a job” 

𝑝5 = “Mary earns money” 

(i) Consider the following argument: 

“If John graduates then he gets a job”. 

“John graduates”. 

“Therefore John gets a job”. 

To see the “form” of this argument we symbolize it as 

𝑝1 → 𝑝3, 𝑝1 ⊢ 𝑝3 

 Now, the student can prove that ((𝑝1 → 𝑝3) ∧  𝑝1) → 𝑝3 

is a tautology. So, the given  argument is valid. 

Note Another “instance” of this argument follows if we 

set  𝑝1 =   “2 <  1” and  𝑝3 =   “3 <  2”.  

The argument then reads: 

“If 2 <  1 then 3 <  2”. 

“2 <  1”. 

“Therefore, 3 < 2”. 
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This is still valid though some of the propositions, i.e. 

2 <  1 for instance, are false. 

(ii) Consider the following argument: 

“If Mary graduates then she gets a job”. 

“Mary does not get a job”. 

“Therefore Mary does not graduate”. 

Symbolized, this becomes  

𝑝2 → 𝑝4, (¬ 𝑝4) ⊢ (¬𝑝2). 

 Since ((𝑝1 → 𝑝4) ∧  (¬𝑝4)) → (¬𝑝2) is a tautology, 

then the given  argument is valid. 

(iii) Consider the following argument: 

“Either Mary or John graduate”. 

“John does not graduate”. 

“Therefore Mary graduates”. 

Symbolized, this becomes 𝑝2 ∨ 𝑝1, (¬ 𝑝1) ⊢ 𝑝2. 

Since [(𝑝2 ∨ 𝑝1) ∧  (¬ 𝑝1)] → 𝑝2 is a tautology, then the 

given  argument is valid. 

(iv) Consider the following argument: 

“If Mary graduates then she gets a job”. 

“If Mary gets a job then she earns money”. 

“Therefore if Mary graduates then she earns money”. 
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Symbolized, this becomes  

𝑝2 → 𝑝4 , 𝑝4 → 𝑝5 ⊢  𝑝2 → 𝑝5. 

Now, [(𝑝2 → 𝑝4)  ∧ (𝑝4 → 𝑝5)] →  (𝑝2 → 𝑝5) is a 

tautology. Then the given  argument is valid.■ 

We can sum up the above by saying the following are all 

valid: 

(i) 𝑝 → 𝑞, 𝑝 ⊢ 𝑞; 

(ii) 𝑝 → 𝑞, (¬ 𝑞) ⊢ (¬ 𝑝); 

(iii) 𝑝 ∨ 𝑞, (¬ 𝑞) ⊢ 𝑝; 

(iv) 𝑝 → 𝑞 , 𝑞 → 𝑟 ⊢  𝑝 → 𝑟. 

Example.  

Show that 𝑝 → 𝑞, 𝑝 ∨ 𝑞 ⊢ (¬ 𝑝) ∨ (¬ 𝑞) is invalid. 

𝑝 𝑞 𝑝 → 𝑞 𝑝 ∨ 𝑞 (𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞) 

𝑷 

¬ 𝑝 ∨ ¬ 𝑞 

𝑸 

𝑷 → 𝑸 

1 1 1 1 1 0 0 

1 0 0 1 0 1 1 

0 1 1 1 1 1 1 

0 0 1 0 0 1 1 

We do not have a tautology in the last column so the 

argument is invalid. ■ 
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Second Method to prove validity 

Note If an argument is valid then (𝑝1 ∧  𝑝2 ∧ …∧ 𝑝𝑟) → 𝑐 

is a tautology, and so it is always true. So we need to 

prove that it is never false. It can only be only false if c is 

false and 𝑝1 ∧  𝑝2 ∧ …∧ 𝑝𝑟 is true, i.e. all 𝑝1,  𝑝2, … , 𝑝𝑟 

are true. So, we never want to see a row in the truth table 

where all the premises are true and the conclusion false. 

This observation gives a second way of checking that an 

argument is valid or not. 

To check that an argument is valid or not we do the 

following steps. 

1. Identify the premises and conclusion of the argument. 

2. Construct a truth table showing the truth values of all 

the premises and conclusion. 

3. Find the rows (called critical rows) in which all the 

premises are true. 

4. In each critical row, determine whether the conclusion 

of the argument is also true. 

(a) If in each critical row the conclusion is also true, then 

the argument form is valid. 
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(b) If there is at least one critical row in which conclusion 

is false, the argument form is fallacy (invalid).  

Example.  

Determine whether the following argument is valid or 

invalid. 

𝑝 → 𝑞
𝑝

____
∴ 𝑞

 

Solution.  

The truth table for the premises and conclusion is: 

𝑝 𝑞 𝑝 → 𝑞 

1 1 1 

1 0 0 

0 1 1 

0 0 1 

The first line is the only critical line, where the premises 

is true. We see that the conclusion is also true. Then the 

given argument is valid. ■ 
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Example.  

Is 𝑝 → 𝑞, 𝑝 ∨ 𝑞 ⊢ (¬ 𝑝) ∨ (¬ 𝑞) is valid? 

Solution.  

We look at the truth table: 

𝑝 𝑞 𝑝 → 𝑞 𝑝 ∨ 𝑞 (𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞) 

𝑷 

¬ 𝑝 ∨ ¬ 𝑞 

𝑸 

𝑷 → 𝑸 

1 1 1 1 1 0 0 

1 0 0 1 0 1 1 

0 1 1 1 1 1 1 

0 0 1 0 0 1 1 

In the first line the conclusion is false, but all premises 

are true. Hence the argument is invalid. 

This method requires fewer columns than in the first 

method. ■ 

Is there an “instance” of the above argument which is 

“obviously” invalid? 

Try looking in the “World of Mathematics”, for instance, 

choosing 𝑝 ≡ “3 >  2” and 𝑞 ≡  “2 >  1”.  

Then the argument becomes: 

If 3 >  2 then 2 >  1, 

Either 3 >  2 or 2 >  1, 

Therefore, either 3 ≤  2 or 2 ≤  1. 
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Both premises are true but the conclusion is false. On the 

basis that we never want a false conclusion to follow 

from true premises, this argument is invalid.  

But be careful! Consider another instance.  

So let 𝑝 ≡ “Assiut is a city” and 𝑞 ≡ “Suhag is a city”. 

Then the argument becomes: 

“If Assiut is a city then Suhag is a city”. 

“Either Suhag or Assiut is a city”. 

“Therefore, either Suhag is not a city or Assiut is not a 

city”. 

If I tell you that Suhag is a city but Assiut is not a city 

then you can check that all the propositions in this 

argument are true. But the argument is still invalid. It is a 

case of the conclusion, though true, not following 

logically from the true premises. 
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Example.  

Is 𝑝 → (𝑠 → (¬𝑟)), 𝑝 → 𝑟, 𝑝 ⊢ ¬ 𝑠 is valid? 

Solution.  

We look at the truth table: 

𝑝 𝑟 𝑠 ¬𝑟 𝑠 → ¬𝑟 𝑝 → (𝑠 → ¬𝑟) 𝑝 → 𝑟 𝑝 ¬ 𝑠 

1 1 1 0 0 0 1 1 0 

1 1 0 0 1 1 1 1 1 

1 0 1 1 1 1 0 1 0 

1 0 0 1 1 1 0 1 1 

0 1 1 0 0 1 1 0 0 

0 1 0 0 1 1 1 0 1 

0 0 1 1 1 1 1 0 0 

0 0 0 1 1 1 1 0 1 

We look at each row in turn. We look to see if on any row 

we have a case of all the premises being true with the 

conclusion false. For instance in the first row we see that 

premises are 0, 1, 1 and the conclusion 0. This is 

allowable. By checking each row we see that each row is 

allowable, that is, we never have a case of all premises 

true with the conclusion false. 

Hence the argument is valid. ■ 
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Example. 

Determine if the next arguments is valid or invalid. 

(1) 𝑝 → 𝑞, 𝑝 → 𝑟 ⊢ 𝑝 → (𝑞 ∧ 𝑟); 

(2) 𝑝 → 𝑞, 𝑟 → 𝑠, ¬𝑞 ∨ ¬𝑠, 𝑟 ∨ ¬𝑞 ⊢ 𝑝 ↔ ¬𝑟. 

Solution. 

We use the critical lines where in (2) we need to construct 

24  = 16 lines. 

(1) We look at the truth table: 

p q r 𝑞 ∧ 𝑟 𝑝 → 𝑞 𝑝 → 𝑟 𝑝 → (𝑞 ∧ 𝑟) 

1 1 1 1 1 1 1 

1 1 0 0 1 0 0 

1 0 1 0 0 1 0 

1 0 0 0 0 0 0 

0 1 1 1 1 1 1 

0 1 0 0 1 1 1 

0 0 1 0 1 1 1 

0 0 0 0 1 1 1 

Here the critical lines are (1), (5), (6), (7), and (8). The 

conclusion is true in all of these lines. So, the argument is 

valid. 

(2) (Exercise for the student). 
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Note I have given here two methods for using a truth 

table to check whether 𝑝1,  𝑝2, … , 𝑝𝑟 ⊢ 𝑐 is valid or not. 

Do not mix up these methods! 

In the first method use a truth table to work out the truth 

values of (𝑝1 ∧  𝑝2 ∧ …∧ 𝑝𝑟) → 𝑐, and hope that it is 

always true, i.e. a tautology. 

In the second method construct a table containing a 

column for each of the 𝑝1,  𝑝2, … up to 𝑝𝑟 along with c 

and hope that there is no row with all the 𝑝𝑖 true and c 

false. 

The second method of proving validity needs a smaller 

number of columns than the first, but if the number of 

basic propositions 𝑝, 𝑞, 𝑟, etc. is large then the tables in 

both methods need a large number of rows. Thus the 

tables get cumbersome in both methods and an alternative 

method is necessary (Rules of inference of propositional 

logic and quantifiers). 

If an argument is invalid there is sometimes a quick 

method of showing this. 
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Example.  

Show that (𝑝 ∨  𝑞)  →  𝑠, 𝑞 →  𝑠 ⊢  𝑠 is invalid. 

Solution. 

We do this by trying to make the conclusion false and the 

premises all true. 

The conclusion if false if we choose 𝑠 to be false. Then 

𝑞 →  𝑠 can be true only if 𝑞 is false.  

Finally, for (𝑝 ∨  𝑞)  →  𝑠 to be true we require 𝑝 ∨  𝑞 to 

be false, and so 𝑝 must be false. 

Hence if all of 𝑝, 𝑞 and 𝑠 are false (i.e. the bottom row of 

the truth table), we see that all the premises are true but 

the conclusion is false. Hence the argument is invalid. ■ 

Note. 

To determine whether the argument which contains n 

variables is valid or invalid we need 2𝑛 lines. It is 

difficult to use truth table for large n. So, we use the 

definition of the valid argument. We find a critical line 

with false conclusion. If not we have a valid argument. 

Example. 

Determine if the next arguments is valid or invalid.  
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(a) 𝑝 → 𝑞, 𝑞 → (𝑝 → 𝑟), 𝑝 ⊢ 𝑝 → (𝑞 ∧ 𝑟); 

(b) 𝑝 → 𝑞, 𝑟 → ¬𝑝, 𝑟 → 𝑞 ⊢ 𝑞. 

Solution. 

(a) Exercise. 

(b) Starting with the conclusion and assume q is 0. The 

first premise 𝑝 → 𝑞 is 1 when p is 0. So, the third premise 

𝑟 → 𝑞 is  1 when r is 0. This implies that the second 

premise  𝑟 → ¬𝑝 is 1. Therefore the given argument is 

invalid. 

We have obtained the following critical line: 

p q r 𝑝 → 𝑞 𝑟 → ¬𝑝 𝑟 → 𝑞 q 

0 0 0 1 1 1 0 

■ 
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● Rules of Inference for Propositional Logic 

We can always use a truth table to show that an argument 

form is valid. We do this by showing that whenever the 

premises are true, the conclusion must also be true. 

However, this can be a tedious approach. For example, 

when an argument form involves 10 different 

propositional variables, to use a truth table to show this 

argument form is valid requires 210 = 1024 different 

rows. Fortunately, we do not have to resort to truth tables. 

Instead, we can first establish the validity of some 

relatively simple argument forms, called rules of 

inference. These rules of inference can be used as 

building blocks to construct more complicated valid 

argument forms. We will now introduce the most 

important rules of inference in propositional logic. 

The tautology (𝑝 ∧ (𝑝 → 𝑞)) → 𝑞 is the basis of the rule 

of inference called modus ponens (Law of Detachment). 

This Latin term means “Method of affirming” (since the 

conclusion is an affirmation). This tautology leads to the 

following valid argument form, which we have already 

seen in our initial discussion about arguments:  
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𝑝
𝑝 → 𝑞
____
∴ 𝑞

 

In particular, modus ponens tells us that if a conditional 

statement and the hypothesis of this conditional statement 

are both true, then the conclusion must also be true.  

Example.  

Suppose that the conditional statement “"if 𝑛 > 3, then 

𝑛2 > 9" is true , consequently if 𝑛 > 3, then by modus 

ponens 𝑛2 > 9.∎ 

Example.  

Suppose that the conditional statement "If it snows today, 

then we will go skiing" and its hypothesis, "It is snowing 

today," are true. Then, by modus ponens, it follows that 

the conclusion of the conditional statement, "We will go 

skiing" is true. ∎ 

As we mentioned, a valid argument can lead to an 

incorrect conclusion if one or more of its premises is 

false. We illustrate this again in the following example. 
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Example.  

Determine whether the argument given here is valid and 

determine whether its conclusion must be true because of 

the validity of the argument. 

  "If √2 >
3

2
, then(√2)

2
> (

3

2
)
2
 . We know that √2 >

3

2
. 

       Consequently, (√2)
2

= 2 > (
3

2
)
2

=
9

4
." 

Solution. 

 Let p be the proposition "√2 >
3

2
" and q the proposition 

"2 > (
3

2
)
2
". The premises of the argument are 𝑝 → 𝑞 and 

p, and q is the conclusion. This argument is valid because 

it is constructed by using modus ponens, a valid argument 

form. However, one of its premises √2 >
3

2
  is false. 

Consequently, we cannot conclude that the conclusion is 

true. Furthermore, note that the conclusion of this 

argument is false, because 2 <
9

4
. ∎ 
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The following table lists some important rules of inference 

Rule of inference Tautology Name 

𝑝
_______
∴ 𝑝 ∨ 𝑞

 
𝑝 → 𝑝 ∨ 𝑞 Addition 

𝑝 ∧ 𝑞
_______
∴ 𝑝  

𝑝 ∧ 𝑞 → 𝑝 Simplification 

𝑝
𝑞

_________
∴ 𝑝 ∧ 𝑞

 

𝑝 ∧ 𝑞 → 𝑝 ∧ 𝑞 
Conjunction 

𝑝
𝑝 → 𝑞

_________
∴ 𝑞

 

(𝑝 ∧ (𝑝 → 𝑞)) → 𝑞 Modus 

ponens 

¬𝑞
𝑝 → 𝑞

_________
∴ ¬𝑝

 

(¬𝑞 ∧ (𝑝 → 𝑞)) → ¬𝑝 Modus 

tollens 

𝑝 → 𝑞
𝑞 → 𝑟

_________
∴ 𝑝 → 𝑟

 

((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟) Hypothetical 

syllogism 

𝑝 ∨ 𝑞
¬𝑝

_________
∴ 𝑞

 

((𝑝 ∨ 𝑞) ∧ ¬𝑝) → 𝑞 Disjunction 

syllogism 

𝑝 ∨ 𝑞
¬𝑝 ∨ 𝑟
_________
∴ 𝑞 ∨ 𝑟

 

((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑟)) → (𝑞 ∨ 𝑟) Resolution 
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Exercise 

Which rule of inference is used in each argument below? 

☺“Alice is a Math major”.  

   Therefore, “Alice is either a Math major or a CSI 

    major”. 

☺“Jerry is a Math major and a CSI major”.  

    Therefore, “Jerry is a Math major”. 

☺“If it is rainy, then the pool will be closed”. “It is  

      rainy”.   

    Therefore, “the pool is closed”. 

☺“If it snows today, the university will close”. “The 

    university is not closed today”.  

    Therefore, “it did not snow today”. 

☺“If I go swimming, then I will stay in the sun too  

      long”.  

    “If I stay in the sun too long, then I will sunburn”.  

    Therefore, “if I go swimming, then I will sunburn”. 

☺“I go swimming or eat an ice cream”. “I did not go  

    swimming”.” 

    Therefore, “I eat an ice cream”. 
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Example.  

State which rule of inference is the basis of the following 

argument  

“It is below freezing now”.  

Therefore, “it is either below freezing or raining now”. 

Solution. 

Let p be the proposition “It is below freezing now” and 

let q be the proposition “It is raining now”. Then this 

argument is of the form 

𝑝
________
∴ 𝑝 ∨ 𝑞

 

This argument uses the addition rule. ∎ 

Example.  

State which rule of inference is used in the argument:  

“If it rains today, then we will not have a barbecue today. 

“If we do not have a barbecue today, then we will have a 

barbecue tomorrow.”  

Therefore, “if it rains today, then we will have a barbecue 

tomorrow.” 
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Solution. 

Let p be the proposition “It is raining today”, let q be the 

proposition “we will not have a barbecue today” and let r 

be the proposition “we will have a barbecue tomorrow”. 

Then this argument is of the form: 

𝑝 → 𝑞
𝑞 → 𝑟

_________
∴ 𝑝 → 𝑟

 

Hence, this argument is a hypothetical syllogism. ∎ 

Example.  

State which rule of inference is the basis of the following 

argument:  

“It is below freezing and raining now”.  

Therefore, “It is below freezing now.” 

Solution. 

Let p be the proposition “It is below freezing now,” and 

let q be the proposition “It is raining now.” This argument 

is of the form 

𝑝 ∧ 𝑞
________

∴ 𝑝
 

This argument uses the simplification rule. ∎ 
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Example.  

State which rule of inference is the basis of the following 

argument:  

“If Zeus is human, then Zeus is mortal.”  

“Zeus is not mortal.”  

Therefore, “Zeus is not human.” 

Solution. 

Let p be the proposition “Zeus is human,” and let q be the 

proposition “Zeus is mortal.” This argument is of the 

form 

𝑝 → 𝑞
¬𝑞

_________
∴ ¬𝑝

 

The fact that this argument is valid is called Modus 

Tollens which means (Method of denying) since the 

conclusion is denial. ∎ 
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● Using Rules of Inference to Build Arguments 

When there are many premises, several rules of inference 

are often needed to show that an argument is valid.  

Example.  

Show that the hypotheses: 

 ►It is not sunny this afternoon and it is colder than 

yesterday. 

►We will go swimming only if it is sunny.  

►If we do not go swimming, then we will take a canoe 

trip. 

►If we take a canoe trip, then we will be home by 

sunset.  

Lead to the conclusion:  

►We will be home by sunset. 

Solution.  

Main steps: 

1. Translate the statements into proposional logic. 

2. Write a formal proof, a sequence of steps that state 

hypotheses or apply inference rules to previous steps. 

Assume the following propositions: 
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p: it is sunny this afternoon 

q: it is colder than yesterday  

r: we will go swimming 

s: we will take a canoe trip 

t: we will be home by sunset 

Then the hypotheses are ¬𝑝 ∧ 𝑞, 𝑟 ⟶ 𝑝 , ¬𝑟 ⟶ 𝑠 , 

 𝑠 ⟶ 𝑡, and the conclusion is simply t. 

We construct an argument to show that desired 

conclusion as follows:  

Step Reason 

(1) ¬𝑝 ∧ 𝑞 Hypothesis 

(2) ¬𝑝 Simplification using step (l). 

(3) 𝑟 ⟶ 𝑝 Hypothesis 

(4) ¬𝑟   Modus tollens using (2) and (3)  

(5) ¬𝑟 → 𝑠 Hypothesis 

(6) s Modus ponens using (4) and (5) 

(7) 𝑠 ⟶ 𝑡      Hypothesis 

(8) 𝑡 

Conclusion 

Modus ponens using (6) and (7) 
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Example. 

Using rules of valid inference to solve the problem: 

(a) If my glasses are on the kitchen table, then I saw them 

at breakfast. 

(b) I was reading the newspaper in the living room or I 

was reading in the kitchen. 

(c) If I was reading the newspaper in the living room. 

then my glasses are on the coffee table. 

(d) I did not see my glasses at breakfast. 

(e) If I was reading my book in bed, then my glasses are 

on the bed table. 

(f) If I was reading the newspaper in the kitchen, then my 

glasses are on the kitchen table. 

Where are the glasses? 

Solution. 

p : my glasses are on the kitchen table. 

q : I saw them at breakfast. 

r : I was reading the newspaper in the living room. 

s : I was reading the newspaper in the kitchen. 

t : my glasses are on the coffee table. 

u : I was reading my book in bed. 
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v : my glasses are on the bed table. 

Then the given statements are: 

(a) 𝑝 → 𝑞; (b) 𝑟 ∨ 𝑠; (c) 𝑟 → 𝑡;  

(d) ¬𝑞; (e) 𝑢 → 𝑣; (f) 𝑠 → 𝑝. 

We construct an argument to show that desired 

conclusion as follows:  

Step Reason 

(l) 𝑝 → 𝑞 Hypothesis (a) 

(2) ¬𝑞 Hypothesis (d) 

(3) ∴ ¬𝑝 Modus tollens using (1) and (2) 

(4) 𝑠 → 𝑝  Hypothesis (f)  

(5) ¬𝑝 Conclusion (3) 

(6) ∴ ¬s Modus tollens using (4) and (5) 

(7) 𝑟 ∨ 𝑠 Hypothesis (b) 

(8) ∴ 𝑟 disjunctive syllogism using (6) 

and (7) 

(9) 𝑟 → 𝑡 Hypothesis (c) 

(10) t Modus Ponens using (8) and (10) 

Hence t is true and the glasses are on the coffee table.■ 
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●Resolution and Automated Theorem Proving 

We can build programs that automate the task of 

reasoning and proving theorems. 

Many of these programs make use of a rule of inference 

known as a resolution. This rule of inference is based on 

the tautology ((𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑟)) → (𝑞 ∨ 𝑟). 

The final disjunction in the resolution rule, 𝑞  𝑟, is 

called the resolvent.  

If we express the hypotheses and the conclusion as 

clauses (possible by CNF, a conjunction of clauses), we 

can use resolution as the only inference rule to build 

proofs! 

This is used in programming languages like Prolog. 

It can be used in automated theorem proving systems. 

Example. 

Use resolution to show that the hypothesis: 

 "Ahmed is skiing or it is not snowing"  

and  

"It is snowing or Ali is playing hockey" 

 imply that "Ahmed is skiing or Ali is playing hockey". 
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Solution. 

p: it is snowing 

q: Ahmed is skiing 

r: Ali is playing hockey 

We can represent the hypothesis as ¬𝑝 ∨ 𝑞 and p ∨ 𝑟 , 

respectively.  Using resolution, the proposition 𝑞 ∨ 𝑟 

"Ahmed is skiing or Ali is playing hockey" follows.■ 

⁕Proofs that use exclusively resolution as inference rule 

Step 1: Convert hypotheses and conclusion into clauses: 

 

Step 2: Write a proof based on resolution: 

 

 

 



- 255 - 
 

Example. 

Show that the hypotheses: 

 

Note that the fact that p and ¬𝑝 ∨ 𝑞 implies q (disjunctive syllogism) is a 

special case of resolution, since 𝑝 ∨ 0 and ¬𝑝 ∨ 𝑞 give us 0 ∨ 𝑞 which is 

equivalent to q. 

Proof. 

Resolution-based proof: 

■ 
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●Fallacies 

Fallacy = misconception resulting from incorrect 

argument. 

►Fallacy of affirming the conclusion 

Based on 

((𝑝 → 𝑞) ∧  𝑞) → 𝑝 

which is NOT A TAUTOLOGY. 

Example. 

If prof gives chocolate, then you answer the question. 

You answer the question. We conclude the prof gave 

chocolate.■ 

►Fallacy of denying the hypothesis 

Based on 

((𝑝 → 𝑞) ∧ ¬𝑝) → ¬𝑞 

which is NOT A TAUTOLOGY. 

Example. 

If prof gives chocolate, then you answer the question. 

Prof doesn't give chocolate. Therefore, you don't answer 

the question. ■ 
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● Rules of Inferences for Quantified Statements 

We have discussed rules of inference for propositions. 

Now, we will describe some important rules of inference 

for statements involving quantifiers. These rules of 

inference are used extensively in mathematics arguments, 

often without being explicitly mentioned.    

♣ Universal instantiation is the rule of inference used to 

conclude that 𝑃(𝑐) is true, where c is a particular member 

of the domain, given the premise ∀𝑥𝑃(𝑥). Universal 

instantiation is used when we conclude from the 

statement “All women are wise” that “Huda is wise”, 

where Hodi is a member of the universe of discourse of 

all women.  

♣ Universal generalization is the rule of inference that 

states that ∀𝑥𝑃(𝑥) is true, given the premise that P(c) is 

true for all element c in the domain. Universal 

generalization is used when we show that ∀𝑥𝑃(𝑥) is true 

by taking an arbitrary element c from the domain and 

showing that 𝑃(𝑐) is true. The element c that we select 

must be arbitrary, and not a specific, element of the 

domain. That is, when we assert from ∀𝑥𝑃(𝑥) the 
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existence of an element c in the domain, we have no 

control over c and cannot make any other assumptions 

about c other than it comes from the domain. Universal 

generalization is used implicitly in many proofs in 

mathematics and is seldom mentioned explicitly. 

However, the error of adding unwarranted assumptions 

about the arbitrary element c when universal 

generalization is used is all too common in incorrect 

reasoning. 

♣Existential instantiation is the rule that allows us to 

conclude that there is an element c in the domain for 

which 𝑃(𝑐) is true if we know that ∃𝑥𝑃(𝑥) is true.  

We cannot select an arbitrary value of c here, but rather it 

must be a c for which 𝑃(𝑐) is true. Usually we have no 

knowledge of what c is, only that it exists. Because it 

exists, we may give it a name (𝑐) and continue our 

argument. 

♣Existential generalization is the rule of inference that 

is used to conclude that ∃𝑥𝑃(𝑥) is true when a particular 

element c with 𝑃(𝑐) true is known. That is, if we know 
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one element c in the domain for which 𝑃(𝑐) is true, then 

we know that ∃𝑥𝑃(𝑥) is true. 

We summarize these rules of inference for statement. 

 

We will illustrate how some of these rules of inference 

for quantified statements are used in the following 

examples. 

Example. 

State which rule of inference is applied in the following 

argument.  

Let c be any student. 

“Student c has a personal computer”. 

Therefore, “all student has a personal computer”. 
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Solution. 

Determine individual propositional function 

𝑃(𝑥): x has a personal computer.  

Domain: all students. 

The argument using 𝑃(𝑥): 

Domain: all students 

(c is an arbitrary element of the domain.) 

Example. 

Show if ∀𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥)) is true then ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥) 

is true. (using direct technique) 

Solution. 

Assume ∀𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))  is true. 

If a is in the domain then 𝑃(𝑎) ∧ 𝑄(𝑎) is true by 

universal instantiation. 

So, 𝑃(𝑎) is true and 𝑄(𝑎) is true. 

Element a can be any element in the domain. 

So, ∀𝑥𝑃(𝑥) is true and ∀𝑥𝑃(𝑥) is true by universal 

generalization. 

Thus, ∀𝑥𝑃(𝑥) ∧ ∀𝑥𝑄(𝑥)  is true. ■ 



- 261 - 
 

Example. 

State which rule of inference is applied in the argument. 

There is a person in the store. 

Therefore, some person c is in the store. 

Solution. 

Determine individual propositional function 

𝑃(𝑥): x is in the store. 

Domain: all people 

The argument using 𝑃(𝑥): 

 

(c is some element of the domain.) 

Example. 

State which rule of inference is applied in the argument. 

His dog is playing in the park. 

Therefore, there is a dog playing in the park. 

Solution. 

Determine individual propositional function 

𝑃(𝑥): x is playing in the park.  

c: his dog 

Domain: all dogs 



- 262 - 
 

The argument using 𝑃(𝑥). 

.■ 

Example. 

Show if ∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥)) is true then ∃𝑥𝑃(𝑥) ∧ ∃𝑥𝑄(𝑥) 

is true. (using direct technique) 

Solution. 

Assume ∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))  is true. 

Let a be some element of the domain, that 𝑃(𝑎) ∧ 𝑄(𝑎) is 

true by existential instantiation. 

So, 𝑃(𝑎) is true and 𝑄(𝑎) is true. 

So, ∃𝑥𝑃(𝑥) is true and ∃𝑥𝑃(𝑥) is true by Existential 

generalization. 

Thus, ∃𝑥𝑃(𝑥) ∧ ∃𝑥𝑄(𝑥)  is true. ■ 

Example.  

Show that the premises “Everyone in this discrete 

mathematics class has taken a course in computer 

science” and “Aly is a student in this class” imply the 

conclusion “Aly has taken a course in computer science”. 
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Solution. 

𝐷(𝑥) : 𝑥 is in the discrete math class"  

𝐶(𝑥) : 𝑥 has taken a course in computer science"  

The argument: 

∀𝑥(𝐷(𝑥) → 𝐶(𝑥))

𝐷(Aly)

∴  𝐶(Aly)
 

Then the premises are ∀𝑥(𝐷(𝑥) → 𝐶(𝑥)) and 𝐷(Aly) 

The conclusion is 𝐶(Aly) 

The following steps can be used to establish the 

conclusion from the premises.  

Step    Reason 

1. ∀𝑥(𝐷(𝑥) → 𝐶(𝑥)) Premise   

2. 𝐷(Aly) → 𝐶(Aly) Universal instantiation by 1 

3. 𝐷(Aly) Premise 

4. 𝐶(Aly) Modus ponens from 2 and 3  

.■ 
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Example.  

Show that the premises: 

“A student in this class has not read the book” and 

“Everyone in this class passed the first exam.”  

imply the conclusion: 

“Someone who passed the first exam has not read the 

book”. 

Solution. 

𝐶(𝑥) : 𝑥 is in this class 

𝐵(𝑥) : 𝑥 has read the book 

𝑃(𝑥) : 𝑥 passed the first exam. 

The premises: 

∃𝑥(𝐶(𝑥) ∧ ¬𝐵(𝑥)). 

And 

∀𝑥(𝐶(𝑥) → 𝑝(𝑥)). 

The conclusion: 

∃𝑥(𝑝(𝑥) ∧ ¬𝐵(𝑥)). 

The following steps can be used to establish the 

conclusion from the premises. 



- 265 - 
 

Step Reason 

(1) ∃𝑥(𝐶(𝑥) ∧ ¬𝐵(𝑥)) Premise 

(2) 𝐶(𝑎) ∧ ¬𝐵(𝑎) Existential instantiation from (1) 

(3) 𝐶(𝑎) Simplification form (2) 

(4) ∀𝑥(𝐶(𝑥) → 𝑃(𝑥)) Premise 

(5) 𝐶(𝑎) → 𝑃(𝑎) Universal instantiation from (4) 

(6) 𝑃(𝑎) Modus ponens from (3)and (5) 

(7) ¬𝐵(𝑎) Simplification of (2) 

(8) 𝑃(𝑎) ∧ ¬𝐵(𝑎) Conjunction from (6) and (7) 

(9) ∃𝑥(𝑃(𝑥) ∧ ¬𝐵(𝑥)) Existential generalization from (8) 

. ■ 
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●Combining Rules of Inference for Propositions and 

Quantified Statements 

These inference rules are frequently used and combine 

propositions and quantified statements: 

●Universal Modus Ponens 

 

Universal modus ponens is commonly used in 

mathematical arguments. This is illustrated by the 

following example. 

Example. 

Assume that “For all positive integers n, if n is greater 

than 4, then 𝑛2 is less than 2𝑛” is true. 

Use universal modus ponens to show that 1002 < 2100. 

Solution.  

Let 𝑃(𝑛) denote “𝑛 > 4” and 𝑄(𝑛) denote “𝑛2 < 2𝑛.” 

The statement “For all positive integers n, if n is greater 

than 4, then 𝑛2 is less than 2𝑛” can be represented by 
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∀𝑛(𝑃 (𝑛)  →  𝑄(𝑛)), where the domain consists of all 

positive integers.  

We are assuming that ∀𝑛(𝑃 (𝑛)  →  𝑄(𝑛)) is true. Note 

that 𝑃(100) is true because 100 > 4. It follows by 

universal modus ponens that 

𝑄(100) is true, namely that 1002 < 2100. ■ 

●Universal Modus Tollens 

Another useful combination of a rule of inference from 

propositional logic and a rule of inference for quantified 

statements is universal modus tollens. Universal modus 

tollens combines universal instantiation and modus 

tollens and can be expressed in the following way: 

 

The verification of universal modus tollens is left as 

exercise. 

Exercise. 

Justify the rule of universal modus tollens by showing 

that the premises ∀𝑥(𝑃 (𝑥)  →  𝑄(𝑥)) and ¬𝑄(𝑎) for a 

particular element a in the domain, imply ¬𝑃 (𝑎). 
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Exercise Set (2.3) 

1. Find the argument form for the following argument 

and determine whether it is valid. Can we conclude that 

the conclusion is true if the premises are true? 

(a)  If Socrates is human, then Socrates is mortal. 

         Socrates is human. 

         Socrates is mortal. 

(b)  If George does not have eight legs, then he is not  

       an insect. 

             George is an insect. 

           George has eight legs. 

2. What rule of inference is used in each of these 

arguments? 

(a) Ahmad is a mathematics major. Therefore, Ahmad 

is either a mathematics major or a computer science 

major. 

 (b)  Aly is a mathematics major and a computer 

science major. Therefore, Aly is a mathematics major. 

(c) If it is rainy, then the pool will be closed. It is 

rainy. Therefore, the pool is closed. 
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(d) If it snows today, the university will close. The 

university is not closed today. Therefore, it does not 

snow today. 

3. Use rules of inference to show that the hypothesis 

"Randy works hard" "If Randy works hard, then he is a 

dull boy", and "If Randy is a dull boy, then he will not get 

the job" imply the conclusion "Randy will not get the 

job". 

4. What rules of inference are used in this argument?  

"No man is an island", "Aly is an island".  

Therefore, "Aly is not a man". 

5. Show that the argument form with premises 

 (𝑝 ∧ 𝑡) → (𝑟 ∨ 𝑠), 𝑞 → (𝑢 ∧ 𝑡), 𝑢 → 𝑝, and ¬𝑠   

and conclusion 𝑞 → 𝑟 is valid by using rules of inference. 

6. For each of these arguments, explain which rules of 

inference are used for each step. 

(a) "Sami, a student in this class, knows how to write 

programs in JAVA. Everyone who knows how to write 

programs in JAVA can get a high-paying  job. 

Therefore, someone in this class can get a high-paying 

job" 
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(b) "Somebody in this class enjoys whale watching. 

Every person who enjoys whale watching cares about 

ocean pollution. Therefore, there is a person in this 

class who cares about ocean pollution". 

7. Determine whether the following argument is valid or 

invalid. 

(a) 

𝑝 → 𝑞 ∨ 𝑟
𝑝 → ¬𝑞
𝑟 → ¬𝑠
− − − −
𝑝 → ¬𝑠

 

(b) 

𝑝 → 𝑞
𝑞 → (𝑝 → 𝑟)

𝑝
− − − −

𝑟

 

(c) 

𝑝 → (𝑞 → 𝑟)
𝑟 → ¬𝑠
¬𝑢 → 𝑠
𝑝 ∧ 𝑞

− − − −
𝑢

 

(d) 

𝑝 → 𝑞
¬𝑝 → 𝑟
𝑟 → 𝑠

¬𝑞 → 𝑠
− − − −

𝑞

 

(e) 

𝑝 → 𝑞
¬𝑞 ∨ 𝑠
𝑞 ↔ 𝑠

𝑞 → (𝑝 ∨ ¬𝑠)
− − − −
𝑝 ↔ 𝑞

 

(f) 

¬𝑝 → (𝑝 ∨ 𝑟)

¬𝑞 → (¬𝑞 ∧ 𝑠)
𝑠 → 𝑞 ∨ 𝑟
− − − −

𝑞
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CHAPTER (III) 

ROOFPETHODS OF M 

3.1 Introduction 

● Some Terminology 

An axiom is a statement that is given to be true.  

A rule of inference is a logical rule that is used to deduce 

one statement from others. 

A theorem is a proposition that can be proved using 

definitions, axioms, other theorems, and rules of 

inference. Less important theorems sometimes are called 

propositions. (Theorems can also be referred to as facts 

or results). A theorem may be the universal 

quantification of a conditional statement with one or 

more premises and a conclusion. However, it may be 

some other type of logical statements. We demonstrate 

that a theorem is true with a proof.  

A lemma is a pre-theorem or a result which is needed to 

prove a theorem. 

A corollary is a post-theorem or a result which follows 

from a theorem (or lemma or another corollary). 
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A definition is not theorem. 

Example of definition: A number n is a perfect square  

if 𝑛 = 𝑘2 for some integer k. 

Definitions are automatically “if and only if” even  

though they do not say so. 

A proof is a valid argument that establishes the truth of a 

theorem. The statements used in a proof can include 

axioms, premises, if any, of the theorem and previously 

proven theorems. 

A conjecture is a statement that is being proposed to be a 

true statement, usually on the basis of some partial 

evidence. When a proof of a conjecture is found, the 

conjecture becomes a theorem. 

3.2 Methods of Proving Theorems 

To prove a theorem of the form ∀𝑥(𝑃(𝑥) → 𝑄(𝑥)), our 

goal is to show that 𝑃(𝑎) → 𝑄(𝑎) is true, where a is an 

arbitrary element of the domain, and then apply universal 

generalization. In this proof, we need to show that a 

conditional statement is true. Because of this we now 

focus on methods that show that conditional statements 

are true.  
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 Direct Proofs 

A direct proof shows that a conditional statement 𝑝 → 𝑞 

is true by showing that if p is true, then q must also be 

true, so that the combination p true and q false never 

occurs. In a direct proof, we assume that p is true and use 

axioms, definitions, and previously proven theorems 

together with rules of inference, to show that q must also 

be true. 

Example.  

Direct proof can be used to establish that the sum of two 

even integers is always even:  

(1) x and y are even integers                   (Hypothesis) 

(2)  𝑥 = 2𝑎, 𝑦 = 2𝑏 for integers a and b (Definition) 

(3)  𝑥 +  𝑦 =  2𝑎 +  2𝑏 =  2( 𝑎 +  𝑏)   (Algebra)  

(4)  𝑥 +  𝑦 is even integers                    (Definition).■ 

Example.  

Between every two distinct rationals, there is a rational. 

Proof.  

Let 𝑟, 𝑠 Î ℚ and  𝑟 <  𝑠. Let 𝑡 =  (𝑟 +  𝑠)/2. 

Then 𝑡 Î ℚ. We must show that 𝑟 <  𝑡 <  𝑠. 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
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Given:  𝑟 <  𝑠. 

 Add r:  2𝑟 <  𝑟 +  𝑠. 

Divide by 2:  𝑟 <  (𝑟 +  𝑠)/2 =  𝑡. 

Given:  𝑟 < s. Add s:  𝑟 +  𝑠 <  2𝑠. 

Divide by 2:  𝑡 =  (𝑟 +  𝑠)/2 <  𝑠. 

Therefore  𝑟 <  𝑡 <  𝑠.■ 

Example.  

 

Example.  

Give a direct proof of the theorem "If n is an odd integer, 

then 𝑛2  is odd". 

Proof.  

(1) 𝑛 is an odd integer                          (Hypothesis) 
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(2) There exists 𝑘 ∈ 𝑍 such that 𝑛 = 2𝑘 + 1     

                                                                  (Definition) 

(3) 𝑛2 = (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 

                = 2(2𝑘2 + 2𝑘) + 1                  (Algebra) 

(4) 𝑛2 is an odd  integer                           (Definition) 

Consequently, we have proved that if 𝑛 is an odd integer, 

then 𝑛2 is an odd.  ■ 

Example.  

Prove that the statement “The sum of two irrationals is 

irrational” is false. 

Proof.  

Counterexample:    

Let α be irrational. Then – 𝛼 is irrational. 𝛼 + (– 𝛼)  =

 0, which is rational.■ 

Exercise.  

Give a direct prove ``If a number is divisible by 6, then it 

is also divisible by 3''.  

Definition.  

Let n be a positive integer. The nth triangle number 𝑇𝑛  is 

the number 𝑛(𝑛 +  1)/2. 
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Definition.  

Let n be a positive integer.  The nth perfect square 𝑆𝑛 is 

the number 𝑛2.  

Example.  

Give a direct proof to the following statement: 

 “The sum of two consecutive triangle numbers is a 

perfect square.” 

Proof.  

Let 𝑛 be a positive integer. 

𝑇𝑛  +  𝑇𝑛+1   =  𝑛(𝑛 +  1)/2 + (𝑛 +  1)(𝑛 +  2)/2 

  = (𝑛2  +  𝑛 +  𝑛2  +  3𝑛 +  2)/2 

  = (2𝑛2 +  4𝑛 +  2)/2 

  = (𝑛 +  1)2  

  = 𝑆𝑛+1. 

Therefore, 𝑇𝑛  +  𝑇𝑛+1 = 𝑆𝑛+1  for all 𝑛 ³ 1.■ 

Theorem.  

If 𝑥, 𝑦 ∈ ℝ, then 𝑥2 + 𝑦2 ≥ 2𝑥𝑦. 

Incorrect proof: 

 𝑥2 + 𝑦2 ≥ 2𝑥𝑦, 𝑥2 + 𝑦2 − 2𝑥𝑦 ≥ 0. 

(𝑥 − 𝑦)2 ≥ 0, which is known to be true. 

What is wrong?■ 
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Definition.  

Let x be a real number.  

(a) The floor of x denoted ⌊𝑥⌋, is the integer n such that 

𝑛 ≤ 𝑥 < 𝑛 + 1. If x is an integer, then ⌊𝑥⌋ = 𝑥. If x is not 

an integer, then ⌊𝑥⌋ is the first integer such that ⌊𝑥⌋ < 𝑥.  

(b) The ceiling of x denoted ⌈𝑥⌉, is the integer n such that 

𝑛 –  1 <  𝑥 ≤  𝑛. If x is an integer, then ⌈𝑥⌉ = 𝑥. 

If x is not an integer, then ⌈𝑥⌉  is the first integer such that 

⌈𝑥⌉ > 𝑥.◄ 

Theorem.   

Let x and y be real numbers.  Then 

ë𝑥û +  ë𝑦û ≤  𝑥 +  𝑦 <  ë𝑥 +  𝑦û +  1. 

Direct Proof. 

 (1st inequality): By definition, ë𝑥û ≤  𝑥  and ë𝑦û ≤  𝑦. 

Therefore, ë𝑥û +  ë𝑦û ≤  𝑥 +  𝑦. 

 (2nd inequality): By definition, 𝑥 +  𝑦 <  ë𝑥 +  𝑦û +  1.◄ 
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● Proof by Contraposition (indirect proof) 

Direct proofs begin with the premises, continue with a 

sequence of deductions, and end with the conclusion. 

However, we will see that attempts at direct proofs often 

reach dead ends. We need other methods of proving 

theorems of the form ∀𝑥(𝑃(𝑥) → 𝑄(𝑥)). Proofs of 

theorems of this type that are not direct proofs, are called 

indirect proofs. An extremely useful type of indirect 

proof is known as proof by contraposition. Proofs by 

contraposition make use of the fact that the statement 

𝑝 → 𝑞 is equivalent to its contrapositive, ¬𝑞 ⟶ ¬𝑝. This 

means that the conditional statement 𝑝 → 𝑞 can be 

proved by showing that its contrapositive, ¬𝑞 ⟶ ¬𝑝, is 

true. 

Example.  

Prove that if n is an integer and 3𝑛 +  2 is odd, then n is 

odd. 

Proof. 

We first attempt a direct proof. 

(1) 3n + 2 is odd                          (Hypothesis)  

(2) 3𝑛 + 2 = 2𝑘 + 1 for 𝑘 ∈ 𝑍    (Definition) 
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(3) 3𝑛 + 1 = 2𝑘                             (Algebra) 

We see that 3𝑛 + 1 = 2𝑘 but there does not seen to be 

any direct way to conclude that 𝑛 is odd. 

Because our attempt at a direct proof failed, we next try a 

proof by contraposition.  

The contrapositive of "If 3𝑛 + 2 is odd, then 𝑛 is odd" is  

"If 𝑛 is even, then 3𝑛 + 2 is even".  

    (1)  𝑛 is even                                      (Hypothesis)  

    (2)  𝑛 = 2𝑘 , 𝑘 ∈ 𝑍               (Definition) 

    (3)  3𝑛 + 2 = 6𝑘 + 2                          (Algebra) 

From (3),  3𝑛 + 2 = 6𝑘 + 2 is even. Then the given 

statement is true.  ■ 

Example. 

Prove that if 𝑛 = 𝑎𝑏 , 𝑎, 𝑏 ∈ 𝑍+, then 𝑎 ≤ √𝑛 or 𝑏 ≤ √𝑛 

Proof.  

Because there is no obvious way of showing that 𝑎 ≤ √𝑛 

or 𝑏 ≤ √𝑛 directly from the equation 𝑛 =  𝑎𝑏, where a 

and b are positive integers, we attempt a proof by 

contraposition. 

(1) 𝑎 > √𝑛 and 𝑏 > √𝑛     (Hypothesis) 
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(2) 𝑎𝑏 > √𝑛 √𝑛 = 𝑛         (Algebra) 

(3) 𝑎𝑏 ≠ 𝑛                         (Algebra) 

Therefore the negation of the conclusion implies that the 

hypothesis is false. Then the original conditional 

statement is true.  ■ 

● Proof by Contradiction 

Because the statement 𝑟 ∧ ¬𝑟 is a contradiction whenever 

r is a proposition, we can prove that p is true if we can 

show that ¬𝑝 → (𝑟 ∧ ¬𝑟 ) is true for some proposition r. 

Proofs of this type are called proofs by contradiction. 

Because a proof by contradiction does not prove a result 

directly, it is another type of indirect proof. 

Example.  

Prove that √2 is irrational by giving a proof by 

contradiction.  

Solution.  

(1)  Suppose that √2 is rational.   (Hypothesis) 

(2)    √2 =
𝑎

𝑏
 , 𝑎 ∈ 𝑍 , 𝑏 ∈ 𝑍∗ and gcd(𝑎, 𝑏) = 1. 

                          (Definition and hypothesis) 
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(3)    2 =
𝑎2

𝑏2                                             (Algebra) 

(4)    𝑎2 = 2𝑏2                                        (Algebra) 

(5)   𝑎2 is even                                       (Definition)  

(6)    𝑎 is even                                        (Algebra)  

(7)    𝑎 = 2𝑐 , 𝑐 ∈ 𝑍                                (Definition)    

(8)   𝑏2 = 2𝑐2                                    from (7) and (4)   

(9)   𝑏  is even                                        (Algebra) 

 (10)  gcd(𝑎, 𝑏) ≠ 1                          (a contradiction) 

Hence our hypothesis that √2  is rational is false and 

hence √2  is irrational. ◄ 

● Proofs of Equivalent  

To prove a theorem that is a biconditional statement, that 

is a statement of the form 𝑝 ⟷ 𝑞, we show that 𝑝 → 𝑞  

and 𝑞 → 𝑝 are both true. The validity of this approach is 

based on the tautology: 

(𝑝 ⟷ 𝑞) ≡ (𝑝 → 𝑞) ∧ (𝑞 → 𝑝) 

Example.  

Prove the theorem "If 𝑛 is a positive integer, then 𝑛 is 

odd if and only if 𝑛2
  is odd". 
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Solution.  

This theorem has the form "𝑝 if and only 𝑞", where 𝑝 is 

"𝑛 is odd" and 𝑞 is " 𝑛
2 is odd. To prove this theorem, we 

need to show that 𝑝 → 𝑞  and 𝑞 → 𝑝 are both true. 

Because we have shown before that both 𝑝 → 𝑞  and 𝑞 →

𝑝 are true, we have shown that the theorem is true.  ◄ 

Sometimes a theorem states that several propositions are 

equivalent. Such a theorem states that 

propositions𝑝1, 𝑝2, . . . , 𝑝𝑛 are equivalent. This can be 

written as 𝑝1 ↔ 𝑝2 ↔. . .↔ 𝑝𝑛which states that all 𝑛 

propositions have the same truth values and 

consequently, that for all i and j with 1 ≤ 𝑖 ≤ 𝑛and1 ≤

𝑗 ≤ 𝑛, 𝑝𝑖and𝑝𝑗are equivalent. One way to prove these 

mutually equivalent is to use the tautology  

[𝑝1 ↔. . .↔ 𝑝𝑛]

↔ [(𝑝1 → 𝑝2) ∧ (𝑝2 → 𝑝3) ∧. . .∧ (𝑝𝑛 → 𝑝1)] 

This shows that if the implications 

 𝑝1 → 𝑝2,  𝑝2 → 𝑝3, . . ., 𝑝𝑛 → 𝑝1  

can be shown to be true, then the proposition  

𝑝1, 𝑝2, . . . , 𝑝𝑛are all equivalent.  
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Example.  

Show that these statements are equivalent: 

𝑝1: 𝑛  is an even integer. 

𝑝2:  𝑛 –  1 is an odd integer. 

𝑝3:  𝑛2 is an even integer. 

Solution. 

We use a direct proof to show 𝑝1 → 𝑝2. Suppose that 𝑛 is 

even. Then 𝑛 =  2 𝑘 for some integer k. Consequently, 

𝑛 –  1 =  2 𝑘– 1 =  2 (𝑘 –  1)  +  1. This means that  

𝑛 –  1  is odd since it is of the form    2 𝑚  +  1, where 𝑚 

is the integer 𝑘 − 1.  

We also use a direct proof to show 𝑝2 → 𝑝3.  

Now, suppose that 𝑛 − 1 is odd.  

Then we have  𝑛 – 1 =  2 𝑘 +  1 for some integer k.  

Hence     

𝑛 =  2 𝑘 +  2. 

Therefore 

𝑛2 = (2𝑘 + 2)2 = 4𝑘2 + 8𝑘 + 4 = 2(2𝑘2 + 4𝑘 + 2). 

This means that 𝑛2
  is even. 
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To prove 𝑝3 → 𝑝1, we use an indirect proof. That is, we 

prove that if 𝑛 is not even, then 𝑛2 is not even. This is the 

same as proving that if 𝑛 is odd, then 𝑛2 is odd, which we 

leave it as exercise.  ■ 

● Disproving Universal Statements 

Construct an instance for which the statement ∀𝑥𝑃(𝑥) is 

false. Also called Proof by Counterexample. 

Example.  

Disprove the statement:  If a function is continuous at a 

point, then it is differentiable at that point. 

(Dis)proof:   

Let 𝑓(𝑥)  =  |𝑥| and consider the point x = 0. 

𝑓(𝑥) is continuous at 0. 𝑓(𝑥) is not differentiable at 0.◄ 

Example.  

Show that the statement “Every positive integer is the 

sum of the squares of three integers” is false.  

Solution.  

To look for a counterexample, we try to write successive 

positive integers as a sum of three squares. We find that 

1 = 02 + 02 + 12 , 2 = 02 + 12 + 12 , 3 = 12 + 12 +
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12 , 4 = 02 + 02 + 22 , 5 = 02 + 12 + 22 , 6 = 12 +

12 + 22 but we cannot find a way to write 7 as the sum of 

three squares. It follows that 7 is a counterexample.  ■ 

● Proof By Cases  

A proof by cases must cover all possible cases that arise 

in a theorem. 

Example.  

Prove that if n is an integer then 𝑛
2 ≥ 𝑛. 

Solution. 

We can prove that 𝑛2 ≥ 𝑛 for every integer by 

considering three cases,  

Case (i). 𝑛 =  0, because 02 = 0, we see that 02 ≥ 0. 

It follows that 𝑛2 ≥ 𝑛 is true in this case.  

Case (ii). 𝑛 ≥  1, when we multiply both sides of the  

 inequality 𝑛 ≥ 1 by the  positive integer n, we obtain 

𝑛 ⋅ 𝑛 ≥ 𝑛 ⋅ 1. This implies that 𝑛2 ≥ 𝑛 for 𝑛 ³ 1. 

Case (iii). 𝑛 ≤ −1. Thus, 𝑛2 ≥ 0. It follows that 𝑛2 ≥ 𝑛.  

Because the inequality 𝑛2 ≥ 𝑛  holds in all three cases, 

we can conclude that if 𝑛 is an integer, then 𝑛2 ≥ 𝑛.   ∎ 

 



- 287 - 
 

Example.  

Use a proof by cases to show that |𝑥𝑦| = |𝑥||𝑦|, where x 

and y are real numbers. 

Solution.  

We have four cases 

Case (i).  

We have 𝑥𝑦 ≥ 0 when 𝑥 ≥ 0    and 𝑦 ≥ 0,  so that 

|𝑥𝑦| = 𝑥𝑦 = |𝑥||𝑦| . 

Case (ii).  

Note that if 𝑥 ≥ 0  and 𝑦 < 0, then 𝑥𝑦 ≤  0   so that 

|𝑥𝑦| = −𝑥𝑦 = 𝑥(−𝑦) = |𝑥||𝑦|. 

Case (iii).  

Note that if 𝑥 < 0 and  𝑦 ≥ 0, then 𝑥𝑦 ≤ 0  so that 

|𝑥𝑦| = −𝑥𝑦 = (−𝑥)𝑦 = |𝑥||𝑦|. 

Case (iv).   

Note that when 𝑥 <  0 and 𝑦 <  0, it follows that 𝑥 𝑦 >

 0. Hence |𝑥𝑦| = 𝑥𝑦 = (−𝑥)(−𝑦) = |𝑥||𝑦|. 

This completes the proof.  ∎ 
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●Existence Proofs  

Proofs of existential statements ∃𝑥𝑃(𝑥)  are also called 

existence proofs. Two types of existence proofs 

(a) Constructive: Construct the object (Prove that it has 

the necessary properties). 

(b) Non-constructive: Argue indirectly that the object 

must exist. 

Example.  

Between any two distinct irrationals there is a rational 

and an irrational. 

Constructive Proof. 

Let α and β be irrational numbers with 𝛼 < 𝛽. 

Then 𝛽 − 𝛼 > 0.  

Choose an integer n such that 𝑛(𝛽 –  𝛼) > 1.  

Then 
1

𝑛
< 𝛽–𝛼.  

Let 𝑚 =  é𝑛𝛽ù –  1.   

Then 𝑚 < 𝑛𝛽 ≤ 𝑚 + 1.  

Or 𝑚/𝑛 <  𝛽 and 𝑛𝛽 –  1 ≤  𝑚. 

Then 𝛼 <  𝛽 –  1/𝑛 =  (𝑛𝛽 –  1)/𝑛 ≤  𝑚/𝑛. 

Therefore, 𝛼 <  𝑚/𝑛 <  𝛽. 
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Choose an integer k such that  𝑘(𝛽 –  𝑚/𝑛)  >  √2. 

Divide by k:  𝛽 –  𝑚/𝑛 >  √2/𝑘. 

Then 𝛽 >  𝑚/𝑛 + √2/𝑘. 

Therefore, 𝛼 <  𝑚/𝑛 <  𝑚/𝑛 + √2/𝑘 <  𝛽.∎ 

Example.  

The equation  𝑥2 –  7𝑦2  =  1 has a solution in positive 

integers. 

Constructive proof.  

Let 𝑥 = 8 and 𝑦 = 3. Then 82– 7 × 32 = 64–63 = 1.■ 

Example.  

There exists 𝑥 ∈  𝑅 such that 𝑥5 –  3𝑥 +  1. 

Non-constructive proof.  

Let 𝑓(𝑥)  =  𝑥5 –  3𝑥 +  1. 

𝑓(1)  = – 1 <  0 and 𝑓(2)  =  27 >  0. 

f(x) is a continuous function. By the Intermediate Value 

Theorem, there exists 𝑥 ∈  [1, 2] such that 𝑓(𝑥)  =  0. 

Example.  

Show that there exist irrational numbers a and b such that 

𝑎𝑏 is rational. 
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Solution.  

We know that √2 is irrational. Consider the number 

 √2
√2

.  

Case 1.  

If it is rational, we have two irrational numbers a and b, 

namely 𝑎 = √2 and 𝑏 = √2.  

Case 2. 

If √2
√2

 is irrational, then we can let 𝑎 = √2
√2

 and 𝑏 =

√2 so 𝑎𝑏 = √2
√2

√2

= √2
√2√2

= √2
2

= 2. 

This proof is an example of a non-constructive existence 

proof because we have not found irrational numbers a 

and b such that 𝑎𝑏 is rational. Rather, we have shown that 

either the pair 𝑎 = √2 and 𝑏 = √2 or the pair 𝑎 = √2
√2

 

and 𝑏 = √2 have desired property, but we do not know 

which of these two pairs works.  ■ 
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Exercises Set (3) 

1. Use the direct proof to prove that 

(a)   (∀𝑥)(∀𝑦)(∀𝑧)(𝑥 + 𝑧 = 𝑦 + 𝑧 → 𝑥 = 𝑦). 

(b)  if 𝑥, 𝑦 are two rational numbers, then 𝑥 + 𝑦 is rational.  

(c) if for 𝑎, 𝑏, 𝑐 ∈ ℤ,  𝑎\𝑏 and 𝑎\𝑐, then 𝑎\(𝑏𝑥 + 𝑐𝑦),  where 

𝑥, 𝑦 ∈ ℤ. 

(d) if  𝑎\𝑏 and 𝑏\𝑐, then 𝑎\𝑐  for 𝑎, 𝑏, 𝑐 ∈ ℤ. 

2. Let x be a positive real number.  Then x is irrational iff the two 

sequences ë1 + 𝑥û, ë2 + 2𝑥û, ë3 + 3𝑥û, … 

and 

 ë1 +  1/𝑥û, ë2 +  2/𝑥û, ë3 +  3/𝑥û, …  

together contain every positive integer exactly once. 

3.  Let x and y be real numbers.   

       (a) Prove that éx + yù – 1 < x + y  éxù + éyù. 

(b)  Is – ë–xû = éxù true for all real numbers x? 

(c) Is x – 1 < ëxû  x true for all real numbers x? 

(d) Is ë2xû + ë2yû = ëxû + ëyû + ëx + yû . 

4. Use proof by contraposition to prove that 

 (a) if 𝑛 ∈ 𝑍 with 𝑛2 is odd, then 𝑛 is odd.  

 (b) if there is no integer between 0 and 1 , then there is no 

integer between 𝑛 and 𝑛 + 1.  

 (c) for 𝑥 ∈ ℤ, if 3|𝑥2, then 3|𝑥. 
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5.  Use the proof by contradiction to show that at least 

four of any 22 days must fall on the same day of the 

week. 

6. Give a proof by contradiction of the theorem "If 3𝑛 +

2 is odd, then n is odd". 

7- Prove that the square of an even number is an even 

number using    

  (a)  a direct proof.  

  (b)  An indirect proof. 

   (c) a proof by contradiction. 

8- Prove that if x and y are real numbers, then 

max(𝑥, 𝑦)  +  min (𝑥, 𝑦)    =  𝑥 +  𝑦. 

9- Prove that the sum of two rational numbers is rational. 

10- Show that these three statements are equivalent, 

where a and b  are real numbers: 

(a) 𝑎 < 𝑏; 

(b) 𝑎 <
𝑎+𝑏

2
; 

(c) 
𝑎+𝑏

2
< 𝑏. 
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11- Show that if a, b and c are real numbers and𝑎 ≠ 0, 

then there is a unique solution of the equation 𝑎 𝑥 +

 𝑏 =  𝑐. 

12- Prove the triangle inequality, which states that if x 

and y are real numbers, then|𝑥| + |𝑦| ≥ |𝑥 + 𝑦|. 

13. Show that there is a positive integer that can be 

written as the sum of cubes of positive integers in two 

different ways (give constructive proof).  

14. Show that  the equation x2 – 67y2 = 1  has a solution 

in positive integers. (Give constructive proof). 

15. Disprove the conjecture (Fermat): All integers of the 

form 22𝑛
+ 1 for 𝑛 ≥ 1 are primes. (Give 

counterexample  𝑛 = 5). 

16- Determine whether these are valid arguments. 

             (a) “If 𝑥2is irrational, then x is irrational. Therefore, if 

x is irrational, it follows that 𝑥2 is irrational”. 

    (b) “If 𝑥2 is irrational, then x is irrational. The number 

𝑥 = 𝜋2 is irrational. Therefore, the number 𝑥 = 𝜋 is 

irrational”. 

 

 

 



- 294 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER (IV) 

METHMATICAL INDUCTION 

 

 

 

 

 

 

 

 

 

 

 

 



- 295 - 
 

Chapter (IV) 

Mathematical Induction 

 

4.1 The Basic Principle 

The basic principle of mathematical induction is as 

follows. To prove that a statement holds for all positive 

integers 𝑛, we first verify that it holds for 𝑛 = 1, and then 

we prove that if it holds for a certain natural number 𝑘, it 

also holds for 𝑘 + 1. 

To visualize the idea of mathematical induction, imagine 

an infinite collection of dominoes positioned one behind 

the other in such a way that if any given domino falls 

backward, it makes the one behind it fall backward also. 

Then imagine that the first domino falls backward. What 

happens? Á They all fall down! 
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Theorem 1.  

(Principle of Mathematical Induction)  

Let 𝑆(𝑛) denote a statement involving a variable 𝑛. 

Suppose  

(1) 𝑆(1) is true ;  

(2) if 𝑆(𝑘) is true for some positive k, then 𝑆(𝑘 + 1) 

is also true. 

Then 𝑆(𝑛) is true for all positive integers 𝑛.  

Example.  

Prove 1 + 3 + 5 + ⋯+ (2𝑛 − 1) = 𝑛2  for all natural 

numbers 𝑛. 

Solution.   

We shall prove the statement using mathematical 

induction. Clearly, the statement holds when 𝑛 = 1 since 

1 = 12. Suppose the statement holds for some positive 

integer 𝑘. 

 That is, 1 + 3 + 5 + ⋯+ (2𝑘 − 1) = 𝑘2. 

Consider the case 𝑛 = 𝑘 + 1. By the above assumption 

(which we shall call the induction hypothesis), we have 

 1 + 3 + 5 + ⋯+ [2(𝑘 + 1) − 1] 



- 297 - 
 

= [1 + 3 + 5 + ⋯+ (2𝑘 − 1)] + (2𝑘 + 1) 

           = 𝑘2 + (2𝑘 + 1)  = (𝑘 + 1)2 

That is the statement holds for  𝑛 = 𝑘 + 1 provided that it 

holds  for 𝑛 = 𝑘. By the principle of mathematical 

induction, we conclude that 1 + 3 + 5 + ⋯+

(2𝑛 − 1) = 𝑛2 for all natural numbers 𝑛. ∎ 

The principle of mathematical induction can be used to 

prove a wide range of statements involving variables that 

take discrete values. Some typical examples are shown 

below.  

Example.  

Prove that 23𝑛 − 1 is divisible by 11 for all positive 

integers 𝑛. 

Solution.  

Clearly 231 − 1 = 22 is divisible by 11.  Suppose 

11|23𝑘 for some positive integer 𝑘.  

For the case 𝑛 = 𝑘 + 1, we have  

23𝑘+1 − 1 = 23. 23𝑘 − 1 = 11.2. 23𝑘 + (23𝑘 − 1) 

which is also divisible by 11. It follows that 23𝑛 − 1 is 

divisible by 11 for all positive integers 𝑛.  ∎ 
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Example.  

Let 𝑥 > −1 be a real number.  

Prove that (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥  for all natural numbers 𝑛. 

Solution.  

The inequality holds for 𝑛 = 1 since (1 + 𝑥)1 = 1 + 1𝑥.  

Let (1 + 𝑥)𝑘 ≥ 1 + 𝑘𝑥  for some positive integer k. For 

the case 𝑛 = 𝑘 + 1,   

 (1 + 𝑥)𝑘+1 = (1 + 𝑥)𝑘(1 + 𝑥) ≥ (1 + 𝑘𝑥)(1 + 𝑥) 

                   = 1 + (𝑘 + 1)𝑥 + 𝑘𝑥2  ≥ 1 + (𝑘 + 1)𝑥. 

Hence, if the inequality holds for the case  𝑛 = 𝑘, it also 

holds for the case 𝑛 = 𝑘 + 1.  It follows that (1 + 𝑥)𝑛 ≥

1 + 𝑛𝑥  for all natural numbers 𝑛. ∎ 

4.2 Variations of the Basic principle 

There are many variations to the principle of 

mathematical induction.  

Theorem 2. (Principle of Mathematical Induction, Variation 1) 

Let 𝑆(𝑛) denote a statement involving a variable 𝑛. 

Suppose  

(1) 𝑆(𝑘0) is true for some positive integer 𝑘0  ;  

(2) if 𝑆(𝑘) is true for some positive integer 𝑘 ≥ 𝑘0, then 
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𝑆(𝑘 + 1) is also true. 

Then 𝑆(𝑛) is true for all positive integers 𝑛 ≥ 𝑘0. 

    In some cases a statement involving a variable 𝑛 holds 

when 𝑛 is  'Large enough', but does not hold when, say, 

𝑛 = 1. In this case Theorem 1 does not apply, but the 

above variation allows us to prove the statement. 

Example.  

Prove that 2𝑛 > 𝑛2 for all natural numbers 𝑛 ≥ 5. 

Solution.  

First, we check that 25 = 32 > 25 = 52, so the 

inequality holds for 𝑛 = 5.  

Suppose 2𝑘 > 𝑘2 for some integer 𝑘 ≥ 5.  

Then 2𝑘+1 = 2.2𝑘 > 2𝑘2 > (𝑘 + 1)2.  

The last inequality holds since 2𝑘2 − (𝑘 + 1)2 =

(𝑘 − 1)2 − 2 > 0 whenever 𝑘 ≥ 5. 

Hence, if the inequality holds for 𝑛 = 𝑘, it also holds for 

𝑛 = 𝑘 + 1.  By Theorem 2, 2𝑛 > 𝑛2 for all natural 

numbers 𝑛 ≥ 5. ∎ 

   Sometimes a sequence may be defined recursively, and 

a term may depend on some previous terms. In particular, 
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it may depend on more than one previous terms. In this 

case Theorem 1 does not apply because assuming 𝑆(𝑘) 

holds for a single 𝑘 is not sufficient. We need the 

following. 

Theorem 3. (Principle of Mathematical Induction, Variation 2) 

Let 𝑆(𝑛) denote a statement involving a variable 𝑛. 

Suppose  

(1) 𝑆(1) and 𝑆(2) are true;  

(2) if 𝑆(𝑘) and 𝑆(𝑘 + 1) are true for some positive 

integer 𝑘, then 𝑆(𝑘 + 2) is also true.    

Then 𝑆(𝑛) is true for all positive integers 𝑛.    

Of course there is no need to restrict ourselves only to ' 

two levels'. Moreover, in the spirit of Theorem 2, there is 

no need to start from 𝑛 = 1. We leave the formulation as 

an exercise. 

Example.  

Let {𝑎𝑛} be a sequence of natural numbers such that 𝑎1 =

5, 𝑎2 = 13 and 𝑎𝑛+2 = 5𝑎𝑛+1 − 6𝑎𝑛 for all natural 

numbers 𝑛. Prove that 𝑎𝑛 = 2𝑛 + 3𝑛 for all natural 

numbers 𝑛.  
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Solution.  

We have that 𝑎1 = 5 = 21 + 31 and 𝑎2 = 13 = 22 + 32. 

Suppose 𝑎𝑘 = 2𝑘 + 3𝑘 and 𝑎𝑘+1 = 2𝑘+1 + 3𝑘+1 for 

some natural number 𝑘.  

Then 

𝑎𝑘+2 = 5𝑎𝑘+1 − 6𝑎𝑘 

         = 5(2𝑘+1 + 3𝑘+1) − 6(2𝑘 + 3𝑘) 

         = 4.2𝑘 + 9.3𝑘 = 2𝑘+2 + 3𝑘+2 

Hence, if the formula holds for 𝑛 = 𝑘 and 𝑛 = 𝑘 + 1, it 

also holds for 𝑛 = 𝑘 + 2.  By Theorem 3 we have 𝑎𝑛 =

2𝑛+3𝑛  for some natural number 𝑛. ∎ 

Sometimes to prove a statement we need to consider the 

odd cases and even cases separately. To combine them 

nicely into one single case, we need the following. 

Theorem 4. (Principle of Mathematical Induction, Variation 3) 

Let 𝑆(𝑛) denote a statement involving a variable 𝑛. 

Suppose  

(1) 𝑆(1) and 𝑆(2) are true;  

(2) if 𝑆(𝑘) is true for some positive integer 𝑘, then 

𝑆(𝑘 + 2) is also true.    
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Then 𝑆(𝑛) is true for all positive integers 𝑛.    

Although Theorem 2 and Theorem 3 look similar, their 

nature is quite different. Again there is no need to restrict 

ourselves to considering only two initial cases, but we do 

not bother to go into the details. 

Example.  

Prove that for all natural numbers n, there exist distinct 

integers 𝑥, 𝑦, 𝑧  for which 

𝑥2 + 𝑦2 + 𝑧2 = 14𝑛. 

Solution. For 𝑛 = 1 and n = 2 , such integers exist as 

12 + 22 + 32 = 14 and 42 + 62 + 122 = 142.  

Suppose for 𝑛 =  𝑘 (where k is positive integer), such 

integers exist, i.e. 𝑥°
2 + 𝑦°

2 + 𝑧°
2 = 14𝑘 for some distinct 

integers 𝑥°, 𝑦°, 𝑧°.  

Then for 𝑛 = 𝑘 + 2, such integers also exist because 

(14𝑥°)
2 + (14𝑦°)

2 + (14𝑧°)
2 = 14𝑘+2. 

By Theorem 4, the result follows. ∎ 

In Theorem 2, we remarked that sometimes assumption 

of 𝑆(𝑘) for a single 𝑘 may not be sufficient, so we may 

need to assume the statement holds for two values (and 

accordingly we need to verify two initial cases).  
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We also remarked that there is no need to restrict 

ourselves to only two values; we could generalize to any 

finite number of cases.  

The following variation gives a further generalization of 

this, assuming all cases from 1 to 𝑘. 

Theorem 5.  

(Principle of Mathematical Induction, Variation 4) 

Let 𝑆(𝑛) denote a statement involving a 

variable 𝑛. Suppose  

(1) 𝑆(1) is true;  

(2) if for some positive integer 𝑘, 

𝑆(1), 𝑆(2), … , 𝑆(𝑘) are all true, then 𝑆(𝑘 + 1) is 

also true.    

Then 𝑆(𝑛) is true for all positive integers 𝑛.    

 Example.  

Let 𝑎1, 𝑎2, … be a sequence of real numbers satisfying 

𝑎𝑖+𝑗 ≤ 𝑎𝑖 + 𝑎𝑗  for all  𝑖, 𝑗 = 1, 2, …   

Prove that  

𝑎1 +
𝑎2

2
+

𝑎3

3
+ ⋯+

𝑎𝑛

𝑛
≥ 𝑎𝑛 

for each positive integer 𝑛.  
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Solution.  

Clearly, the inequality holds for 𝑛 = 1.  

Suppose the inequality holds for 𝑛 = 1,2,… , 𝑘 for some 

positive integer 𝑘.  

Then by adding the inequalities 

𝑎1 ≥ 𝑎1 

𝑎1 +
𝑎2

2
≥ 𝑎2 

⋮ 

𝑎1 +
𝑎2

2
+ ⋯+

𝑎𝑘

𝑘
≥ 𝑎𝑘 

We get  

𝑘𝑎1 + (𝑘 − 1)
𝑎2

2
+ ⋯+

𝑎𝑘

𝑘
≥ 𝑎1 + 𝑎2+. . . +𝑎𝑘 

𝑖, 𝑒., 

(𝑘 + 1) (𝑎1 +
𝑎2

2
+ ⋯+

𝑎𝑘

𝑘
) ≥ 2(𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘) 

= (𝑎1 + 𝑎𝑘) + (𝑎2 + 𝑎𝑘−1) + ⋯+ (𝑎𝑘 + 𝑎1) 

                ≥ 𝑘𝑎𝑘+1. 

It follows that 

 (𝑘 + 1) (𝑎1 +
𝑎2

2
+ ⋯+

𝑎𝑘

𝑘
+

𝑎𝑘+1

𝑘+1
) ≥ (𝑘 + 1)𝑎𝑘+1.  

Hence 
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𝑎1 +
𝑎2

2
+ ⋯+

𝑎𝑘+1

𝑘+1
≥ 𝑎𝑘+1, 

i. e.,  the inequality holds for 𝑛 = 𝑘 + 1.  

By Theorem 6, the result follows.∎ 

   Finally, we introduce a special variation, commonly 

known as backward induction. 

Theorem 6.  (Backward Induction) 

Let 𝑆(𝑛) denote a statement involving a variable 𝑛. 

Suppose  

(1) 𝑆(𝑛) is true for infinitely many natural numbers 𝑛 ;  

(2) if 𝑆(𝑘) is true for some positive integer 𝑘 > 1, then 

𝑆(𝑘 − 1) is also true.    

Then 𝑆(𝑛) is true for all positive integers 𝑛.    

The most typical example backward induction is used is 

perhaps in the proof of the AM-GM inequality, as shown 

in the example below. 

Example. (AM-GM Inequality)  

Prove that for positive integers 𝑎1, 𝑎2, … , 𝑎𝑛,  

𝑎1 + 𝑎2 + ⋯+ 𝑎𝑛

𝑛
≥ √𝑎1𝑎2 …𝑎𝑛

𝑛 . 

In other words, the arithmetic mean (AM) is always 

greater than or equal to the geometric mean (GM). 
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Solution.  

From (√𝑎1 − √𝑎2)
2 ≥ 0, we obtain 

𝑎1+𝑎2

2
≥ √𝑎1𝑎2 , 𝑖, 𝑒. 

the inequality holds for 𝑛 = 2. Suppose the inequality 

holds when 𝑛 = 𝑘 for some positive integer 𝑘.  Consider 

the case 𝑛 = 2𝑘. Using the case 𝑛 = 2 and the induction 

hypothesis, we have 

    
𝑎1+𝑎2+⋯+𝑎2𝑘

2𝑘
=

1

𝑘
(
𝑎1+𝑎2

2
+

𝑎3+𝑎4

2
+ ⋯+

𝑎2𝑘−1+𝑎2𝑘

2
)  

                 ≥
√𝑎1𝑎2+√𝑎3𝑎4+⋯+√𝑎2𝑘−1𝑎2𝑘

𝑘
 

                      ≥ √√𝑎1𝑎2. √𝑎3𝑎4 …√𝑎2𝑘−1𝑎2𝑘

𝑘
 

    ≥ √𝑎1𝑎2 …𝑎2𝑘
2𝑘

 

𝑖, 𝑒. the inequality also holds for 𝑛 = 2𝑘.  By Theorem 1, 

the inequality holds for all positive powers of 2. In other 

words, condition (1) in Theorem 6 is satisfied.  Again, we 

suppose the inequality holds when 𝑛 =  𝑘 for some 

positive integer 𝑘, 𝑖. 𝑒., 

𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘

𝑘
≥ √𝑎1𝑎2 …𝑎𝑘

𝑘 . 
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Applying the substitution 𝑎𝑘 =
𝑎1+𝑎2+⋯+𝑎𝑘−1

𝑘−1
 and 

simplifying (the details of which are left as an exercise), 

we get 
𝑎1+𝑎2+⋯+𝑎𝑘−1

𝑘−1
≥ √𝑎1 + 𝑎2 + ⋯+ 𝑎𝑘−1

𝑘−1
 

𝑖, 𝑒. the inequality also holds when 𝑛 = 𝑘 − 1. By 

Theorem 6, the inequality is proved. ∎ 

♣ 4.3 Miscellaneous Examples 

     Most of the examples we have seen deal with 

algebraic (in) equalities and problems in number theory. 

One should not be misled to think that these are the only 

areas in which the method of mathematical induction 

applies. In fact, the method is powerful that it is useful in 

almost every branch of mathematics. In this section we 

shall see some miscellaneous examples. 

Example.  

Prove that  

sin 𝜃 + sin 2𝜃 + ⋯+ sin 𝑛𝜃 = sin
(𝑛 + 1)𝜃

2
sin

𝑛𝜃

2
csc

𝜃

2
 

for all positive integers  𝑛.    

Solution.  

When 𝑛 = 1, the right hand side is:    
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sin𝜃sin
𝜃

2
csc

𝜃

2
= sin𝜃. 

So the formula holds for 𝑛 = 1.  

Suppose the formula holds for 𝑛 = 𝑘, 𝑖. 𝑒.  

sin 𝜃 + sin 2𝜃 + ⋯+ sin 𝑘𝜃 = sin
(𝑘 + 1)𝜃

2
sin

𝑘𝜃

2
csc

𝜃

2
 

Consider the case 𝑛 = 𝑘 + 1.  

By the induction hypothesis, 

sin 𝜃 + sin 2𝜃 + ⋯+ sin 𝑘𝜃 + sin(𝑘 + 1)𝜃  

=sin
(𝑘 + 1)𝜃

2
sin

𝑘𝜃

2
csc

𝜃

2
+ sin(k + 1)𝜃 

=sin
(𝑘+1)𝜃

2
sin

𝑘𝜃

2
csc

𝜃

2
+ 2sin

(𝑘+1)𝜃

2
cos

(𝑘+1)𝜃

2
  

= sin
(𝑘 + 1)𝜃

2
csc

𝜃

2
[sin

𝑘𝜃

2
+ 2sin

𝜃

2
cos

(𝑘 + 1)𝜃

2
] 

 = sin
(𝑘+1)𝜃

2
csc

𝜃

2
[sin

𝑘𝜃

2
+ sin (

𝜃

2
+

(𝑘+1)𝜃

2
) +

sin (
𝜃

2
−

(𝑘+1)𝜃

2
)] 

= sin
(𝑘 + 1)𝜃

2
csc

𝜃

2
[sin

𝑘𝜃

2
+ sin

(𝑘 + 2)𝜃

2
−sin

𝑘𝜃

2
] 

= sin
[(𝑘+1)+1]𝜃

2
sin

(𝑘+1)𝜃

2
csc

𝜃

2
                               

By the principle of mathematical induction, the formula 

holds for all positive integers 𝑛. ∎ 
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Example.  

Prove that (3 + √5)
𝑛

+ (3 − √5)
𝑛

is an even integer for 

all natural numbers 𝑛.  

Solution.  

Write 𝑓(𝑛) = 𝛼𝑛 + 𝛽𝑛 where 𝛼 = 3 + √5 and 𝛽 = 3 −

√5. 

It is straightforward to check that 𝑓(1) = 6 and 𝑓(2) =

28 are even integers. Suppose 𝑓(𝑘) and 𝑓(𝑘 + 1) are 

both even integers for some positive integer k. Consider 

the case 𝑛 = 𝑘 + 2. Note that 𝛼 and 𝛽 are roots of the 

equation 𝑥2 − 6𝑥 + 4 = 0. 

So 𝛼2 = 6𝛼 − 4 and 𝛽2 = 6𝛽 − 4, and thus 

𝑓(𝑘 + 2) = 𝛼𝑘+2 + 𝛽𝑘+2 

                = 𝛼𝑘(6𝛼 − 4) + 𝛽𝑘(6𝛽 − 4) 

                = 6(𝛼𝑘+1 + 𝛽𝑘+1) − 4(𝛼𝑘 + 𝛽𝑘) 

                = 6𝑓(𝑘 + 1) − 4𝑓(𝑘) 

It follows that 𝑓(𝑘 + 2) must also be an even integer. 

By mathematical induction, we conclude that 𝑓(𝑛) is an 

even integer for all natural numbers 𝑛. ∎ 
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Example.  

Prove that, given two or more squares, one can always 

cut them (using only compasses, straight edge and 

scissors) and reform them into a large square. 

Solution. In the case of two squares, we resort to the 

following diagram: 

 

 +   =   

       

 We leave it to the reader to work how the dotted lines are 

to be drawn and to verify that such constructions are 

indeed possible using compasses and straight edge. 

Suppose the statement is true in the case of k squares. 

Then, in the case of 𝑘 + 1 squares, we can cut 𝑘 of the 

squares to form a large square, according to the induction 

hypothesis. This leaves only two squares, but we have 

shown that two squares can be cut to form one large 

square. By the principle of mathematical induction, the 

statement is proved.  ∎ 
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Example.  

In a party there are 2𝑛 participants, where 𝑛 is a natural 

number. Some participants shake hands with other 

participants. It is known that there do not exist three 

participants who have shaken hands with each other. 

Prove that the total number of handshakes is not more 

than 𝑛2 .  

Solution.  

When 𝑛 = 1, the number of handshakes is at most 1 =

12. 

Suppose that with 2k people, the total number of 

handshakes is at most 𝑘2 under the given condition.  

Consider the case 𝑛 = 𝑘 + 1, 𝑖. 𝑒. 2𝑘 + 2 people.  

Pick two people who have shaken hands with each other 

(if no such people exist, then the total number of 

handshake would be zero), say A and B. Under the 

induction hypothesis, there are at most  𝑘2 handshakes 

among the other 2𝑘 people.  

Now by the given condition, none of these 2𝑘 people 

have shaken hands with both A and B. So these 2𝑘 people 

have at most 2𝑘 handshakes with A and B.  
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Taking the  handshake between A and B into account, the 

total number of handshakes is at most 𝑘2 + 2𝑘 + 1 =

(𝑘 + 1)2. By the principle of mathematical induction, the 

result follows. ∎ 

4.4 Higher Dimensional Induction 

Theorem 7.  (Two- Dimensional Induction, Version 1) 

Let 𝑆(𝑚, 𝑛) denote a statement involving two variables 

𝑚 and  𝑛. Suppose  

(1) 𝑆(1,1) is true;  

(2) if 𝑆(𝑘, 1) is true for some positive integer 𝑘, then 

𝑆(𝑘 + 1, 1) is also true. 

(3) if 𝑆(ℎ, 𝑘) holds for some positive integer ℎ and 𝑘, 

then 𝑆(ℎ, 𝑘 + 1) is also true.  

Then 𝑆(𝑚, 𝑛) is true for all positive integers 𝑚, 𝑛.    

Theorem 7 can be easily understood. The first two 

conditions together imply (by Theorem 1) that 𝑆(𝑚, 1) is 

true for all positive integers 𝑚. Thus, fixing 𝑚, this 

together with condition (3) imply (by Theorem 1 again) 

that 𝑆(𝑚, 𝑛) holds for all positive integers  𝑛. As a result, 
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𝑆(𝑚, 𝑛) holds for all positive integers 𝑚 and  𝑛, as we 

desire. 

Example.  

Let 𝑓 be a function of two variables, with 𝑓(1, 1) = 2 ,

{
𝑓(𝑚 + 1, 𝑛) = 𝑓(𝑚, 𝑛) + 2(𝑚 + 𝑛)      

𝑓(𝑚, 𝑛 + 1) = 𝑓(𝑚, 𝑛) + 2(𝑚 + 𝑛 − 1)
 

For all natural numbers 𝑚 and 𝑛. Prove that 

𝑓(𝑚, 𝑛) = (𝑚 + 𝑛)2 − (𝑚 + 𝑛) − 2𝑛 + 2 

For all positive integers 𝑚 and 𝑛.  

Solution.  

We first check that 𝑓(1,1) = 2 = (1 + 1)2 − (1 + 1) −

2(1) + 2. Suppose 𝑓(𝑘, 1) = (𝑘 + 1)2 − (𝑘 + 1) −

2(1) + 2 = 𝑘2 + 𝑘 for some positive integers 𝑘.  Then 

𝑓(𝑘 + 1,1) = 𝑓(𝑘, 1) + 2(𝑘 + 1) 

              = (𝑘2 + 𝑘) + (2𝑘 + 2) 

              = [(𝑘 + 1) + 1]2 − [(𝑘 + 1) + 1] − 2(1) + 2.  

Thus conditions (1) and (2) in Theorem 7 are satisfied. 

Suppose 𝑓(ℎ, 𝑘) = (ℎ + 𝑘)2 − (ℎ + 𝑘) − 2𝑘 + 2 for 

some positive integers ℎ and  𝑘. Then 

𝑓(ℎ, 𝑘 + 1) = 𝑓(ℎ, 𝑘) + 2(ℎ + 𝑘 − 1) 

            = (ℎ + 𝑘)2 − (ℎ + 𝑘) − 2𝑘 + 2 + 2(ℎ + 𝑘) − 2 
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            = (ℎ + 𝑘 + 1)2 − (ℎ + 𝑘 + 1) − 2(𝑘 + 1) + 2 

Thus condition (3) in Theorem 7 is also satisfied. 

It follows that 𝑓(𝑚, 𝑛) = (𝑚 + 𝑛)2 − (𝑚 + 𝑛) − 2𝑛 + 2 

for all positive integers 𝑚 and 𝑛.  ∎ 

Theorem 7 is essentially applying Theorem 1 twice. The 

following alternative version of the principle of two-

dimensional induction in some sense reduces a two- 

dimensional problem into one dimension. 

Theorem 8. (Two- Dimensional Induction, Version 2) 

Let 𝑆(𝑚, 𝑛) denote a statement involving two 

variables 𝑚 and  𝑛. Suppose  

(1) 𝑆(1,1) is true;  

(2) if for some positive integer 𝑘 > 1, 𝑆(𝑚, 𝑛) is 

true whenever 𝑚 + 𝑛 = 𝑘, then 𝑆(𝑚, 𝑛) is true 

whenever 𝑚 + 𝑛 = 𝑘 + 1. 

Then 𝑆(𝑚, 𝑛) is true for all positive integers 

 𝑚, 𝑛.    

Example.  

For natural numbers 𝑝 and 𝑞, the Ramsey number 𝑅(𝑝, 𝑞) 

is defined as smallest integer 𝑛 so that among any 𝑛 

people, there exist p of them who know each other, or 
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there exist q of them who don't know each other. (We 

assume that if 𝐴 knows 𝐵, then 𝐵 knows 𝐴, and vice 

versa.) It is known that  𝑅(𝑝, 1) = 𝑅(1, 𝑞) = 1 

 and  𝑅(𝑝 + 1, 𝑞 + 1) ≤ 𝑅(𝑝, 𝑞 + 1) + 𝑅(𝑝 + 1, 𝑞) 

For all natural numbers 𝑝 and 𝑞. Deduce for all natural 

numbers 𝑝, 𝑞 that   

𝑅(𝑝, 𝑞) ≤ 𝐶𝑝−1
𝑝+𝑞−2

. 

Solution.  

First, we check that 𝑅(1,1) = 1 = 𝐶1−1
1+1−2. 

Assume that the desired inequality holds for all 𝑝, 𝑞 with 

𝑝 + 𝑞 = 𝑘, where 𝑘 is a positive integer.  

Now consider 𝑅(𝑝, 𝑞) with +𝑞 = 𝑘 + 1 .  

If either 𝑝 = 1 or 𝑞 = 1, the desired inequality follows 

immediately.  

If not, then noting that (𝑝 − 1) + 𝑞 = 𝑝 + (𝑞 − 1) = 𝑘, 

the inductive hypothesis gives  

𝑅(𝑝, 𝑞) ≤ 𝑅(𝑝 − 1, 𝑞) + 𝑅(𝑝, 𝑞 − 1) 

             ≤ 𝐶𝑝−2
𝑝+𝑞−3

+ 𝐶𝑝−1
𝑝+𝑞−3

 = 𝐶𝑝−1
𝑝+𝑞−2

. 

In other words, the desired inequality holds whenever  

𝑝 + 𝑞 = 𝑘 + 1. By Theorem 8 the result follows.∎ 
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Exercise Set (4) 

1- Prove by mathematical induction that the following statements 

hold for all positive integers 𝑛.  

(a)  12 + 22 + ⋯+ 𝑛2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1); 

(b)  12 × 2 + 22 × 3 + ⋯+ 𝑛2(𝑛 + 1) =
𝑛(𝑛+1)(𝑛+2)(3𝑛+1)

12
 ; 

(c)  4007𝑛 − 1 is divisible by 2003; 

(d)  2002𝑛+2 + 20032𝑛+1 is divisible by 4005; 

(e)  𝑛2 > 𝑛 + 1; 

(f)  
1

2
+

1

3
+ ⋯+

1

2𝑛
≥

𝑛

2
; 

(g)  1 × 1! + 2 × 2! + ⋯+ 𝑛 × 𝑛! = (𝑛 + 1)! − 1; 

(h)  cos 𝜃 + cos 2𝜃 +…+ cos 𝑛 𝜃 = sin
(𝑛+1)𝜃

2
cos

𝑛𝜃

2
csc

𝜃

2
− 1. 

2- To apply the principle of mathematical induction we need to 

verify two conditions, namely, the statement holds for 𝑛 = 1, and 

that if statement holds for 𝑛 = 𝑘 it also holds for 𝑛 = 𝑘 + 1. Can 

you think of a (wrong) statement in which the second condition is 

satisfied but the first one is not? That is, can you construct a 

statement 𝑆(𝑛) such that if 𝑆(𝑘) true, then 𝑆(𝑘 + 1) must be true, 

yet 𝑆(1) is not true? 

3- Prove that for all natural numbers 𝑛,  
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1 +
1

22
+

1

32
+ ⋯+

1

𝑛2
≤ 2 −

1

𝑛
 . 

What is the significance of the above result on the convergence of 

the series  ∑𝑛−2? 

4- The Lucas sequence 1, 3, 4, 7, 11, 18, 29,…. is defined by 

𝑎1 = 1,  𝑎2 = 3,      𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2   for 𝑛 ≥ 3. 

   Prove that 𝑎𝑛 < (1.75)𝑛 for all positive integers 𝑛. 

5- From a pack of 52 playing cards one extracts the 26 red cards 

and pairs them up randomly. The back sides of each pair of cards 

are then glued together, resulting in 13 cards with both sides 

being 'the front'. Prove that it is always possible to flip the cards 

so that the 13 sides facing upward are 𝐴, 2, 3, …10, 𝐽, 𝑄, 𝐾. 

6- The Fibonacci sequence is defined as 𝑥0 = 0, 𝑥1 = 1 and 

𝑥𝑛+2 = 𝑥𝑛+1 + 𝑥𝑛 for all non-negative integers 𝑛. Prove that  

(a) 𝑥𝑚 = 𝑥𝑟+1𝑥𝑚−𝑟 + 𝑥𝑟𝑥𝑚−𝑟−1 for all integers 𝑚 ≥ 1 and 

0 ≤ 𝑟 ≤ 𝑚 − 1; 

(b)   𝑥𝑑  divides 𝑥𝑘𝑑 for all positive integers 𝑑 and 𝑘. 
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Chapter (V) 

Elementary Number Theory 

5.1 The Ring of Integers 

Elementary number theory is largely about the ring of 

integers, denoted by the symbol ℤ. The integers are an 

example of an algebraic structure called an integral 

domain. This means that ℤ satisfies the following 

axioms: 

(a) ℤ has operations '+' (addition) and '⋅' (multiplication). 

It is closed under these operations, in that if 𝑚,𝑛 ∈ ℤ, 

then 𝑚 + 𝑛 ∈ ℤ and 𝑚 ∙ 𝑛 ∈ ℤ. 

(b) Addition is associative: If 𝑚, 𝑛, 𝑝 ∈ ℤ, then 

𝑚 + (𝑛 + 𝑝) = (𝑚 + 𝑛) + 𝑝 

(c) There is an additive identity 0 ∈ ℤ: For all 𝑛 ∈ ℤ, 

𝑛 + 0 = 𝑛 and 0 + 𝑛 = 𝑛. 

(d) Every element has an additive inverse: If 𝑛 ∈ ℤ, 

there is an element −𝑛 ∈ ℤsuch that 

𝑛 + (−𝑛) = 0 and (−𝑛) + 𝑛 = 0. 

(e) Addition is commutative: If 𝑚, 𝑛 ∈ ℤ, then 

𝑚 + 𝑛 = 𝑛 + 𝑚. 
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(f) Multiplication is associative:  

If 𝑚, 𝑛, 𝑝 ∈ ℤ,  then 𝑚 ∙ (𝑛 ∙ 𝑝) = (𝑚 ∙ 𝑛) ∙ 𝑝. 

(g) There is an multiplicative identity1 ∈ ℤ:  

For all 𝑛 ∈ ℤ,𝑛 ∙ 1 = 𝑛 and 1 ∙ 𝑛 = 𝑛. 

(h) Multiplication is commutative:  

If 𝑚, 𝑛 ∈ ℤ then 𝑚 ∙ 𝑛 = 𝑛 ∙ 𝑚. 

(i) The Distributive Laws hold:  

If 𝑚, 𝑛, 𝑝 ∈ ℤ, then  𝑚 ∙ (𝑛 + 𝑝) = 𝑚 ∙ 𝑛 + 𝑚 ∙ 𝑝 and 

(𝑚 + 𝑛) ∙ 𝑝 = 𝑚 ∙ 𝑝 + 𝑛 ∙ 𝑝. 

(j) There are no zero divisors:  

If 𝑚, 𝑛 ∈ ℤ and 𝑚 ∙ 𝑛 = 0, then either 𝑚 = 0 or 𝑛 = 0. 

Remarks. 

(a) As usual, we'll often abbreviate 𝑚 ∙ 𝑛 to 𝑚𝑛. 

(b) The last axiom is equivalent to the Cancellation 

Property: If a, 𝑏, 𝑐 ∈ ℤ, 𝑎 ≠ 0, and 𝑎𝑏 = 𝑎𝑐,  then 𝑏 = 𝑐. 

Example. 

If 𝑛 ∈ ℤ, prove that 0 ∙ 𝑛 = 0. 

Solution. 

0 ∙ 𝑛 = (0 + 0) ∙ 𝑛 (Additive identity) 

        =  0 ∙ 𝑛 + 0 ∙ 𝑛 (Distributive Law) 

Adding – (0 ∙  𝑛) to both sides, we get 
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−(0 ∙ 𝑛) + 0 ∙ 𝑛 = −(0 ∙ 𝑛) + (0 ∙ 𝑛 + 0 ∙ 𝑛) 

By associativity for addition, 

−(0 ∙ 𝑛) + 0 ∙ 𝑛 = (−(0 ∙ 𝑛) + 0 ∙ 𝑛) + 0 ∙ 𝑛. 

Then using the fact that – (0 ∙ 𝑛) and 0 ∙ 𝑛 are additive 

inverses, we get 

0 = 0 + 0 ∙ 𝑛. 

Finally, 0 is the additive identity, so 

0 =  0 ∙  𝑛.◄ 

Example.  

If 𝑛 ∈ ℤ, prove that – 𝑛 = (−1) ∙ 𝑛. 

Solution. 

In other words, the equation says that the additive inverse 

of 𝑛 (namely −𝑛) is equal to (−1) ∙ 𝑛.  

What is the additive inverse of 𝑛?  

It is the number which gives 0 when added to 𝑛. 

Therefore, we should add (−1) ∙ 𝑛 and see if I get 0: 

(−1) ∙ 𝑛 + 𝑛 = (−1) ∙ 𝑛 + 1 ∙ 𝑛 (Multiplicative identity) 

                      = (−1 + 1) ∙ 𝑛    (Distributive Law) 

                      = 0 ∙ 𝑛 (Additive inverse) 

                       = 0.   (Preceding result) 

This proves that −𝑛 = (−1) ∙ 𝑛.◄ 
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● The integers are ordered --- there is a notion of greater 

than (or less than). Specifically, for 𝑚, 𝑛 ∈ ℤ,𝑚 > 𝑛 is 

defined to mean that 𝑚 − 𝑛 is a positive integer --- and 

element of the set {1, 2, 3, . . . }. 

Of course, 𝑚 < 𝑛 is defined to mean 𝑛 > 𝑚. 

𝑚 ≥ 𝑛 and 𝑛 ≤ 𝑚 have the obvious meanings. 

(k) The positive integers are closed under addition and 

multiplication. 

There are two order axioms: 

●Trichotomy:  

If 𝑛 ∈ ℤ, either𝑛 > 0, 𝑛 < 0,  or𝑛 = 0. 

Example.  

Prove that if 𝑚 > 0, 𝑛 < 0,  then 𝑚𝑛 < 0. 

Solution. 

Since 𝑛 < 0, 0 − 𝑛 = −𝑛 is a positive integer. 

𝑚 > 0 means 𝑚 = 𝑚 − 0 is a positive integer, so by 

closure 𝑚 ∙ (−𝑛) is a positive integer. By a property of 

integers (which you should try proving from the axioms), 

𝑚 ∙ (−𝑛) = −(𝑚 ∙ 𝑛). Thus, −(𝑚 ∙ 𝑛) is a positive 

integer. So 0 − 𝑚𝑛 = −(𝑚𝑛) is a positive integer, which 

means that 𝑚𝑛 < 0.◄ 
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●The Well-Ordering Property of the integers sounds 

simple: Every nonempty subset of the positive integers 

has a smallest element. Your long experience with the 

integers makes this principle sound obvious. In fact, it is 

one of the deeper axioms for ℤ; for example, it can be 

used to prove the principle of mathematical induction, 

which we have discussed. 

Example.  

Prove that √2
3

 is irrational number. 

Solution. 

The proof will use the Well-Ordering Property. 

We'll give a proof by contradiction. Suppose that √2
3

 is a 

rational number. In that case, we can write√2
3

=
𝑎

𝑏
 , 

where a and b are positive integers. Now 

√2
3

=
𝑎

𝑏
,    so   𝑏√2

3
= 𝑎 and 2𝑏3 = 𝑎3. 

(To complete the proof, we are going to use some 

divisibility properties of the integers that we haven't 

proven yet. They're easy to understand and pretty 

plausible, so this shouldn't be a problem.) 
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The last equation shows that 2 divides 𝑎3. This is only 

possible if 2 divides 𝑎, so 𝑎 =  2𝑐, for some positive 

integer 𝑐. Plugging this into 2𝑏3 = 𝑎3, we get 

2𝑏3 = 8𝑐3, 𝑜𝑟 𝑏3 = 4𝑐3. 

Since 2 divides 4𝑐3, it follows that 2 divides 𝑏3. As 

before, this is only possible if 2 divides 𝑏, so 𝑏 = 2𝑑 for 

some positive integer 𝑑. Plugging this into 𝑏3 = 4𝑐3.  

We get 8𝑑3 = 4𝑐3 , or  2𝑑3 = 𝑐3. 

This equation has the same form as the equation 2𝑏3 =

𝑎3, so it's clear that we can continue this procedure 

indefinitely to get e such that 𝑐 = 2𝑒 , f such that 𝑑 = 2𝑓, 

and so on. 

However, since 𝑎 = 2𝑐, it follows that 𝑎 > 𝑐; since 𝑐 =

2𝑒, we have 𝑐 > 𝑒, so 𝑎 > 𝑐 > 𝑒. Thus, the numbers 

𝑎, 𝑐, 𝑒, . .. comprise a set of positive integers with no 

smallest element, since a given number in the list is 

always smaller than the one before it. This contradicts 

Well-Ordering. Therefore, my assumption that √2
3

 is a 

rational number is wrong, and hence √2
3

 is irrational.◄ 
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● Finally, we want to mention a function that comes up 

often in number theory. 

Definition.  

If x is a real number, then [x] denotes the greatest 

integer function of x (Is it the floor of x?). It is the 

largest integer less than or equal to x. 

Lemma.  

If x is a real number, then [𝑥] + 1 > 𝑥 ≥ [𝑥]. 

Proof.  

By definition, 𝑥 ≥ [𝑥]. To show that [𝑥] + 1 > 𝑥, we'll 

give a proof by contradiction. Suppose on the contrary 

that [𝑥] + 1 ≤ 𝑥 . Then [𝑥] + 1 is an integer less than or 

equal to x, which contradicts the fact that [𝑥] is the 

largest integer less than or equal to x. This contradiction 

implies that [𝑥] + 1 > 𝑥 .◄ 

Lemma.  

If 𝑥, 𝑦 ∈ ℝ and x≥ 𝑦, then [𝑥] ≥ [𝑦]. 

Proof.  

Suppose 𝑥 ≥ 𝑦. We want to show that [𝑥] ≥ [𝑦]. 
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Assume on the contrary that [𝑦] > [𝑥].  Since [𝑥] is the 

it greatest integer which is less than or equal to x, and 

since [𝑦] is an integer which is greater than [𝑥], it follows 

that [𝑦] can't be less than or equal to x. Thus, [𝑦] > 𝑥. 

But 𝑥 ≥ 𝑦. So [𝑦] > 𝑦, which is a contradiction. 

Therefore, [𝑥] ≥ [𝑦].◄ 

Example. 

Find [3.2], [117] and [−1.2]. 

Solution. 

[3.2] = 3, [117] = 117, 𝑎𝑛𝑑 [−1.2] = −2. 

(Notice that [−1.2] is not equal to -1).◄ 

Example.  

Let x be a real number and let n be an integer. Prove that 

[𝑥 + 𝑛] = [𝑥] + 𝑛. 

Solution. 

First, 𝑥 ≥ [𝑥] , so 𝑥 + 𝑛 ≥ [𝑥] + 𝑛. 

Now, [𝑥] + 𝑛 is an integer less than or equal to 𝑥 + 𝑛, so 

it must be less than or equal to the greatest integer less 

than or equal to 𝑥 + 𝑛--- which is [𝑥 + 𝑛]: 

[𝑥 + 𝑛] ≥ [𝑥] + 𝑛. 
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Next, 𝑥 + 𝑛 ≥ [𝑥 + 𝑛]. Then 𝑥 ≥ [𝑥 + 𝑛] − 𝑛  and 

[𝑥 + 𝑛] − 𝑛 is an integer less than or equal to x. 

Therefore, it must be less than or equal to the greatest 

integer less than or equal to x --- which is[𝑥]: 

[𝑥] ≥ [𝑥 + 𝑛] − 𝑛. 

Adding n to both sides gives 

[𝑥] + 𝑛 ≥ [𝑥 + 𝑛]. 

Since [𝑥 + 𝑛] ≥ [𝑥] + 𝑛 and [𝑥] + 𝑛 ≥ [𝑥 + 𝑛], it 

follows that [𝑥] + 𝑛 = [𝑥 + 𝑛].◄ 
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5.2 Prime Numbers 

●Every integer greater than 1 is divisible by at least two 

integers, because a positive integer is divisible by 1 and 

by itself. Positive integers that have exactly two different 

positive integer factors are called primes. 

● Euclid showed that there are infinitely many primes. 

● The Prime Number Theorem says that the number of 

primes less than or equal to a real number x is 

approximately 
𝑥

ln 𝑥
. 

●The prime numbers are the "building blocks" of the 

integers. We'll make this more precise later when we 

discuss the Fundamental Theorem of Arithmetic. 

Definition. 

 A prime number is an integer 𝑝 >  1 whose only 

positive divisors are 1 and p. An integer greater than 1 

which is not prime is composite. 

Remark.  

The integer 𝑛 is composite if and only if there exists an 

integer 𝑎 such that 𝑎 | 𝑛 and 1 <  𝑎 <  𝑛.  

 



- 329 - 
 

Example.  

The integer 7 is prime because its only positive factors 

are 1 and 7, whereas the integer 9 is composite because it 

is divisible by 3. ◄  

Lemma.  

Every integer greater than 1 is divisible by at least one 

prime. 

Proof.  

We'll prove the result by induction. To begin with, the 

result is true for 𝑛 =  2,  since 2 is prime. 

Take 𝑛 >  2, and assume the result is true for all integers 

greater than 1 but less than n. We want to show that the 

result holds for n. If n is prime, it's divisible by a prime --

- namely itself! So suppose n is composite. Then n has a 

positive factor 𝑎 other than 1 and n. Suppose 𝑛 =  𝑎𝑏. 

If 𝑎 >  𝑛, then since 𝑏 ≥ 1,  We get 𝑛 =  𝑎𝑏 >  𝑛. 1 =

 𝑛,  which is a contradiction. Thus, 𝑎 ≤ 𝑛 , and since  

𝑎 ≠ 𝑛, we have in fact 𝑎 < 𝑛. Since 𝑎 ≠ 1, we get  

1 <  𝑎 <  𝑛. 

By the induction hypothesis, 𝑎 has a prime factor 𝑝.  



- 330 - 
 

But 𝑝|𝑎 and 𝑎|𝑛 implies 𝑝|𝑛, so n has a prime factor as 

well. This shows that the result is true for all 𝑛 > 1 by 

induction.◄ 

Theorem. (Euclid)  

There are infinitely many prime numbers. 

Proof.  

Suppose on the contrary that there are only finitely many 

primes 𝑝1, 𝑝2, … , 𝑝𝑛.  

Look at (𝑝1 ∙ 𝑝2 ∙ … ∙  𝑝𝑛) + 1.  

This number is not divisible by any of the primes 

𝑝1, 𝑝2, … , 𝑝𝑛, because it leaves a remainder of 1 when 

divided by any of them. But the previous lemma says that 

every number greater than 1 is divisible by a prime. This 

contradiction implies that there can't be finitely many 

primes --- that is, there are infinitely many. ◄ 

If you are trying to factor a number n, you do not need to 

try dividing by all the numbers from 1 to n: It's enough to 

go up to √𝑛. This is the idea of the next lemma. 
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Lemma.  

Every composite number has a proper factor less than or 

equal to its square root. 

Proof.  

Suppose n is composite. We can write 𝑛 =  𝑎𝑏, where 

1 < 𝑎, 𝑏 <  𝑛. If both 𝑎, 𝑏 > √𝑛 , then 𝑛 = √𝑛√𝑛 <

𝑎. 𝑏 = 𝑛. 

This contradiction shows that at least one of 𝑎, 𝑏 must be 

less than or equal to √𝑛.◄ 

From the above theorem, it follows that an integer is 

prime if it is not divisible by any prime less than or equal 

to its square root. This leads to the brute-force algorithm 

known as trial division. 

To use trial division we divide 𝑛 by all primes not 

exceeding √𝑛 and conclude that 𝑛 is prime if it is not 

divisible by any of these primes.  

In fact, you can adapt the preceding proof to show that a 

composite number must have a prime factor less than or 

equal to its square root. 
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For an arbitrary number that is several hundred digits in 

length, it may be impossible with current technology to 

determine whether the number is prime. In fact, many 

cryptographic systems depend on the difficulty of 

factoring large numbers. 

Example.  

Show that 101 is prime. 

Solution.  

The only primes not exceeding √101 are 2, 3, 5, and 7. 

Because 101 is not divisible by 2, 3, 5, or 7 (the quotient 

of 101 and each of these integers is not an integer), it 

follows that 101 is prime. ■ 

Example.  

Show that 127 is prime. 

Solution.  

To see whether 127 is prime, I only need to see if it has a 

prime factor≤ √127 ≈ 11.27. You can do the arithmetic 

to verify that 127 isn't divisible by 2, 3, 5, 7, or 11. 

Hence, it must be prime. ■ 
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Because every integer has a prime factorization, it would 

be useful to have a procedure for finding this prime 

factorization. Consider the problem of finding the prime 

factorization of 𝑛. Begin by dividing 𝑛 by successive 

primes, starting with the smallest prime, 2. If 𝑛 has a 

prime factor, then by the above theorem a prime factor 𝑝 

not exceeding √𝑛 will be found. So, if no prime factor 

not exceeding √𝑛 is found, then 𝑛 is prime. Otherwise, if 

a prime factor 𝑝 is found, continue by factoring 𝑛/𝑝. 

Note that 𝑛/𝑝 has no prime factors less than 𝑝. Again, if 

𝑛/𝑝 has no prime factor greater than or equal to 𝑝 and not 

exceeding its square root, then it is prime. Otherwise, if it 

has a prime factor 𝑞, continue by factoring 𝑛/(𝑝𝑞). This 

procedure is continued until the factorization has been 

reduced to a prime. This procedure is illustrated in the 

following example. 

Example.  

Find the prime factorization of 7007. 

Solution.  

To find the prime factorization of 7007, first perform 
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 divisions of 7007 by successive primes, beginning with 

2. None of the primes 2, 3, and 5 divides 7007. However, 

7 divides 7007, with 7007/7 =  1001. Next, divide 

1001 by successive primes, beginning with 7. 

It is immediately seen that 7 also divides 1001, because 

1001/7 =  143. Continue by dividing 143 by successive 

primes, beginning with 7. Although 7 does not divide 

143, 11 does divide 143, and 143/11 =  13. Because 13 

is prime, the procedure is completed. It follows that 

7007 = 7 · 1001 = 7 · 7 · 143 = 7 · 7 · 11 · 13. 

Consequently, the prime factorization of 7007 

is 7 · 7 · 11 · 13 = 72 · 11 · 13. ■ 

Example. (The Sieve of Eratosthenes)  

Note that composite integers not exceeding 100 must 

have a prime factor not exceeding 10. Because the only 

primes less than 10 are 2, 3, 5, and 7, the primes not 

exceeding 100 are these four primes and those positive 

integers greater than 1 and not exceeding 100 that are 

divisible by none of 2, 3, 5, or 7. 

The sieve of Eratosthenes is used to find all primes not 

exceeding a specified positive integer. For instance, the 
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following procedure is used to find the primes not 

exceeding 100. We begin with the list of all integers 

between 1 and 100. To begin the sieving process, the 

integers that are divisible by 2, other than 2, are deleted. 

Because 3 is the first integer greater than 2 that is left, all 

those integers divisible by 3, other than 3, are deleted. 

Because 5 is the next integer left after 3, those integers 

divisible by 5, other than 5, are deleted. The next integer 

left is 7, so those integers divisible by 7, other than 7, are 

deleted. Because all composite integers not exceeding 

100 are divisible by 2, 3, 5, or 7, all remaining integers 

except 1 are prime. In the table, the panels display those 

integers deleted at each stage, where each integer 

divisible by 2, other than 2, is underlined in the first 

panel, each integer divisible by 3, other than 3, is 

underlined in the second panel, each integer divisible by 

5, other than 5, is underlined in the third panel, and each 

integer divisible by 7, other than 7, is underlined in the 

fourth panel. The integers not underlined are the primes 

not exceeding 100. We conclude that the primes less than 
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100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97. 
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Integers in color are prime.■ 
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I showed above that there are infinitely many primes. 

How are they distributed? That is, are they evenly 

distributed, or do they get "sparser" as you look at bigger 

and bigger integers?  

● The Prime Number Theorem gives an asymptotic 

estimate for 𝜋(𝑥), the number of primes less than or 

equal to x. It says: 

lim
𝑥→∞

𝜋(𝑥)
𝑥

ln𝑥

= 1. 

The picture below was generated by Mathematica, the 

symbolic mathematics program. It shows the graphs of 

𝜋(𝑥)  and 
𝑥

ln 𝑥
. 

 

The graph of 𝜋(𝑥) is on top and the graph of 
𝑥

ln𝑥
 is on the 

bottom. On the other hand, there are "lots" of composite 

numbers around. For example, 
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1001! +  2,1001!  + 3,1001!  + 4, . . . ,1001! +  1001 

is a run of 1000 consecutive composite numbers. You can 

use the same method to generate runs of composite 

numbers of any length. 

Example.  

Use the Prime Number Theorem to estimate the number 

of primes less than 1000000. By the Prime Number 

Theorem, 𝜋(1000000) ≈
1000000

ln 1000000
≈ 72382. 

The actual number of primes less than 1000000 is  

𝜋(1000000) = 78498.■ 

On the other hand, many problems concerning the 

distribution of primes are unsolved. For example, there 

are primes that come in pairs such as 11 and 13, or 71 and 

73. These are called twin primes. 

Question: (Twin Prime Conjecture)  

Are there infinitely many twin primes? 

There are enormously large twin primes known.  

The largest known in 2001 were 

318032361. 2107001 ± 1, 
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They are numbers having 32220 digits! The Twin Prime 

Conjecture is still unresolved: A proof was announced in 

2004, but a gap was found, and the question remains 

open. 

5.3 Divisibility 

When one integer is divided by a second nonzero integer, 

the quotient may or may not be an integer. For example, 

12/3 =  4 is an integer, whereas 11/4 =  2.75 is not. 

This leads to the following definition.  

Definition.  

If a and b are integers with 𝑎 = 0, we say that a divides b 

if there is an integer c such that 𝑏 = 𝑎𝑐, or equivalently, 

if is an integer. When a divides b we say that a is a factor 

or divisor of b, and that b is a multiple of a. The notation 

𝑎|𝑏 denotes that a divides b. We write 𝑎 ∤ 𝑏 when a does 

not divide b. ■  

In the following figure a number line indicates which 

integers are divisible by the positive integer d.  
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Example.  

Determine whether 3|7 and whether 3|12. 

Solution.  

We see that 3|7, because 7/3 is not an integer. On the 

other hand, 3|12 because 12/3 =  4.■ 

Example.  

Let n and d be positive integers. How many positive 

integers not exceeding n are divisible by d? 

Solution. 

The positive integers divisible by d are all the integers of 

the form 𝑑𝑘, where k is a positive integer. Hence, the 

number of positive integers divisible by d that do not 

exceed n equals the number of integers k such that   

0 < 𝑑𝑘 ≤ 𝑛, or with 0 < 𝑘 ≤ 𝑛/𝑑. So, there are ⌊𝑛/𝑑⌋ 

positive integers not exceeding n that are divisible by d.■ 

Theorem. 

Let a, b, and c be integers, where 𝑎 ≠ 0. Then 

(i) if 𝑎 | 𝑏 and 𝑎 | 𝑐, then 𝑎 | (𝑏 +  𝑐); 

(ii) if 𝑎 | 𝑏, then 𝑎 | 𝑏𝑐 for all integers c; 

(iii) if 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐. 
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Proof. 

We will give a direct proof of (i).  

Suppose that 𝑎 | 𝑏 and 𝑎 | 𝑐. Then, there are integers 𝑠 

and 𝑡 with 𝑏 =  𝑎𝑠 and 𝑐 =  𝑎𝑡. Hence, 𝑏 +  𝑐 =  𝑎𝑠 +

 𝑎𝑡 =  𝑎(𝑠 +  𝑡). Therefore, 𝑎 divides 𝑏 +  𝑐. This 

establishes part (i) of the theorem.■ 

Corollary.   

If 𝑎, 𝑏, and c are integers, where 𝑎 ≠ 0, such that 𝑎|𝑏 and 

𝑎|𝑐, then 𝑎|𝑚𝑏 + 𝑛𝑐 whenever m and n are integers. 

Proof. 

We will give a direct proof. By part (ii) of  the above 

theorem we see that 𝑎|𝑚𝑏 and 𝑎|𝑛𝑐 whenever m and n 

are integers. By part (i) of the above theorem it follows 

that 𝑎|𝑚𝑏 + 𝑛𝑐.■ 

Theorem.  

Let 𝑎, 𝑏, 𝑐 be integers. If 𝑎|𝑏 and 𝑏|𝑎 + 𝑐, then 𝑎|𝑐. 

Proof.   

Let a, b, and c be integers. Suppose 𝑎|𝑏 and 𝑏|𝑎 + 𝑐. 

There exist integers 𝑑 and 𝑒 such that 𝑎𝑑 = 𝑏 and         

𝑏𝑒 = 𝑎 + 𝑐. 
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Substitute:  (𝑎𝑑)𝑒 =  𝑎 +  𝑐. 

Rearrange:  𝑎(𝑑𝑒 –  1)  =  𝑐. 

Therefore, 𝑎 | 𝑐.■ 

Definition. 

An integer 𝑢 is a unit if 𝑢|1.The only units are 1 and –1. 

Theorem.  

If u and v are units, then 𝒖𝒗 is a unit. 

Proof.  

Let u and v be units. There exist integers r and s such that 

 𝑢𝑟 =  1 and 𝑣𝑠 =  1. Therefore, (𝑢𝑟)(𝑣𝑠)  =  1. 

Rearrange:  (𝑢𝑣)(𝑟𝑠)  =  1. Therefore, 𝑢𝑣 is a unit. ◄ 

Theorem.  

Let 𝑎 and 𝑏 be integers.  If 𝑎|𝑏 and  𝑏|𝑎, 
𝑎

𝑏
 and 

𝑏

𝑎
 are units 

Proof.  

Let a and b be integers. Suppose 𝑎|𝑏 and 𝑏|𝑎.There exist 

integers 𝑐 and 𝑑 such that 𝑎𝑐 = 𝑏 and 𝑏𝑑 = 𝑎.Therefore, 

𝑎𝑐𝑑 =  𝑏𝑑 =  𝑎. So, 𝑐𝑑 = 1.Thus, c and d are units. ◄ 

Corollary.   

If 𝑎|𝑏 and 𝑏|𝑎, then 𝑎 = 𝑏 or 𝑎 =– 𝑏. 
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5.4 The Division Algorithm 

Theorem.   

Let n and d be integers, 𝑑¹ 0.  Then there exist unique 

integers q and r such that 𝑛 =  𝑞𝑑 +  𝑟 and 0  𝑟 <  𝑑. 

q is the quotient and r is the remainder. 

Example. 

What are the quotient and remainder when 101 is divided 

by 11? 

Solution.  

We have 101 =  11 ·  9 +  2. Hence, the quotient when 

101 is divided by 11 is 9, and the remainder is 2. ■ 

Example. 

What are the quotient and remainder when −11 is 

divided by 3? 

Solution. 

We have   −11 =  3(−4)  +  1. Hence, the quotient 

when −11 is divided by 3, and the remainder is 1. Note 

that the remainder cannot be negative. Consequently, the 

remainder is not −2, even though −11 =  3(−3)  −  2, 

because 𝑟 =  −2 does not satisfy 0 ≤  𝑟 <  3. ■ 
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♣Note that the integer a is divisible by the integer d if 

and only if the remainder is zero when a is divided by d. 

Example. 

Prove that for any integer n, n3 – n is a multiple of 6. 

Proof. 

Divide n by 6 to get q and r:  𝑛 = 6𝑞 + 𝑟, 0 ≤ 𝑟 <  6. 

Substitute: n3 – n = (6q + r)3 – (6q + r). 

Expand and rearrange: 

 n3 – n = 6(36q3 + 18q2r + 3qr2 – q) + (r3 – r). 

Therefore, 6 | (n3 – n) if and only if 6 | (r3 – r). 

Consider the 6 possible cases: 

Case 1:  r = 0. r3 – r = 03 – 0 = 0 = 60. 

Case 2:  r = 1. r3 – r = 13 – 1 = 0 = 60. 

Case 3:  r = 2. r3 – r = 23 – 2 = 6 = 61. 

Case 4:  r = 3. r3 – r = 33 – 3 = 24 = 64. 

Case 5:  r = 4. r3 – r = 43 – 4 = 60 = 610. 

Case 6:  r = 5. r3 – r = 53 – 5 = 120 = 620. 

In every case, 6 | (r3 – r). 

Therefore, 6 | (r3 – r) in general. 

Therefore, 6 | (n3 – n) for all integers n.■ 



- 346 - 
 

5.5 Greatest Common Divisors 

●The greatest common divisor gcd(𝑚, 𝑛) of integer m 

and n is the largest integer which divides both m and n. 

●The greatest common divisor can be found using the 

Euclidean algorithm, which is a process of repeated 

division. 

●The greatest common divisor gcd(𝑚, 𝑛) of m and n is a 

linear combination of m and n. 

●m and n are relatively prime if gcd(𝑚, 𝑛) = 1. 

Definition.  

The greatest common divisor of two integers (not both 

zero) is the largest integer which divides both of them. 

If a and b are integers (not both 0), the greatest common 

divisor of a and b is denoted gcd(𝑎, 𝑏). 

The greatest common divisor of two integers, not both 

zero, exists because the set of common divisors of these 

integers is nonempty and finite. One way to find the 

greatest common divisor of two integers is to find all the 

positive common divisors of both integers and then take 

the largest divisor. This is done in the following examples  
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Later, a more efficient method of finding greatest 

common divisors will be given. 

Example. 

What is the greatest common divisor of 24 and 36? 

Solution. 

The positive common divisors of 24 and 36 are 1, 2, 3, 4, 

6, and 12. Hence, gcd(24, 36)  =  12. ■ 

Example. 

gcd(4, 6) =  2, gcd(17, 17) =  17, gcd(42, 0) =  42,  

 gcd(12, −15)  =  3. ■ 

Example. 

What is the greatest common divisor of 17 and 22? 

Solution.  

The integers 17 and 22 have no positive common divisors 

other than 1, so that gcd(17, 22)  =  1. ■ 

You were probably able to do the last examples by 

factoring the numbers in your head. For instance, to find 

gcd(4, 6), you see that 2 is the only integer bigger than 1 

which divides both 4 and 6. 
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The problem with this approach is that it requires that you 

factor the numbers. However, once the numbers get too 

large --- currently, "too large" means "on the order of 

several hundred digits long" --- this approach to finding 

the greatest common divisor won't work. Fortunately, the 

Euclidean algorithm computes the greatest common 

divisor of two numbers without factoring the numbers. I'll 

discuss it after I state and prove some elementary 

properties. 

Proposition.  

Let a and b be integers, not both 0. 

(a) gcd(𝑎, 𝑏) ≥ 1, 

(b) gcd(𝑎, 𝑏) = gcd(|𝑎|, |𝑏|), 

(c) gcd(𝑎, 𝑏) = gcd(𝑎 + 𝑘𝑏, 𝑏) for any integer 𝑘. 

Proof.  

(a) Since 1|𝑎 and 1|𝑏, then gcd(𝑎, 𝑏) must be at least as 

big as 1. 

(b) 𝑥|𝑎 if and only if 𝑥|−𝑎; that is, 𝑎 and −𝑎 have the 

same factors. But |𝑎| is either 𝑎 or −𝑎, so 𝑎 and |𝑎| have 

the same factors. Likewise, b and |𝑏| have the same 
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factors. Therefore, x is a common factor of a and b if and 

only if it's a common factor of |𝑎| and |𝑏|.  

Hence, gcd(𝑎, 𝑏) = gcd(|𝑎|, |𝑏|). 

(c) First, if x is a common factor of a and b, then 𝑥|𝑎 and 

𝑥|𝑏.  

Then 𝑥|𝑘𝑏, so 𝑥|𝑎 + 𝑘𝑏 .  

Thus we have that 𝑥 is a common factor of 𝑎 + 𝑘𝑏 and 𝑏. 

Likewise, if x is a common factor of 𝑎 + 𝑘𝑏 and 𝑏, then 

𝑥|𝑎 + 𝑘𝑏 and 𝑥|𝑏 .  

Hence, 𝑥|(𝑎 + 𝑘𝑏) − 𝑘𝑏 = 𝑎. 

Thus, 𝑥 is a common factor of 𝑎 and 𝑏. 

Therefore, these two sets are the same: 

{
common factors

of 𝑎 and 𝑏
} =  {

common factors
of 𝑎 + 𝑘𝑏 and 𝑏

} 

Since the two sets are the same, their largest elements are 

the same.  

The largest element of the first set is gcd(𝑎, 𝑏),  

while the largest element of the second set is  

gcd(𝑎 + 𝑘𝑏, 𝑏).  

Therefore, gcd(𝑎, 𝑏) = gcd(𝑎 + 𝑘𝑏, 𝑏).■ 
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Example.  

Part (c) of the proposition says that the greatest common 

divisor remains unchanged if you add or subtract a 

multiple of one of the numbers from the other. You can 

often use this to simplify computations of greatest 

common divisors. For example, 

gcd(998,996) = gcd(998 − 996,996) = gcd(2,996). 

Now gcd(2,996)|2, and the only positive integers which 

divide 2 are 1 and 2. So gcd(2,996) is either 1 or 2.  

But 2 and 996 are obviously both divisible by 2, so 

gcd(2,996) = 2 . Therefore, gcd(998,996) = 2.■ 

Example. 

Prove that if 𝑛 ∈ ℤ, then gcd(3𝑛 + 4, 𝑛 + 1) = 1. 

Proof. 

By part (c) of the above proposition, we get 

gcd(3𝑛 + 4, 𝑛 + 1) = gcd((3𝑛 + 4) − 3(𝑛 + 1), 𝑛 + 1) 

= gcd(1, 𝑛 + 1). 

Now, gcd(1, 𝑛 + 1)|1. But the only positive integer 

which divides 1 is 1. So, gcd(1, 𝑛 + 1) = 1.  

Therefore, gcd(3𝑛 + 4, 𝑛 + 1) = 1.■ 
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♣Because it is often important to specify that two integers 

have no common positive divisor other than 1, we have 

the following definition. 

Definition. 

a and b are relatively prime if  gcd(𝑎, 𝑏)  =  1. 

Example. 

49 and 54 are relatively prime, but 25 and 105 are not.■ 

Proposition.  

If 𝑑 = gcd(𝑚, 𝑛), then gcd (
𝑚

𝑑
,
𝑛

𝑑
) = 1. 

Proof.  

Let 𝑚 = 𝑑𝑎 and 𝑛 = 𝑑𝑏. Then gcd (
𝑚

𝑑
,
𝑛

𝑑
) = gcd(𝑎, 𝑏). 

Let 𝑝 > 0 and 𝑝|𝑎, 𝑝|𝑏. Then we can find 𝑒 and 𝑓 such 

that 𝑎 = 𝑝𝑒 and 𝑏 = 𝑝𝑓. Thus, 𝑚 = 𝑑𝑝𝑒 and 𝑛 = 𝑑𝑝𝑓. 

This shows that 𝑑𝑝 is a common factor of m and n. Since 

d is the greatest common factor, then 𝑑 ≥ 𝑑𝑝. Therefore, 

1 ≥ 𝑝. So, 𝑝 = 1 (since p was a positive integer). 

We've proven that 1 is the only positive common factor of 

a and b. Therefore, 1 is the greatest common factor of a 

and b: gcd (
𝑚

𝑑
,
𝑛

𝑑
) = gcd(𝑎, 𝑏) = 1. ◄ 
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5.6 The Euclidean Algorithm. 

Before describing the Euclidean algorithm, we will show 

how it is used to find gcd(91, 287). 

First, divide 287, the larger of the two integers, by 91, the 

smaller, to obtain 

287 =  91 ·  3 +  14. 

Any divisor of 91 and 287 must also be a divisor of  

287 − 91 · 3 = 14. 

Also, any divisor of 91 and 14 must also be a divisor of 

287 =  91 ·  3 +  14. 

Hence, the greatest common divisor of 91 and 287 is the 

same as the greatest common divisor of 91 and 14.  

This means that the problem of finding gcd(91, 287) has 

been reduced to the problem of finding gcd(91, 14). 

Next, divide 91 by 14 to obtain 

91 = 14 · 6 + 7. 

Because any common divisor of 91 and 14 also divides 

91 − 14 · 6 = 7 and any common divisor of 14 and 7 

divides 91, it follows that gcd(91, 14)  =  gcd(14, 7). 

Continue by dividing 14 by 7, to obtain 14 = 7 · 2. 

Because 7 divides 14, it follows that gcd(14, 7)  =  7. 



- 353 - 
 

Furthermore, because gcd(287, 91) = gcd(91, 14) =

 gcd(14, 7) = 7, the original problem has been solved. 

►We now describe how the Euclidean algorithm works 

in generality. We will use successive divisions to reduce 

the problem of finding the greatest common divisor of 

two positive integers to the same problem with smaller 

integers, until one of the integers is zero. 

♣Begin with a pair of nonnegative integers {𝑚, 𝑛}, not 

both 0. (The absolute value property we stated earlier 

shows that there's no harm in assuming the integers are 

nonnegative.) 

1. If one of the numbers is 0, the other is the greatest 

common divisor of the pair. (Stop.) 

2. Otherwise, apply the Division Algorithm to write 

𝑚 = 𝑞𝑛 + 𝑟,where 0 ≤ 𝑟 < 𝑛. 

3. Replace the pair {𝑚, 𝑛} with the pair {𝑛, 𝑟}. 

4. Go to step 1. 

At each step, both elements are ≥ 0, and each pass 

through step 3 decreases the second element. Since the 

second element always gets smaller, but can't be negative, 
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Well-Ordering implies that algorithm must terminate in 

an {𝑥, 0} pair (in step 2) after a finite number of steps. 

I get the next pair of numbers by subtracting a multiple of 

one of the previous numbers from the other. Therefore, 

each pair of numbers has the same greatest common 

divisor as the previous pair. Considering the whole chain 

of pairs, it follows that the original pair of numbers and 

the last pair of numbers have the same greatest common 

divisor. 

The original pair of numbers is {𝑚, 𝑛}, and their greatest 

common divisor is gcd(𝑚, 𝑛).The last pair of numbers is 

{𝑥, 0} and gcd(𝑥, 0)  =  𝑥. Thus, gcd(𝑚, 𝑛)  =  𝑥--- in 

words, the greatest common divisor is the last nonzero 

remainder. 

The Euclidean algorithm is based on the following 

result about greatest common divisors and the division 

algorithm. 

Lemma. 

Let 𝑎 = 𝑏𝑞 + 𝑟, where 𝑎, 𝑏, 𝑞, and 𝑟 are integers. Then  

gcd(𝑎, 𝑏)  =  gcd(𝑏, 𝑟). 
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Proof.  

If we can show that the common divisors of a and b are 

the same as the common divisors of b and r, we will have 

shown that gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟), because both pairs 

must have the same greatest common divisor. So suppose 

that d divides both a and b. Then it follows that d also 

divides 𝑎 − 𝑏𝑞 = 𝑟. Hence, any common divisor of a and 

b is also a common divisor of b and r.  

Likewise, suppose that d divides both 𝑏 and 𝑟. Then 𝑑 

also divides 𝑏𝑞 + 𝑟 = 𝑎. Hence, any common divisor of 

𝑏 and 𝑟 is also a common divisor of 𝑎 and 𝑏. 

Consequently,  gcd(𝑎, 𝑏)  =  gcd(𝑏, 𝑟).◄ 

Example.  

Use the Euclidean algorithm to compute: 

gcd(124, 348). 

Solution.  

Here what the algorithm above says. You start with the 

original numbers. Think of them as the first two 

"remainders". At each step, you divide the next-to-the-

last remainder by the last remainder. You stop when you 

get a remainder of 0.  
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Here are the divisions: 

348 = 2 ∙ 124 + 100, 
124 = 1 ∙ 100 + 24, 
100 = 4 ∙ 24 + 4, 
24 = 6 ∙ 4 + 0. 

(Start by dividing the bigger number by the smaller 

number, or else you'll just waste a step.) 

It's easier to remember this visually by arranging the 

computations in a table. Compare the numbers above to 

the numbers in the following table: 

𝑎 𝑞 

348 - 

124 2 

100 1 

24 4 

4 6 

(The next remainder is 0, so I didn't write it.) The 

successive remainders go in the a-column. The 

successive quotients go in the q-column. The greatest 

common divisor is the last nonzero remainder, so 

gcd(348, 124)  =  4. 

Later on, I'll add another column to this table when I 

discuss the Extended Euclidean algorithm.■ 
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Example.  

Use the Euclidean algorithm to compute: 

gcd(482, 288). 

Solution.  

𝑎 𝑞 

482  

288 1 

194 1 

94 2 

6 15 

4 1 

2 2 

From the table, we see that gcd(482, 288)  =  2.■ 

Example.  

Use the Euclidean algorithm to compute: 

gcd(414, 662). 

Solution.  

Successive uses of the division algorithm give: 

662 =  414 ·  1 +  248 
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414 =  248 ·  1 +  166 

248 =  166 ·  1 +  82 

166 =  82 ·  2 +  2 

82 =  2 ·  41. 

Hence, gcd(414, 662)  =  2, because 2 is the last 

nonzero remainder. ■ 

Example.  

You can also take the greatest common divisor of more 

than two numbers. For instance, gcd(42,105,91) = 7. 

To compute the greatest common divisor of more than 

two divisors, just compute the greatest common divisor 

two numbers at a time. For example, gcd(42, 105) =

21,   so gcd(42,105,91) = gcd((42,105), 91) =

gcd(21,91) = 7. ■ 
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5.7 gcds as Linear Combinations  

♣The next result is extremely important, and is often 

used in proving things about greatest common divisors. 

First, I'll recall a definition from linear algebra. 

Definition.  

If x and y are numbers, a linear combination of x and y 

(with integer coefficients) is a number of the form 

 𝑎𝑥 + 𝑏𝑦, where a and b are integers. 

Example.  

29 = 2.10 + 1.9 shows that 29 is a linear combination of 

10 and 9 and 7 = (−2). 10 + 3.9 shows that 7 is a linear 

combination of 10 and 9 as well.■ 

Theorem (c). 

 gcd(m, n) is the smallest positive linear combination of 

𝑚 and 𝑛. In particular, there are integers 𝑎 and 𝑏 (not 

necessarily unique) such that 

gcd(m, n) = am + bn. 

Example.  

We showed above that gcd(348, 124)  =  4.  

The theorem says that there are integers 𝑎 and 𝑏 such that 
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4 = 𝑎 ∙ 348 + 𝑏 ∙ 124.  

In fact, 4 = 5 ∙ 348 + (−14) ∙ 124. 

This combination is not unique.  

For example, 4 = 129 ∙ 348 + (−362) ∙ 124.■ 

To Find 𝑎 and 𝑏 such that 4 is a linear combination of 

384 and 124, we use the backward substations as follows: 

4 = 100 − 4 ∙ 24 

   = 100 − 4 ∙ (124 − 1.100) 

    = −4 ∙ 124 + 5 ∙ 100 

    = −4 ∙ 124 + 5 ∙ (348 − 2 ∙ 124) 

     = 5 ∙ 348 + (−14) ∙ 124. 

 

We'll give a few easy corollaries before proving the 

theorem. 

Corollary.  

If 𝑑|𝑚 and 𝑑|𝑛, then 𝑑|gcd(𝑚, 𝑛). 

Proof. 

gcd(𝑚, 𝑛) = 𝑎𝑚 + 𝑏𝑛 for some integers 𝑎 and 𝑏. 

Therefore, if 𝑑|𝑚 and 𝑑|𝑛,  then 𝑑|(𝑎𝑚 + 𝑏𝑛) =

gcd(𝑚, 𝑛).◄ 
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♣This says that the greatest common divisor is not only 

"greatest" in terms of size; it's also "greatest" in the sense 

that any other common factor must divide it. 

Corollary.  

m and n are relatively prime if and only if 

𝑎𝑚 + 𝑏𝑛 = 1 for some integers a and b. 

Proof. 

Necessity.  

Suppose 𝑚 and 𝑛 are relatively prime. Then 

gcd(𝑚, 𝑛)  =  1. By Theorem (c), 

gcd(𝑚, 𝑛) = 𝑎𝑚 + 𝑏𝑛 for some integers 𝑎 and 𝑏. 

Therefore, 𝑎𝑚 + 𝑏𝑛 = 1 for some integers 𝑎 and 𝑏. 

Sufficiency.  

Suppose 𝑎𝑚 + 𝑏𝑛 = 1 for some integers 𝑎 and 𝑏. This 

says that 1 is a positive linear combination of 𝑚 and 𝑛, so 

(since 1 is the smallest positive integer) it's the smallest 

positive linear combination of 𝑚 and 𝑛. By Theorem (c), 

this implies that 1 is the greatest common divisor, and 𝑚 

and 𝑛 are relatively prime.◄ 
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Proof of Theorem (c).  

We'll use the Euclidean algorithm. At each step in the 

Euclidean algorithm, we replace an old pair of numbers 

with a new pair of numbers. The proof will go this way. 

(a) The first two numbers m and n are linear 

combinations of m and n.  

(b) At each step, if the old numbers are linear 

combinations of m and n, then so are the new numbers. 

(c) By (a) and (b), the last two numbers in the algorithm 

must be linear combinations of m and n. 

(d) The last two numbers in the algorithm are gcd(𝑚, 𝑛) 

and 0. So, gcd(𝑚, 𝑛) is a linear combination of 𝑚 and 𝑛. 

Of these four steps, all are clear except the second. 

So here is the proof of step (b). 

Suppose that my old numbers are {𝑥, 𝑦}, and suppose that 

they're linear combinations of 𝑚 and 𝑛: 

𝑥 = 𝑎𝑚 + 𝑏𝑛 and 𝑦 = 𝑐𝑚 + 𝑑𝑛. 

To do the Euclidean algorithm we divide 𝑥 by 𝑦: 

𝑥 = 𝑞𝑦 + 𝑟, where 0 ≤ 𝑟 < 𝑦. 

The new numbers are  

{𝑦, 𝑟} = {𝑦, 𝑥 − 𝑞𝑦} 
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      = {𝑐𝑚 + 𝑑𝑛, (𝑎𝑚 + 𝑏𝑛) − 𝑞(𝑐𝑚 + 𝑑𝑛)} 

      = {𝑐𝑚 + 𝑑𝑛, (𝑎 − 𝑞𝑐)𝑚 + (𝑏 − 𝑞𝑑)𝑛} 

Each of the new numbers is a linear combination of 𝑚 

and 𝑛. This proves step (b), and the four steps above 

show that gcd(𝑚, 𝑛) is a linear combination of 𝑚 and 𝑛.  

Next, we have to show that it's the smallest positive 

linear combination of 𝑚 and 𝑛. 

Suppose 𝑝 is a positive linear combination of 𝑚 and 𝑛: 

𝑝 = 𝑎𝑚 + 𝑏𝑛 for some integers 𝑎 and 𝑏. 

gcd(𝑚, 𝑛)|𝑚 and gcd(𝑚, 𝑛)|𝑛, so gcd(𝑚, 𝑛)|𝑝.  Both of 

these numbers are positive, so gcd(𝑚, 𝑛) ≤ 𝑝 . Since 

gcd(𝑚, 𝑛) is smaller than any positive linear combination 

of 𝑚 and 𝑛, gcd(𝑚, 𝑛) must be the smallest positive 

linear combination of 𝑚 and 𝑛.◄ 

Example. 

(42,105) = 21, so the theorem asserts that the set of all 

linear combinations of 42 and 105 --- that is, the set of all 

numbers of the form 42𝑎 + 105𝑏. ..  is 

… ,−42,−21, 0, 21, 42, 63,…. 

Notice that the greatest common divisor is the smallest 

positive element of this set.■ 



- 364 - 
 

5.8 The Fundamental Theorem of Arithmetic 

●The Fundamental Theorem of Arithmetic says that 

every integer greater than 1 can be factored uniquely into 

a product of primes. 

●Euclid's lemma says that if a prime divides a product 

of two numbers, it must divide at least one of the 

numbers. 

●The least common multiple lcm[a, b] of nonzero 

integers a and b is the smallest positive integer divisible 

by both a and b. 

 

Theorem.(Fundamental Theorem of Arithmetic)  

Every integer greater than 1 can be written in the form 

𝑝1
𝑛1𝑝2

𝑛2 …𝑝𝑘
𝑛𝑘 

Where 𝑛𝑖 ≥ 0 and the pi's are distinct primes. The 

factorization is unique, except possibly for the order of 

the factors. 

Example. 

4312 =  2.2156 =  2 ∙ 2 ∙ 1078 =  2 ∙ 2 ∙ 2 ∙ 529 

           =  2 ∙ 2 ∙ 2 ∙ 7 ∙ 77 =  2 ∙ 2 ∙ 2 ∙ 7 ∙ 7 ∙ 11. 

That is, 4312 = 23 ∙ 72 ∙ 11.■ 
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We need a couple of lemmas in order to prove the 

uniqueness part of the Fundamental Theorem. In fact, 

these lemmas are useful in their own right. 

Lemma.  

If 𝑚|𝑝𝑞 and gcd(𝑚, 𝑝) = 1, then 𝑚|𝑞. 

Proof.  

We write 1 = gcd(𝑚, 𝑝) = am + bp for some integers a 

and b. Then q = amq + bpq. 

Now,   𝑚|𝑎𝑚𝑞 and 𝑚|𝑏𝑝𝑞 (since 𝑚|𝑝𝑞). 

So 𝑚|(amq + bpq) = q.◄ 

Lemma.  

If p is prime and 𝑝|𝑎1𝑎2 ∙∙∙ 𝑎𝑛 , then 𝑝|𝑎𝑖 for some i. 

For 𝑛 = 2, the result says that if p is prime and 𝑝|𝑎𝑏, 

then 𝑝|𝑎 or 𝑝|𝑏. This is often called Euclid's lemma. 

Proof.  

Do the case 𝑛 = 2 first. Suppose 𝑝|𝑎1𝑎2 and suppose 𝑝 ∤

𝑎1. I must show 𝑝|𝑎2.Since  gcd(𝑝, 𝑎1)|𝑝, and p is prime, 

we have gcd(𝑝, 𝑎1) = 1 or gcd(𝑝, 𝑎1) = 𝑝. If 

gcd(𝑝, 𝑎1) = 𝑝, then 𝑝 = gcd(𝑝, 𝑎1)|𝑎1, which 
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contradicts 𝑝 ∤ 𝑎1. Therefore, gcd(𝑝, 𝑎1) = 1. By the 

above lemma, 𝑝|𝑎2. This establishes the result for 𝑛 = 2. 

Assume 𝑛 > 2, and assume the result is true when p 

divides a product of 𝑎𝑖′𝑠 with less than 𝑛 factors. 

Suppose that 𝑝|𝑎1𝑎2 ∙∙∙ 𝑎𝑛. Grouping the terms, I have 

𝑝|(𝑎1𝑎2 ∙∙∙ 𝑎𝑛−1)𝑎𝑛 

By the case 𝑛 = 2, either 𝑝|𝑎1𝑎2 ∙∙∙ 𝑎𝑛−1 or, p|𝑎𝑛 . If 

𝑝|𝑎𝑛, I'm done. Otherwise, if 𝑝|𝑎1𝑎2 ∙∙∙ 𝑎𝑛−1, then p 

divides one of 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛−1 , by induction. In either 

case, I've shown that p divides one of the 𝑎𝑖′𝑠, which 

completes the induction step and the proof.◄ 

Proof.(Fundamental Theorem of Arithmetic)  

First, I'll use induction to show that every integer greater 

than 1 can be expressed as a product of primes. 

𝑛 = 2 is prime, so the result is true for 𝑛 = 2. 

Suppose 𝑛 > 2, and assume every number less than 𝑛 can 

be factored into a product of primes. If 𝑛 is prime, I'm 

done. Otherwise, 𝑛 is composite, so I can factor 𝑛 as 𝑛 =

𝑎𝑏, where 1 < 𝑎, 𝑏 < 𝑛. By induction, 𝑎 and 𝑏 can be 

factored into primes. Then 𝑛 = 𝑎𝑏 shows that 𝑛 can, too. 
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Now I'll prove the uniqueness part of the Fundamental 

Theorem. Suppose that 

𝑝1
𝑚1𝑝2

𝑚2 …𝑝
𝑗

𝑚𝑗
= 𝑞1

𝑛1𝑞2
𝑛2 …𝑞𝑘

𝑛𝑘 

Here the p's are distinct primes, the q's are distinct 

primes, and all the exponents are greater than or equal to 

1.  

I want to show that= 𝑘 , and that each 𝑝𝑎
𝑚𝑎 is 𝑞𝑏

𝑛𝑏  for 

some b --- that is, 𝑝𝑎 = 𝑞𝑏 and 𝑚𝑎 = 𝑛𝑏. 

Look at 𝑝1. It divides the left side, so it divides the right 

side. By the Euclid's lemma, 𝑝1|𝑞𝑖
𝑛𝑖 for some i. But 𝑞𝑖

𝑛𝑖 is 

𝑞𝑖 …𝑞𝑖 (𝑛𝑖 times), so again by the Euclid's lemma, 𝑝1|𝑞𝑖 . 

Since 𝑝1 and 𝑞𝑖 are prime, 𝑝1 = 𝑞𝑖. 

To avoid a mess, renumber the q's so 𝑞𝑖 becomes 𝑞1and 

vice versa. Thus, 𝑝1 = 𝑞𝑖, and the equation reads 

𝑝1
𝑚1𝑝2

𝑚2 …𝑝
𝑗

𝑚𝑗
= 𝑞1

𝑛1𝑞2
𝑛2 …𝑞𝑘

𝑛𝑘 

If 𝑚1 > 𝑛1 , cancel  𝑝1
𝑛1 from both sides, leaving 

𝑝1
𝑚1−𝑛1 …𝑝

𝑗

𝑚𝑗
= 𝑞2

𝑛2 …𝑞𝑘
𝑛𝑘 . 

This is impossible, since now 𝑝1 divides the left side, but 

not the right. 

For the same reason 𝑚1 < 𝑛1is impossible. 
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It follows that 𝑚1 = 𝑛1. So I can cancel the 𝑝1's off both 

sides, leaving 

𝑝2
𝑚2 …𝑝

𝑗

𝑚𝑗
= 𝑞2

𝑛2 …𝑞𝑘
𝑛𝑘 . 

Keep going. At each stage, I pair up a power of a 𝑝 with a 

power of a 𝑞, and the preceding argument shows the 

powers are equal. I can't wind up with any primes left 

over at the end, or else I'd have a product of primes equal 

to 1. So everything must have paired up, and the original 

factorizations were the same (except possibly for the 

order of the factors).◄ 

Definition.  

The least common multiple of nonzero integers 𝑎 and 𝑏 

is the smallest positive integer divisible by both 𝑎 and 𝑏. 

The least common multiple of 𝑎 and 𝑏 is denoted 

lcm[𝑎, 𝑏]. 

For example, lcm[6,4] = 12, lcm[33,15] = 165. 

Here's an interesting fact that is easy to derive from the 

Fundamental Theorem: 

lcm[𝑎, 𝑏] ∙ gcd(𝑎, 𝑏) = 𝑎𝑏. 
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Factor a and b in products of primes, but write out all the 

powers (e.g. write 23 as 2 ∙ 2 ∙ 2): 

𝑎 = 𝑝1 …𝑝𝑙𝑞1 …𝑞𝑚 ,    𝑏 = 𝑞1 …𝑞𝑚𝑟1 …𝑟𝑛. 

Here the q's are the primes a and b have in common, and 

the p's and r's don't overlap.  

 

From the picture, gcd(𝑎, 𝑏) = 𝑞1 …𝑞𝑚 , 

lcm[𝑎, 𝑏] = 𝑝1 …𝑝𝑙𝑞1 …𝑞𝑚𝑟1 …𝑟𝑛, 

𝑎𝑏 = 𝑝1 …𝑝𝑙𝑞1 …𝑞𝑚𝑞1 …𝑞𝑚𝑟1 …𝑟𝑛 

Thus, lcm[𝑎, 𝑏]gcd(𝑎, 𝑏) = 𝑎𝑏. 

Here's how this result looks for 36 and 90: 

 

gcd(36,90) = 18, 

 lcm[36,90] = 180 and  

 36.90 = 32400 = 18 ∙ 180.■ 
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 5.9 The Chinese Remainder Theorem 

●The Chinese Remainder Theorem gives solutions to 

systems of congruences with relatively prime moduli. 

●The solution to a system of congruences with relatively 

prime moduli may be produced using a formula by 

computing modular inverses, or using an iterative 

procedure involving successive substitution. 

The Chinese Remainder Theorem says that certain 

systems of simultaneous congruences with different 

moduli have solutions. The idea embodied in the theorem 

was apparently known to Chinese mathematicians a long 

time ago --- hence the name. 

I'll begin by collecting some useful lemmas. 

Lemma 1.  

Let 𝑚 and 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛  be positive integers. If 𝑚 is 

relatively prime to each of 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, then it is 

relatively prime to their product 𝑎1𝑎2 ∙∙∙ 𝑎𝑛. 

Proof.  

If gcd(𝑚, 𝑎1𝑎2 ∙∙∙ 𝑎𝑛) ≠ 1, then there is a prime 𝑝 which 

divides both 𝑚 and 𝑎1𝑎2 ∙∙∙ 𝑎𝑛.  
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Since p|𝑎1𝑎2 ∙∙∙ 𝑎𝑛,  we have 𝑝 must divide 𝑎𝑖 for some i  

by Euclid's lemma. Now 𝑝 divides both 𝑚 and 𝑎𝑖, so 

gcd(𝑚, 𝑎𝑖) ≠ 1. This contradiction implies that  

gcd(𝑚, 𝑎1𝑎2 ∙∙∙ 𝑎𝑛) = 1.◄ 

Example.  

6 is relatively prime to 25, to 7, and to 11.  

25.7.11 = 1925, and gcd(6, 1925) = 1: 

𝑎 𝑞 

1925 - 

6 320 

5 1 

1 5 

.■ 

I showed earlier that the greatest common divisor 

gcd(𝑎, 𝑏) of a and b is greatest in the sense that it is 

divisible by any common divisor of a and b. The next 

result is the analogous statement for least common 

multiples. 
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Lemma 2.  

Let 𝑚 and 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛 be positive integers. If 𝑚 is a 

multiple of each of 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, then 𝑚 is a multiple of 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛]. 

Proof.  

By the Division Algorithm, there are unique numbers q 

and r such that 

𝑚 = 𝑞 ∙ lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛] + 𝑟, 

Where 0 ≤ 𝑟 < lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛]. 

Now, 𝑎𝑖 divides both 𝑚 and lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], so 𝑎𝑖 

divides r. Since this is true for all i, we have r is a 

common multiple of the 𝑎𝑖 smaller than the least 

common multiple lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛]. This is only possible 

if 𝑟 = 0.Then m= 𝑞 ∙ lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛] , i.e. 𝑚 is a 

multiple of lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛].◄ 

 

Example.  

88 is a multiple of 4 and 22. The least common multiple 

of 4 and 22 is 44, and 88 is also a multiple of 44.■ 
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Lemma 3.  

Let 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛 be  positive integers. If 𝑎1, 𝑎2,∙∙∙, 𝑎𝑛 are 

pairwise relatively prime, then 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛] = 𝑎1𝑎2 ∙∙∙ 𝑎𝑛 

Proof.  

Induction on n. The statement is trivially true for 𝑛 = 1, 

so I'll start with 𝑛 = 2. The statement for 𝑛 = 2 follows 

from the equation ,lcm[𝑎, 𝑏]gcd(𝑎, 𝑏) = 𝑎𝑏. 

lcm[𝑎1, 𝑎2] =
𝑎1𝑎2

gcd(𝑎1, 𝑎2)
=

𝑎1𝑎2

1
= 𝑎1𝑎2. 

Now assume 𝑛 > 2, and assume the result is true for 𝑛. I 

will prove that it holds for 𝑛 + 1. 

Claim: 

lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1] = lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1] 

(Some people take this as an iterative definition of 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1]). 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1] is a multiple of each of 𝑎1, 𝑎2,∙∙∙

, 𝑎𝑛, so by Lemma 2 it's a multiple of lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛]. 

It's also a multiple of 𝑎𝑛+1, so 

lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1]|lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1]. 

On the other hand, for 𝑖 = 1,… , 𝑛, 
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𝑎𝑖|lcm[𝑎1,∙∙∙, 𝑎𝑛]  

and lcm[𝑎1,∙∙∙, 𝑎𝑛]|lcm[lcm[𝑎1,∙∙∙, 𝑎𝑛], 𝑎𝑛+1]. 

Therefore, 𝑎𝑖|lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1]. 

Obviously, 

𝑎𝑛+1|lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1]. 

Thus, lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1] is a common multiple 

of all the ai's. Since lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1] is the least 

common multiple, Lemma 2 implies that 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1]|lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1]. 

Since I have two positive numbers which divide one 

another, they're equal: 

lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1] = lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1] 

This proves the claim. 

Returning to the proof of the induction step, I have 

lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛, 𝑎𝑛+1] = lcm[lcm[𝑎1, 𝑎2,∙∙∙, 𝑎𝑛], 𝑎𝑛+1] 

= lcm[𝑎1𝑎2 ∙∙∙ 𝑎𝑛, 𝑎𝑛+1] 

                           = 𝑎1𝑎2 ∙∙∙ 𝑎𝑛. 

The second equality follows by the induction hypothesis 

(the statement for 𝑛). The third equality follows from 

Lemma 1 and the result for 𝑛 = 2.◄ 

 



- 375 - 
 

Example. 

6, 25, and 7 are relatively prime (in pairs). The least 

common multiple is 

lcm[6,25,7] = 1050 = 6.25.7.■ 

 

Lemma 4.  

Let 𝑚 be a positive integer and let 𝑎, 𝑏, and 𝑐 be integers. 

If 𝑎𝑐 ≡ 𝑏𝑐(mod 𝑚) and gcd(𝑐,𝑚) = 1, then 𝑎 ≡

 𝑏 (mod 𝑚). 

Proof.  

Because 𝑎𝑐 ≡ 𝑏𝑐(mod 𝑚), 𝑚|𝑎𝑐 − 𝑏𝑐 = 𝑐(𝑎 − 𝑏). 

Because gcd(𝑐,𝑚) = 1, it follows that 𝑚|𝑎 − 𝑏. We 

conclude that 𝑎 ≡ 𝑏(mod 𝑚).◄ 
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The Chinese Remainder Theorem 

Theorem. (The Chinese Remainder Theorem)  

Suppose 𝑚1, 𝑚2, … ,𝑚𝑛 are pairwise relatively prime 

(that is, gcd(𝑚𝑖 , 𝑚𝑗) = 1 for 𝑖 ≠ 𝑗). Then the system of 

congruences 

𝑥 ≡ 𝑎1(mod 𝑚1) 

𝑥 ≡ 𝑎2(mod 𝑚2) 

⋮ 

𝑥 ≡ 𝑎𝑛(mod 𝑚𝑛) 

has a unique solution mod 𝑚1𝑚2 …𝑚𝑛. 

Notation. 𝑥1𝑥2 … , 𝑥𝑖̂, … , 𝑥𝑛 

means the product 𝑥1𝑥2 … , 𝑥𝑖 , … , 𝑥𝑛with 𝑥𝑖 omitted. For 

example, 𝑥1𝑥2 … , 𝑥4̂, … , 𝑥6 means 𝑥1𝑥2𝑥3𝑥5𝑥6. 

This is a convenient (and standard) notation for omitting 

a single variable term in a product of things. 

Proof.  

Define 𝑝𝑘 = 𝑚1 …𝑚𝑘̂ …𝑚𝑛. 

That is, 𝑝𝑘 is the product of the m's with 𝑚𝑘 omitted. By 

Lemma 1, gcd(𝑝𝑘 , 𝑚𝑘) = 1 . Hence, there are integer 

numbers 𝑠𝑘 , 𝑡𝑘 such that 𝑠𝑘𝑝𝑘 + 𝑡𝑘𝑚𝑘 = 1. 
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In terms of congruences, 𝑠𝑘𝑝𝑘 ≡ 1(mod 𝑚𝑘). 

Now let 𝑥 = 𝑎1𝑝1𝑠1 + 𝑎2𝑝2𝑠2 + ⋯+ 𝑎𝑛𝑝𝑛𝑠𝑛. 

If 𝑗 ≠ 𝑘, then 𝑚𝑘|𝑝𝑗 , so mod 𝑚𝑘 all the terms but the kth 

term die: 𝑥 ≡ 𝑎𝑘𝑝𝑘𝑠𝑘 = 𝑎𝑘 . 1 ≡ 𝑎𝑘  (mod 𝑚𝑘) 

This proves that x is a solution to the system of 

congruences (and incidentally, gives a formula for x). 

Now suppose that x and y are two solutions to the system 

of congruences. 

𝑥 ≡ 𝑎1(mod 𝑚1) and 𝑦 ≡ 𝑎1(mod 𝑚1) 

𝑥 ≡ 𝑎2(mod 𝑚2) and 𝑦 ≡ 𝑎2(mod 𝑚2) 

⋮ ⋮ ⋮ 

𝑥 ≡ 𝑎𝑛(mod 𝑚𝑛) and 𝑦 ≡ 𝑎𝑛(mod 𝑚𝑛) 

 

Then 𝑥 ≡ 𝑎𝑘 ≡ 𝑦 (mod 𝑚𝑘). 

So 𝑥 − 𝑦 ≡ 0(mod 𝑚𝑘) or 𝑚𝑘|𝑥 − 𝑦. 

Thus, 𝑥 − 𝑦 is a multiple of all the m's, so 

lcm[𝑚1,𝑚2, … ,𝑚𝑛]|𝑥 − 𝑦. 

But the m's are pairwise relatively prime. By Lemma 3, 

𝑚1𝑚2 …𝑚𝑛|𝑥 − 𝑦, i.e. 𝑥 ≡ 𝑦(mod 𝑚1𝑚2 …𝑚𝑛). 

That is, the solution to the congruences is unique 

mod 𝑚1𝑚2 …𝑚𝑛.■ 
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Example.  

Solve 

𝑥 ≡ 2(mod 4); 

𝑥 ≡ 7(mod 9). 

Solution. 

Since gcd(4,9) = 1, so there is a unique solution 

mod 36. Following the construction of x in the proof, 

𝑝1 = 9, 9 ∙ 1 ≡ 1(mod 4), so take 𝑠1 = 1 

𝑝2 = 4, 4 ∙ 7 ≡ 1(mod 9), so take 𝑠2 = 7 

𝑥 = 𝑎1𝑝1𝑠1 + 𝑎2𝑝2𝑠2 = 18 + 196 = 214 

     ≡ 34(mod 36). ■ 

Example.  

Solve 

𝑥 ≡ 3(mod 4); 

𝑥 ≡ 1(mod 5); 

𝑥 ≡ 2(mod 3). 

Solution. 

The moduli are pairwise relatively prime, so there is a 

unique solution mod 60. This time, I'll solve the system 

using an iterative method. 



- 379 - 
 

𝑥 ≡  3(mod 4),  so 𝑥 = 3 +  4𝑠 

But 𝑥 ≡  1(mod 5),  so 3 +  4𝑠 ≡  1 (mod 5),  

4𝑠 ≡  3 (mod 5), implies 4.4𝑠 ≡  4.3 (mod 5).  

Since 4.3 ≡ 32 (mod 5), we have 4.4𝑠 ≡  32 (mod 5) 

𝑠 ≡  2 (mod 5), 𝑠 =  2 +  5𝑡. 

Hence, 𝑥 = 3 + 4𝑠 = 3 + 4(2 + 5𝑡) = 11 + 20𝑡. 

Finally, 𝑥 ≡  2 (mod 3), so 

11 +  20𝑡 ≡  2 (mod 3), 

 20𝑡 ≡  −9 ≡  0 (mod 3), 20𝑡 ≡   0 (mod 3),  

20𝑡 ≡   20.0 (mod 3), 𝑡 ≡   0 (mod 3), 

Hence, 𝑡 =  3𝑢. 

Now put everything back: 

𝑥 = 11 + 20𝑡 = 11 + 20(3𝑢) = 11 + 60𝑢,or 

𝑥 ≡ 11(mod 60).■ 

Example.  

Ahmed keeps balls in his bag. If he divides them into 5 

equal groups, 4 are left over. If he divides them into 8 

equal groups, 6 are left over. If he divides them into 9 

equal groups, 8 are left over. What is the smallest number 

of balls that he could have? 
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Solution. 

Let x be the number of balls. Then 

𝑥 ≡ 4(mod 5); 

𝑥 ≡ 6(mod 8); 

𝑥 ≡ 8(mod 9). 

From 𝑥 ≡ 4(mod 5), I get𝑥 = 4 + 5𝑎. Plugging this into 

the second congruence, I get 

4 + 5𝑎 ≡ 6(mod 8) 

5𝑎 ≡ 2(mod 8) 

5 ∙ 5𝑎 ≡ 5 ∙ 2(mod 8) 

25𝑎 ≡ 10(mod 8), 

But,  

10 ≡ 50(mod 8) 

Then, 

25𝑎 ≡ 50(mod 8) 

Or, 

𝑎 ≡ 2(mod 8) 

Hence,𝑎 = 2 + 8𝑏. Plugging this into𝑥 = 4 + 5𝑎 gives 

𝑥 = 4 + 5(2 + 8𝑏) = 14 + 40𝑏. 

Plugging this into the third congruence, I get 

14 + 40𝑏 ≡ 8(mod 9) 
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40𝑏 ≡ −6(mod 9) 

But, 

−6 ≡ 120(mod 9) 

So, 

40𝑏 ≡ 120(mod 9) 

Or, 

𝑏 ≡ 3(mod 9) 

Hence, 𝑏 = 3 + 9𝑐. Plugging this into 𝑥 = 14 + 40𝑏 

gives 𝑥 = 14 + 40(3 + 9𝑐) = 134 + 360𝑐. 

The smallest positive value of x is obtained by setting 𝑐 =

0, which gives 𝑥 = 134. ■ 

 

You can sometimes solve a system even if the moduli 

aren't relatively prime; the criteria are similar to those for 

solving system of linear Diophantine equations. I'll state 

the result, but omit the proof. 

Theorem.  

Consider the system 

𝑥 ≡ 𝑎1(mod 𝑚1) 

𝑥 ≡ 𝑎2(mod 𝑚2) 

(a)  If gcd(𝑚1, 𝑚2) ∤ 𝑎1 − 𝑎2, there are no solutions. 
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(b)  If gcd(𝑚1, 𝑚2)|𝑎1 − 𝑎2, there is a unique solution 

mod lcm[𝑚1, 𝑚2].■ 

Note that if gcd(𝑚1, 𝑚2) = 1, case (b) automatically 

holds, and lcm[𝑚1,𝑚2] = 𝑚1𝑚2 --- i.e. I get the Chinese 

Remainder Theorem for 𝑛 = 2. 

Example.  

Solve 𝑥 ≡ 5(mod 12);  𝑥 ≡ 11(mod 18). 

Solution. 

Since gcd(12, 18) = 6|11 − 5, there is a unique solution 

mod lcm[12, 18] = 36. I'll use the iterative method to 

find the solution. 𝑥 ≡ 5(mod 12), so 𝑥 = 5 + 12𝑠. 

Since 𝑥 ≡ 11(mod 18), 

5 + 12𝑠 ≡ 11(mod 18), 12𝑠 ≡ 6(mod 18) 

Now I use my rule for "dividing" congruencies: 6 divides 

both 12 and 6, and gcd(6,18) = 6, so I can divide 

through by 6:  2𝑠 ≡ 1(mod 3) 

Multiply by 2, and convert the congruence to an equation: 

𝑠 ≡ 2(mod 3), 𝑠 = 2 + 3𝑡. 

Plug back in: 

𝑥 = 5 + 12(2 + 3𝑡) = 29 + 36𝑡, 𝑥 ≡ 29(mod 36).■ 



- 383 - 
 

Exercise Set (5) 

(1)  Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Prove that: 

    (a) If 𝑎|𝑏 and 𝑎|𝑐, then 𝑎|𝑏𝑥 + 𝑐𝑦 for all 𝑥, 𝑦 ∈ ℤ. 

    (b) If  𝑎|𝑏, then 𝑎|𝑏𝑐. 

    (c) If 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐. 

    (d) If 𝑎 > 0 , 𝑏 > 0 and 𝑎|𝑏 then 𝑎 ≤ 𝑏. 

    (e) If  𝑎|𝑏, then |𝑎|||𝑏|. 

    (f) If 𝑎|𝑏 and 𝑏|𝑎 then 𝑎 = ±𝑏. 

(2) Let a be  positive integer and b integer. Prove that 

there exist unique integers 𝑟, 𝑞 such that:  

𝑏 = 𝑞𝑎 + 𝑟 , where 0 ≤ 𝑟 < 𝑎. 

(3) Prove that:  

If 𝑏 = 𝑞𝑎 + 𝑟, then gcd(𝑎, 𝑏) = gcd(𝑎, 𝑟). 

(4) Evaluate gcd(6755, 1587645) and find x and y such 

that gcd(6755, 1587645) =  6755𝑥 + 1587645𝑦. 

(5)  Evaluate gcd(123456789, 987654321) and find x 

and y such that 

 gcd(123456789, 987654321) = 123456789𝑥 +

 987654321𝑦 
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(6)  Evaluate gcd(189, 283, 512) and find x, y and z such 

that gcd(189, 283, 512) = 189 𝑥 +  283 𝑦 +  512 𝑧. 

(7) Find gcd(360,−2250), lcm[360,−2250], 

gcd(3799, 7337), lcm[3799, 7337], lcm[6,10,14], 

lcm[7, 11, 13]. 

(8) Prove that √2 , √10
3

,    log10 2  are irrationals. 

(9) Let 𝑛 < 𝑝 ≤ 2𝑛. Prove that: 

𝑛𝜋(2𝑛)−𝜋(𝑛) ≤ 22𝑛and 
𝜋(2𝑛)−𝜋(𝑛)

𝑛
<

2

log2 𝑛
. 

(10) Let 𝑎, 𝑏, 𝑐 ∈ ℤand 𝑛 ∈ ℤ+. Prove that: 

(a) 𝑎 ≡ 𝑎 (mod 𝑛); 

(b) If  𝑎 ≡ 𝑏 (mod 𝑛), then 𝑏 ≡ 𝑎 (mod 𝑛); 

(c) If  𝑎 ≡ 𝑏 (mod 𝑛), and  𝑏 ≡ 𝑐 (mod 𝑛), then 

     𝑎 ≡ 𝑐 (mod 𝑛); 

(d) If  𝑎 ≡ 𝑏 (mod 𝑛), and  𝑐 ≡ 𝑑 (mod 𝑛), then 

      𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛), 𝑎 − 𝑐 ≡ 𝑏 − 𝑑 (mod 𝑛),  

       and 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛). 

(e) If  𝑎 ≡ 𝑏 (mod 𝑛) and 𝑚|𝑛, then   𝑎 ≡ 𝑏 (mod 𝑚). 

(11) Let 𝑎, 𝑏, 𝑐 ∈ ℤ and 𝑛 ∈ ℤ+. Prove that: 

(a) If 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛)and (𝑐, 𝑛) = 1, then 

     𝑎 ≡ 𝑏 (mod 𝑛). 



- 385 - 
 

(b) If 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑝), then 𝑎 ≡ 𝑏 (mod 𝑝), where p is 

prime and does not divide c. 

(12) Find the least positive integer x such that: 

3 divides x with remainder 1; 4 divides x with remainder 

2; 5 divides x with remainder 3; (hint: Use the Chinese 

remainder theorem). 

(13) Solve: 

a)  19𝑥 ≡ 1 (mod 140); 

b) 13𝑥 ≡ 71 (mod 380). 

c) 108𝑥 ≡ 171 (mod 529). 

(14) Solve the following systems: 

a) 𝑥 ≡ 2 (mod 3), 𝑥 ≡ 3 (mod 5), 𝑥 ≡ 2 (mod 7). 

b) 𝑥 ≡ 1 (mod 3), 𝑥 ≡ 2 (mod 4), 𝑥 ≡ 3 (mod 5). 

c) 𝑥 ≡ 5 (mod 7), 𝑥 ≡ 12 (mod 15), 

𝑥 ≡ 18 (mod 22). 
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Chapter (VI) 

Counting 

The Beginning of Mathematics 

6.1 The Basics of Counting 

Suppose that a password on a computer system consists 

of six, seven, or eight characters. Each of these characters 

must be a digit or a letter of the alphabet. Each password 

must contain at least one digit. How many such 

passwords are there? The techniques needed to answer 

this question and a wide variety of other counting 

problems will be introduced in this section. 

Counting problems arise throughout mathematics and 

computer science. For example, we must count the 

successful outcomes of experiments and all the possible 

outcomes of these experiments to determine probabilities 

of discrete events. We need to count the number of 

operations used by an algorithm to study its time 

complexity. We will introduce the basic techniques of 

counting in this section. These methods serve as 

the foundation for almost all counting techniques. 
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6.2 Basic Counting Principles 

1-The Addition rule or Sum rule  

(Principle of disjunction counting) 

If a task can be done either in one of 𝑛1 ways or in one of 

𝑛2 ways, where none of the set of 𝑛1 ways is the same as 

any of the set of 𝑛2 ways, then there are 𝑛1 + 𝑛2 ways to 

do the task. 

More general: 

Let 𝑆 be a set and |𝑆| denote the number of elements in 𝑆. 

If 𝑆 is a union of disjoint non-empty subsets  

𝐴1, 𝐴2, … , 𝐴𝑛, 

then 

|𝑆| = |𝐴1| + |𝐴2| + ⋯+ |𝐴𝑛|. 

In the above statement the subsets 𝐴𝑖 of 𝑆 are all disjoint 

i.e., they have no element in common. If 𝐴𝑖 and 𝐴𝑗  are 

two subsets of 𝑆, then 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙 for 𝑖 ≠ 𝑗 and we have 

𝑆 = 𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛 that is each element of 𝑆 is 

exactly in one of the subsets 𝐴𝑖. In other words, the 

subsets 𝐴1, 𝐴2, … , 𝐴𝑛 is a partition of 𝑆. 
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Example 

In a class of 30 students, there are 16 boys and 14 girls 

(16 + 14 = 30). Of these, 23 persons wear pants and 

only 7 wear skirts (23 + 7 = 30). On the last exam 20 

students received a passing grade, while 10 failed 

 (20 + 10 = 30). ■ 

Example  

An electronic book of 472 pages has been stored in 

separate files - one file per page - in two folders. One 

folder contained 305 files, the other 167 files 

 (305 +  167 =  472. ) ■ 

Example. 

There are 40 students in an algebra class and 40 students 

in a geometry class. How many different students are in 

both classes combined? 

This problem is not well formulated and cannot be 

answered unless we are told how many students are 

taking both algebra and geometry. If there is not student 

taking both algebra and geometry, then by the sum rule 

the answer is 40 +  40. But let us assume that there are 

10  students taking both algebra and geometry. Then 
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there are 30  students only in algebra, 30  students only in 

geometry, and 10  students in both algebra and geometry. 

Therefore, by the sum rule the total number of students is 

30 +  30 +  10 =  70. ■ 

Example. 

How many ways can we get a sum of 7 or 11 when two 

distinguishable dice are rolled? 

Solution.  

The two dice are distinguishable, therefore the ordered 

pairs (𝑎, 𝑏) and (𝑏, 𝑎) are distinct when 𝑎 ≠ 𝑏 , i.e., 

(𝑎, 𝑏) ≠ (𝑏, 𝑎) for 𝑎 ≠ 𝑏. 

The ordered pairs in which the sum is 7 are: 

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1).  

These ordered pairs are distinct. 

∴ There are 6 ways to obtain the sum 7. 

Similarly, the ordered pairs: (5, 6), (6, 5) are all distinct. 

∴ The number of ways in which we get a sum 11 with the 

two dice is 2. 

∴ We can get a sum 7 or 11 with two distinguishable dice 

in 6 +  2 =  8 ways.■ 
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Example. 

How many ways can we draw a club or a diamond from a 

pack of cards? 

Solution. 

There are 13 clubs and 13 diamonds in a pack of cards. 

The number of ways a club or a diamond may be drawn 

13 +  13 =  26. ■ 

Example. 

In how ways can be drawn an ace or a king from an 

ordinary deck of playing cards? 

Solution. 

Number of Aces in a pack =  𝟒. 

Number of kings in a pack =  𝟒. 

Number ways an Ace or a king can be drawn from the 

pack =  𝟒 +  𝟒 =  𝟖. ■ 

Example. 

Suppose that either a member of the mathematics faculty 

or a student who is a mathematics major is chosen as a 

representative to a university committee. How many 

different choices are there for this representative if there 
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are 37 members of the mathematics faculty and 83 

mathematics majors and no one is both a faculty member 

and a student? 

Solution.  

There are 37 ways to choose a member of the 

mathematics faculty and there are 83 ways to choose a 

student who is a mathematics major. Choosing a member 

of the mathematics faculty is never the same as choosing 

a student who is a mathematics major because no one is 

both a faculty member and a student. By the sum rule it 

follows that there are 37 +  83 =  120 possible ways to 

pick this representative. ■ 

Example. 

A student can choose a computer project from one of 

three lists. The three lists contain 23, 15, and 19 possible 

projects, respectively. No project is on more than one list. 

How many possible projects are there to choose from? 

Solution.  

The student can choose a project by selecting a project 

from the first list, the second list, or the third list. Because 
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no project is on more than one list, by the sum rule there 

are 23 +  15 +  19 =  57 ways to choose a project. ■ 

Example. 

How many three-digit integers (integers from 100 to 999 

inclusive) are divisible by 5? 

Solution.  

We use the addition rule. Integers that are divisible by 5 

end either in 5 or in 0. Thus the set of all three-digit 

integers that are divisible by 5 can be split into two 

mutually disjoint subsets 𝐴1 and 𝐴2 as shown in the 

following figure. 

 

𝐴1 ∪ 𝐴2 =the set of all three-digit integers that are 

divisible by 5. 𝐴1 ∩ 𝐴2 = 𝜙. 
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Now there are as many three-digit integers that end in 0 

as there are possible choices for the left-most and middle 

digits (because the right-most digit must be a 0). As 

illustrated below, there are nine choices for the left-most 

digit (the digits 1 through 9) and ten choices 

for the middle digit (the digits 0 through 9). Hence 

|𝐴1| = 9 ∙ 10 = 90. 

 

Similar reasoning shows that there are as many three-

digit integers that end in 5 as there are possible choices 

for the left-most and middle digits, which are the same as 

for the integers that end in 0. Hence,  

|𝐴2| = 9 ∙ 10 = 90. 

The number of three-digit integers that are divisible by 5 

= |𝐴1| + |𝐴2| = 90 + 90 = 180. ■ 
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2-Product Rule (The Multiplication Rule) 

The Principle of Sequential Counting 

Consider the following example. Suppose a computer 

installation has four input/output units (A, B, C, and D) 

and three central processing units (X, Y, and Z). Any 

input/output unit can be paired with any central 

processing unit. How many ways are there to pair an 

input/output unit with a central processing unit? 

To answer this question, imagine the pairing of the two 

types of units as a two-step 

operation: 

Step 1: Choose the input/output unit. 

Step 2: Choose the central processing unit. 

The possible outcomes of this operation are illustrated in 

the possibility tree of the following figure. 

The topmost path from “root” to “leaf” indicates that 

input/output unit A is to be paired with central processing 

unit X. The next lower branch indicates that input/output 

unit A is to be paired with central processing unit Y. And 

so forth. 

Thus the total number of ways to pair the two types of 
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units is the same as the number of branches of the tree, 

which is 𝟑 + 𝟑 + 𝟑 + 𝟑 = 𝟒 ∙ 𝟑 = 𝟏𝟐. 

 

The idea behind this example can be used to prove the 

following rule.  

THE PRODUCT RULE Suppose that a procedure can be 

broken down into a sequence of two tasks. If there are 𝒏𝟏 

ways to do the first task and for each of these ways of 

doing the first task, there are 𝒏𝟐 ways to do the second 

task, then there are 𝒏𝟏 × 𝒏𝟐 ways to do the procedure.  

In general: 
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If an operation consists of k steps and the first step can be 

performed in 𝒏𝟏 ways,  

the second step can be performed in 𝒏𝟐 ways [regardless 

of how the first step was performed],  

⋮ 

the kth step can be performed in 𝒏𝒌 ways [regardless of 

how the preceding steps were performed], then the entire 

operation can be performed in  𝒏𝟏 × 𝒏𝟐 × …× 𝒏𝒌 ways. 

◄ 

Example. 

There are two drawers. One contains 12 shirts, the other 7 

neckties. There are 84 =  12 × 7 ways to combine a 

shirt and a necktie. It is possible to examine the drawers 

sequentially: first-second, first-second... It is also possible 

to form combinations using two hands: left for a shirt, 

right for a necktie. As long as all possible combinations 

shirt/necktie have been counted, the exact procedure is of 

no consequence.■ 
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Example. 

A test consists of 6 multiple-choice questions. Each 

question has 4 possible answers. There are 4 × 4 × 4 ×

4 × 4 × 4 =  46   ways to answer all 6 questions. ■ 

Example. 

There are boxes in a postal office labelled with an 

English letter (out of 26 English characters) and a 

positive integer not exceeding 80.  How many boxes with 

different labels are possible? 

Solution. 

The procedure of labelling boxes consists of two 

successive stages. In the first stage we assign 26  different 

English letters, and in the second stage we assign 80  

natural numbers (the second stage does not depend on the 

outcome of the first stage). Thus by the multiplication 

rule we have 26 × 80 = 2080 different labels. ■ 

Example. 

How many different bit strings are there of length five? 
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Solution. 

We have here a procedure that assigns two values (i.e., 

zero or one) in five stages. Therefore, by the 

multiplication rule we have 25 = 32 different strings. ■ 

Example. 

How many possible outcomes are there when we roll a 

pair of dice, one red and one green? 

Solution. 

The red die can land in any one of six ways and for each 

of their six ways, the green die can also land in six ways. 

The number of possible outcomes when two dice are 

rolled =  𝟔 ×  𝟔 =  𝟑𝟔.■ 

Example. 

In how many different ways one can answer all the 

questions of a true-false test consisting of 4 questions? 

Solution. 

There are two ways of answering each of the 4 questions. 

So by product rule the number of ways in which all the 4 

questions can be answered= 𝟐 × 𝟐 × 𝟐 × 𝟐 = 𝟏𝟔.  ■ 
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Example. 

Find the number 𝒏 of license plates that can be made 

where each plate contains two distinct letters followed by 

three different digits. 

Solution. 

First letter can be printed in 26 different ways. Since the 

second letter must be different from the first, we have 25 

contains for the second letter. Similarly the first digit can 

be printed in 10 ways, the second digit in the license plate 

can be printed in 9 ways and the third in 8 ways. So, the 

number of license plates that can be printed, so that each 

plate contains two distinct letters follower by three 

different digits 26 × 25 × 10 ×  9 ×  8 =  4,68,000. ■ 

Example. 

How many functions are there from a set with 𝑚 

elements to a set with 𝑛 elements? 

Solution. 

A function corresponds to a choice of one of the 𝒏 

elements in the codomain for each of the 𝒎 elements in 

the domain. Hence, by the product rule there are 
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 𝒏 ·  𝒏 · · · · ·  𝒏 =  𝒏𝒎 functions from a set with 𝒎 

elements to one with 𝒏 elements. For example, there are 

𝟓𝟑  =  𝟏𝟐𝟓 different functions from a set with three 

elements to a set with five elements. ■ 

Example. 

A certain personal identification number (PIN) is required 

to be a sequence of any four symbols chosen from the 26 

uppercase letters in the Roman alphabet and the 10 digits. 

a. How many different PINs are possible if repetition of 

symbols is allowed?  

b. How many different PINs are possible if repetition of 

symbols is not allowed? 

c. What is the probability that a PIN does not have a 

repeated symbol assuming that all PINs are equally 

likely? 

Solution. 

a. Some possible PINs are RCAE, 3387, B92B, and so 

forth. You can think of forming a PIN as a 4-step 

operation where each step involves placing a symbol into 

one of 4 positions, as shown below. 
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Step 1: Choose a symbol to place in position 1. 

Step 2: Choose a symbol to place in position 2. 

Step 3: Choose a symbol to place in position 3. 

Step 4: Choose a symbol to place in position 4. 

There is a fixed number of ways to perform each step, 

namely 36, regardless of how preceding steps were 

performed. And so, by the multiplication rule, there are 

𝟑𝟔 ∙ 𝟑𝟔 ∙ 𝟑𝟔 ∙ 𝟑𝟔 = 𝟑𝟔𝟒 =  𝟏, 𝟔𝟕𝟗, 𝟔𝟏𝟔 PINs in all. 

b. Again think of forming a PIN as a four-step operation: 

Choose the first symbol, then the second, then the third, 

and then the fourth. There are 36 ways to choose the first 

symbol, 35 ways to choose the second (since the first 

symbol cannot be used again), 34 ways to choose the 

third (since the first two symbols cannot be reused), and 

33 ways to choose the fourth (since the first three 
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symbols cannot be reused). Thus, the multiplication rule 

can be applied to conclude that there are 

 𝟑𝟔 ∙ 𝟑𝟓 ∙ 𝟑𝟒 ∙ 𝟑𝟑 = 𝟏, 𝟒𝟏𝟑, 𝟕𝟐𝟎 

different PINs with no repeated symbol. 

c. By part (b) there are 𝟏, 𝟒𝟏𝟑, 𝟕𝟐𝟎 PINs with no 

repeated symbol, and by part (a) there are 𝟏, 𝟔𝟕𝟗, 𝟔𝟏𝟔 

PINs in all. So the probability that a PIN chosen at 

random contains no repeated symbol is 𝟏, 𝟔𝟕𝟗, 𝟔𝟏𝟔/

𝟏, 𝟒𝟏𝟑, 𝟕𝟐𝟎 ≅  𝟎. 𝟖𝟒𝟏𝟕. In other words, approximately 

84% of PINs have no repeated symbol. ■ 

Let us now consider some more sophisticated counting 

problems in which one must use a mixture of the sum and 

multiplication rules. 

Example. 

A valid file name must be six to eight characters long and 

each name must have at least one digit. How many file 

names can there be? 

Solution. 

If N is the total number of valid file names and N6, N7 

and N8 are, respectively, file names of length six, seven, 

and eight, then by the sum rule N = N6 + N7 + N8: 
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Let us first estimate N6. We compute it in an indirect way 

using the multiplication rule together with the sum rule. 

We first estimate the number of file names of length six 

without the constraint that there must be at least one digit. 

By the multiplication rule there are (26 + 10)6 = 366 file 

names. Now the number of file names that consists of 

only letters (no digits) is 266. We must subtract these 

since they are not allowed. Therefore (by the sum rule) 

N6 = 366 – 266 = 1867866560: 

In a similar way, we compute N7= 367 – 267;  N8 = 368 – 

268. Finally N = N6 + N7 + N8 = 2684483063360.■ 

3-The Subtraction Rule (Inclusion–Exclusion for Two Sets)  

Suppose that a task can be done in one of two ways, but 

some of the ways to do it are common to both ways. In 

this situation, we cannot use the sum rule to count the 

number of ways to do the task. If we add the number of 

ways to do the tasks in these two ways, we get an 

overcount of the total number of ways to do it, because 

the ways to do the task that are common to the two 

ways are counted twice. To correctly count the number of 

ways to do the two tasks, we must subtract the number of 
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ways that are counted twice. This leads us to an important 

counting rule. 

THE SUBTRACTION RULE If a task can be done in 

either 𝑛1 ways or 𝑛2 ways, then the number of ways to do 

the task is 𝑛1 + 𝑛2 minus the number of ways to do the 

task that are common to the two different ways.◄ 

The subtraction rule is also known as the principle of 

inclusion–exclusion, especially when it is used to count 

the number of elements in the union of two sets.  

Suppose that 𝐴 and 𝐵 are sets. Then, there are |A|  ways 

to select an element from 𝐴 and |B| ways to select an 

element from 𝐵. The number of ways to select an element 

from 𝐴 or from 𝐵, that is, the number of ways to select an 

element from their union, is the sum of the number of 

ways to select an element from 𝐴 and the number of ways 

to select an element from 𝐵, minus the number of ways to 

select an element that is in both 𝐴 and 𝐵. Because there 

are |A ∪ B| ways to select an element in either 𝐴 or in 𝐵, 

and |A ∩ B| ways to select an element common to both 

sets, we have 

|A ∪ B|  =  |A|  + |B|  −  |A ∩ B|.    (*) 
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 Here's an argument that may appear more rigorous. 

● Since A ∩ B and B − A are disjoint as are A and 𝐵 − 𝐴,  

moreover 

 A ∪ B = A ∪ (B − A)  

and 

 B = (A ∩ B) ∪ (B − A),  

it follows from (*) that  

|A ∪ B| =  |A| + |B −  A|, 

|A ∩ B|  +  |B −  A|  =  |B|, 

which, when added, yield (*). 

●  If A ∩ B =  ϕ, then |A ∪ B|  =  |A|  + |B|. 

Example. 

A computer company receives 350 applications from 

computer graduates for a job planning a line of new Web 

servers. Suppose that 220 of these applicants majored in 

computer science, 147 majored in business, and 51 

majored both in computer science and in business. How 

many of these applicants majored neither in computer 

science nor in business? 

 

 

http://www.cut-the-knot.org/do_you_know/add_set.shtml#difference
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Solution.  

To find the number of these applicants who majored 

neither in computer science nor in business, we can 

subtract the number of students who majored either in 

computer science or in business (or both) from the total 

number of applicants. Let A be the set of students who 

majored in computer science and B the set of students 

who majored in business. Then A ∪ B is the set of 

students who majored in computer science or business (or 

both), and A ∩ B is the set of students who majored both 

in computer science and in business. By the subtraction 

rule the number of students who majored either in 

computer science or in business (or both) equals 

|A ∪ B| =  |A| + |B| − |A ∩ B| 

             = 220 +  147 −  51 =  316. 

We conclude that 350 −  316 =  34 of the applicants 

majored neither in computer science nor in business. ■ 

● The story of course does not end here. What about if 

there are three sets: A, B, C?  For three sets, the Inclusion-

Exclusion Principle reads 
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|A ∪ B ∪ C|

=  |A| + |B| + |C| − |A ∩ B|  −  |B ∩ C|  

− |A ∩ C|  +  |A ∩ B ∩ C| 

● In the more general case where there are n different sets 

Ai, the formula for the Inclusion-Exclusion Principle 

becomes: 

|⋃𝐴𝑖

𝑛

𝑖=1

| = ∑|𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|

⬚

1≤𝑖<𝑗≤𝑛

 

                                 +∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|⬚
1≤𝑖<𝑗<𝑘≤𝑛  

                              −⋯+ (−1)𝑛−1|⋂ 𝐴𝑖
𝑛
𝑖=1 |  ......... (**) 

● What does (**) say? On the left is number of elements 

in the union of n sets. On the right, we first count 

elements in each of the sets separately and add the up, as 

we already know, if the sets Ai are not disjoint, some 

elements will have be counted more than once. Those are 

the elements that belong to at least two of the sets Ai, or 

the intersections Ai ∩ Aj. We wish to consider every such 

intersection, but each only once. Since Ai ∩ Aj = Aj ∩ Ai, 

to avoid duplications we arbitrarily decide to consider 

only pairs (Ai ∩ Aj) with i <  j. 
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● When we subtract the sum of the number of elements in 

such pairwise intersections, some elements may have 

been subtracted more than once. Those are the elements 

that belong to at least three of the sets Ai. We add the sum 

of the elements of intersections of the sets taken three at a 

time. (The condition i <  j <  k assures that every 

intersection is counted only once.) 

● The process goes on with sums being alternately added 

or subtracted until we come to the last term - the 

intersection of all sets Ai. Whether it's added or 

subtracted depends on n: for n = 2 it was subtracted, for 

n = 3 added - take a clue from here. 

● Sets 𝐴𝑖 are often taken to be subsets of a larger set X 

such that each 𝐴𝑖 is a collection of elements of X that 

share some property 𝑃𝑖. 

⋃ 𝐴𝑖
𝑛
𝑖=1   

is then the subset of X that consists of all elements of X 

having at least one of the properties 𝑃𝑖. Its complement 

𝑋 − ⋃ 𝐴𝑖
𝑛
𝑖=1   

is the set of elements that have none of those properties: 

𝑋 − ⋃ 𝐴𝑖
𝑛
𝑖=1 = ⋂ (𝑋 − 𝐴𝑖

⬚)𝑛
𝑖=1 = ⋂ 𝐴𝑖

𝑐𝑛
𝑖=1   

http://www.cut-the-knot.org/arithmetic/combinatorics/InclusionExclusion.shtml#(2)
http://www.cut-the-knot.org/arithmetic/combinatorics/InclusionExclusion.shtml#(3')
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from which  

|⋂ 𝐴𝑖
𝑐𝑛

𝑖=1 | = |𝑋| − |⋃ 𝐴𝑖
𝑛
𝑖=1 |  

This leads to an additional form of (**) 

|⋂ 𝐴𝑖
𝑐𝑛

𝑖=1 | = |𝑋| − ∑ |𝐴𝑖|
𝑛
𝑖=1 + ∑ |𝐴𝑖 ∩ 𝐴𝑗|

⬚
1≤𝑖<𝑗≤𝑛   

                                 −∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|⬚
1≤𝑖<𝑗<𝑘≤𝑛  

                              +⋯+ (−1)𝑛|⋂ 𝐴𝑖
𝑛
𝑖=1 |  ......... (***) 

The left-hand side in (***) gives the number of elements 

of X that have none of the properties 𝑃𝑖. 

Example. 

How many bit strings of length eight either start with a 1 

bit or end with the two bits 00? 

Solution.  

We can construct a bit string of length eight that either 

starts with a 1 bit or ends with the two bits 00, by 

constructing a bit string of length eight beginning with a 

1 bit or by constructing a bit string of length eight that 

ends with the two bits 00. We can construct a bit 

string of length eight that begins with a 1 in 27 = 128 

ways. This follows by the product rule, because the first 
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bit can be chosen in only one way and each of the other 

seven bits can be chosen in two ways.  

 

Similarly, we can construct a bit string of length eight 

ending with the two bits 00, in 26 = 64 ways. This 

follows by the product rule, because each of the first six 

bits can be chosen in two ways and the last two bits can 

be chosen in only one way.  

 

Some of the ways to construct a bit string of length eight 

starting with a 1 are the same as the ways to construct a 

bit string of length eight that ends with the two bits 00. 

There are 25 = 32 ways to construct such a string. This 

follows by the product rule, because the first 

bit can be chosen in only one way, each of the second 

through the sixth bits can be chosen in two ways, and the 

last two bits can be chosen in one way.  
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Consequently, the number of bit strings of length eight 

that begin with a 1 or end with a 00, which equals the 

number of ways to construct a bit string of length eight 

that begins with a 1 or that ends with 00, equals 128 +

 64 −  32 =  160. ■ 

Example. 

A professor in a discrete mathematics class passes out a 

form asking students to check all the mathematics and 

computer science courses they have recently taken. He 

found that, out of a total of 50 students in the class, 

30 took precalculus;  

16 took both precalculus and Python; 

18 took calculus;  

8 took both calculus and Python; 

26 took Python;  

47 took at least one of the three courses. 

9 took both precalculus and calculus; 

Note that when we write “30 students took precalculus,” 

we mean that the total number of students who took 

precalculus is 30, and we allow for the possibility that 

some of these students may have taken one or both of the 
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other courses. If we want to say that 30 students took 

precalculus only (and not either of the other courses), we 

will say so explicitly. 

a. How many students did not take any of the three 

courses? 

b. How many students took all three courses? 

c. How many students took precalculus and calculus but 

not Python? How many students took precalculus but 

neither calculus nor Python? 

Solution 

a. By the difference rule, the number of students who did 

not take any of the three courses equals the number in the 

class minus the number who took at least one course. 

Thus the number of students who did not take any of the 

three courses is 50 − 47 = 3. 

b. Let 

𝑃 = the set of students who took precalculus. 

𝐶 = the set of students who took calculus. 

𝑌 = the set of students who took Python. 

Then, by the inclusion/exclusion rule, 
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|𝑃 ∪ 𝐶 ∪ 𝑌|

=  |𝑃| + |𝐶| + |𝑌| − |𝑃 ∩ 𝐶| − |𝑃 ∩ 𝑌|

− |𝐶 ∩ 𝑌| + |𝑃 ∩ 𝐶 ∩ 𝑌| 

Substituting known values, we get 

47 = 30 + 18 + 26 − 9 − 16 − 8 + |𝑃 ∩ 𝐶 ∩ 𝑌|. 

Solving for |𝑃 ∩ 𝐶 ∩ 𝑌| gives 

|𝑃 ∩ 𝐶 ∩ 𝑌| = 6. 

Hence there are six students who took all three courses. 

In general, if you know any seven of the eight terms in 

the inclusion/exclusion formula for three sets, you can 

solve for the eighth term. 

c. To answer the questions of part (c), look at the diagram 

in the following figure. 
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Since |𝑃 ∩ 𝐶 ∩ 𝑌| = 6, put the number 6 inside the 

innermost region. Then work outward to find the numbers 

of students represented by the other regions of the 

diagram. 

For example, since nine students took both precalculus 

and calculus and six took all three courses, 9 − 6 = 3 

students took precalculus and calculus but not Python. 

Similarly, since 16 students took precalculus and Python 

and six took all three courses, 16 − 6 = 10 students took 

precalculus and Python but not calculus. Now the total 

number of students who took precalculus is 30. Of these 

30, three also took calculus but not Python, ten took 

Python but not calculus, and six took both calculus and 

Python. That leaves 11 students who took precalculus but 

neither of the other two courses. A similar analysis can be 

used to fill in the numbers for the other regions of the 

diagram. ■ 

4-Tree diagrams 

Tree is a structure that consists of a root, branches and 

leaves. Can be useful to represent a counting problem and 
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record the choices we made for alternatives. The count 

appears on the leaf nodes. We will study trees later. 

Example. 

What is the number of bit strings of length 4 that do not 

have two consecutive ones. 

Solution.  

The tree diagram in the given 

figure  displays all bit strings 

of length four without two 

consecutive 1s. We see that 

there are eight bit strings of 

length four without two 

consecutive 1s. ■ 

Example. 

Suppose that “I Love El-Ahly” T-shirts come in five 

different sizes: S, M, L, XL, and XXL. Further suppose 

that each size comes in four colors, white, red, green, and 

black, except for XL, which comes only in red, green, 

and black, and XXL, which comes only in green and 

black. How many different shirts does a souvenir shop 
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have to stock to have at least one of each available 

size and color of the T-shirt? 

Solution. 

The tree diagram in the following figure displays all 

possible size and color pairs.  

It follows that the souvenir shop owner needs to stock 17 

different T-shirts. ■ 

5-Pigeonhole Principle 

The pigeonhole principle states that if n pigeons fly into 

m pigeonholes and 𝑛 >  𝑚, then at least one hole must 

contain two or more pigeons. This principle is illustrated 

in the following figures. Illustration (a) shows the pigeons 

perched next to their holes, and (b) shows the 

correspondence from pigeons to pigeonholes.  
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Illustration (b) suggests the following mathematical way 

to phrase the principle. 

Pigeonhole Principle 



- 419 - 
 

If 𝑘 is a positive integer and 𝑘 +  1 or more objects 

are placed into 𝑘 boxes, then there is at least one box 

containing two or more of the objects. 

Corollary 

A function from one finite set to a smaller finite set 

cannot be one-to-one: There must be at least two 

elements in the domain that have the same image in the 

co-domain.◄ 

The following examples show how the pigeonhole 

principle is used.  

Example. 

Among any group of 367 people, there must be at least 

two with the same birthday, because 

there are only 366 possible birthdays. ■ 

Example. 

In any group of 27 English words, there must be at least 

two that begin with the same letter, because there are 26 

letters in the English alphabet. ■ 

Example. 

How many students must be in a class to guarantee that at 

least two students receive the same score on the final 
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exam, if the exam is graded on a scale from 0 to 100 

points? 

Solution.  

There are 101 possible scores on the final. The 

pigeonhole principle shows that among any 102 students 

there must be at least 2 students with the same score. ■ 

Example. 

 

If 10 pigeons have to fit into 9 pigeonholes, then some 

pigeonhole gets more than one pigeon. ■ 

● More generally, if the number of pigeons is greater than 

the number of pigeonholes, then some pigeonhole gets 

more than one pigeon. 

Example. 

Consider a chess board with two of the diagonally 

opposite corners removed. Is it possible to cover the 

board with pieces of domino whose size is exactly two 

board squares?  
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Solution. 

No, it's not possible. Two diagonally opposite squares on 

a chess board are of the same color. Therefore, when 

these are removed, the number of squares of one color 

exceeds by 2 the number of squares of another color. 

However, every piece of domino covers exactly two 

squares and these are of different colors.  

Every placement of domino pieces establishes a one-to-

one correspondence between the set of white squares and 

the set of black squares. If the two sets have different 

number of elements, then, by the Pigeonhole Principle, no 

1-1 correspondence between the two sets is possible. ■ 

6-generalized Pigeonhole Principle 

For any function 𝑓 from a finite set 𝑋 with 𝑛 elements to 

a finite set 𝑌 with 𝑚 elements and for any positive integer 

𝑘, if 𝑘𝑚 < 𝑛, then there is some 𝑦 ∈ 𝑌 such that 𝑦 is the 

image of at least 𝑘 + 1 distinct elements of 𝑋.  

Theorem. THE GENERALIZED PIGEONHOLE PRINCIPLE 

If N objects are placed into k bins then there is at least 

one bin containing at least ⌈𝑁/𝑘⌉ objects. 

http://www.cut-the-knot.org/do_you_know/numbers.shtml#1-1
http://www.cut-the-knot.org/do_you_know/numbers.shtml#1-1
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Example. 

Assume 100 people. Can you tell something about the 

number of people born in the same month? 

Solution 

• Yes. There exists a month in which at least ⌈100/12⌉ =

⌈8.3⌉ = 9 people were born. ■ 

Example. 

What is the minimum number of students required in a 

discrete mathematics class to be sure that at least six will 

receive the same grade, if there are five possible grades, 

A, B, C, D, and F? 

Solution. 

The minimum number of students needed to ensure that 

at least six students receive the same grade is the smallest 

integer 𝑁 such that ⌈𝑁/5⌉  =  6. The smallest such 

integer is 𝑁 =  5 ·  5 +  1 =  26. If you have only 25 

students, it is possible for there to be five who have 

received each grade so that no six students have received 

the same grade. Thus, 26 is the minimum number of 
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students needed to ensure that at least six students will 

receive the same grade. ■ 

Example. 

a) How many cards must be selected from a standard 

deck of 52 cards to guarantee that at least three cards of 

the same suit are chosen? 

b) How many must be selected to guarantee that at least 

three hearts are selected? 

Solution.  

a) Suppose there are four boxes, one for each suit, and as 

cards are selected they are placed in the box reserved for 

cards of that suit. Using the generalized pigeonhole 

principle, 

we see that if 𝑁 cards are selected, there is at least one 

box containing at least 𝑁/4 cards. Consequently, we 

know that at least three cards of one suit are selected if 

⌈𝑁/4⌉ ≥ 3. The smallest integer 𝑁 such that ⌈𝑁/4⌉ ≥ 3 

is 𝑁 =  2 ·  4 +  1 =  9, so nine cards suffice. Note that 

if eight cards are selected, it is possible to have two cards 

of each suit, so more than eight cards are needed. 

Consequently, nine cards must be selected to guarantee 
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that at least three cards of one suit are chosen. One good 

way to think about this is to note that after the eighth card 

is chosen, there is no way to avoid having a third card of 

some suit. 

b) We do not use the generalized pigeonhole principle to 

answer this question, because we want to make sure that 

there are three hearts, not just three cards of one suit. 

Note that in the worst case, we can select all the clubs, 

diamonds, and spades, 39 cards in all, before we select a 

single heart. The next three cards will be all hearts, so we 

may need to select 42 cards to get three hearts. ■ 

Example. 

Show how the generalized pigeonhole principle implies 

that in a group of 85 people, at least 4 must have the same 

last initial. 

Solution. 

In this example the pigeons are the 85 people and the 

pigeonholes are the 26 possible last initials of their 

names. 

Consider the function 𝐿 from people to initials defined by 

the following arrow diagram. 
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Since 3 ∙ 26 = 78 <  85, the generalized pigeonhole 

principle states that some initial must be the image of at 

least four (3 + 1) people. Thus at least four people have 

the same last initial. ■ 

7-Permutations and Combinations 

In computer science one often needs to know in how 

many ways one can arrange certain objects (e.g., how 

many inputs are there consisting of ten digits?). To 

answer these questions, we study here permutations and 

combinations – the simplest arrangements of objects. 
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Definition. 

A permutation of a set of distinct objects is an ordered 

arrangements of these objects. An ordered arrangements 

of r  elements of a set is called an r-permutation. 

Example. 

Let 𝑆 = {1, 2, 3}. The ordered arrangement (3, 1, 2) is a 

permutation of 𝑆. The ordered arrangement (3, 2) is a 2-

permutation of 𝑆.■ 

Example. 

In how many ways can we select three students from a 

group of five students to stand in line for a picture? In 

how many ways can we arrange all five of these students 

in a line for a picture? 

Solution  

First, note that the order in which we select the students 

matters. There are five ways to select the first student to 

stand at the start of the line. Once this student has been 

selected, there are four ways to select the second student 

in the line. After the first and second students have been 

selected, there are three ways to select the third student in 
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the line. By the product rule, there are 5 · 4 · 3 = 60 

ways to select three students from a group of five 

students to stand in line for a picture. 

To arrange all five students in a line for a picture, we 

select the first student in five ways, the second in four 

ways, the third in three ways, the fourth in two ways, and 

the fifth in one way.  

Consequently, there are 5 · 4 · 3 · 2 · 1 = 120 ways to 

arrange all five students in a line for 

a picture. ■ 

In how many ways may one count a set of n elements? 

Or, which is the same, how many permutations are there 

of (a set of ) n elements? 

Definition. 

The number of permutations of a set of 𝑛 elements is 

denoted and defined by n! (pronounced n factorial.) 

The number of r-permutations of a set with 𝑛 elements is 

denoted and defined by 

𝑃(𝑛; 𝑟) =
𝑛!

(𝑛 − 𝑟)!
 

http://www.cut-the-knot.org/do_you_know/AllPerm.shtml
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Theorem.  

For all integer 𝑛  >   0, 𝑛!  =  𝑛 · (𝑛 − 1)!. 

Thus n! is the number of ways to count a set of n 

elements. As we saw, 2! = 2. Obviously, 1! = 1, 3! = 6. 

Indeed, there are just six ways to count three elements: 

1. (1, 2, 3)  

2. (1, 3, 2)  

3. (2, 1, 3)  

4. (2, 3, 1)  

5. (3, 1, 2)  

6. (3, 2, 1)  

How many ways are there to count an empty set, the set 

with 0 elements? (Note that {0} contains one element 

thus is not empty. The empty set contains no elements at 

all - {}.) Since there is nothing to count the question is In 

how many ways can one do nothing? A mathematical 

answer to this is just one: 0!  =  1. 

An aside 

There is just one way to do nothing so that 0!  =  1. 

However, the result of this activity is nothing or, in math 

parlance, 0. You may enjoy the following question.  
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Guess the next number in the following sequence  

0, 1, 2, 720!  

Answer to the problem 

720!  =  (6!)!  =  ((3!)!)!, 

 i.e. three followed by three factorials. 

2 =  2!  =  (2!)!,  

i.e. two followed by two factorials. 

1 =  1!  

and finally, 0! =  0 followed by zero factorials - a result 

of doing nothing. 

The answer then is 4!!!! The number is quite big (how 

big?). So that computing it would take a lot of effort. 

Here is another way to do this. Look at the six 

permutations of a 3-element set. Let's try mimicking this 

for a set of n elements. There are n ways to select the first 

element. For each of these, by definition, the remaining 

(𝑛 − 1) elements can be counted in (𝑛 − 1)! ways. 

Therefore, there are 𝑛 · (𝑛 −  1)! ways to count an n-

element set. 

 

 

http://www.cut-the-knot.org/recurrence/guess.shtml
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Example.  

Let 𝑆 = {1, 2, 3, 4, 5}.  The ordered arrangement 

(4, 2, 1, 5, 3) is a  permutation of 𝑆.  

(3, 1, 4) is a 3-permutation of S.■ 

Example. 

Let 𝑆 = {𝑎, 𝑏, 𝑐}. The 2- permutations of S are the 

ordered arrangements 𝑎, 𝑏;  𝑎, 𝑐;  𝑏, 𝑎;  𝑏, 𝑐;  𝑐, 𝑎; and 𝑐, 𝑏. 

Consequently, there are six 2-permutations of this set 

with three elements. There are always six 2-permutations 

of a set with three elements. There are three ways to 

choose the first element of the arrangement. There are 

two ways to choose the second element of the 

arrangement, because it must be different from the first 

element. Hence, by the product rule, we see that 

𝑃 (3, 2)  =  3 ·  2 =  6. the first element. By the product 

rule, it follows that 𝑃 (3, 2)  =  3 ·  2 =  6.■ 

Example. 

How many ways are there to select a first-prize winner, a 

second-prize winner, and a third-prize winner from 100 
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different people who have entered a contest? 

Solution. 

Because it matters which person wins which prize, the 

number of ways to pick the three prize winners is the 

number of ordered selections of three elements from a set 

of 100 elements, that is, the number of 3-permutations of 

a set of 100 elements. Consequently, the answer is 

𝑃 (100, 3)  =  100 ·  99 ·  98 =  970,200. ■ 

Example. 

Suppose that there are eight runners in a race. The winner 

receives a gold medal, the second place finisher receives 

a silver medal, and the third-place finisher receives a 

bronze medal. How many different ways are there to 

award these medals, if all possible outcomes of the race 

can occur and there are no ties? 

Solution. 

The number of different ways to award the medals is the 

number of 3-permutations of a set with eight elements. 

Hence, there are 𝑃 (8, 3)  =  8 ·  7 ·  6 =  336 possible 

ways to award the medals. ■ 
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Example. 

Suppose that a saleswoman has to visit eight different 

cities. She must begin her trip in a specified city, but she 

can visit the other seven cities in any order she wishes. 

How many possible orders can the saleswoman use when 

visiting these cities? 

Solution.  

The number of possible paths between the cities is the 

number of permutations of seven elements, because the 

first city is determined, but the remaining seven can be 

ordered arbitrarily. Consequently, there are 7!  =  5040 

ways for the sales woman to choose her tour. If, for 

instance, the saleswoman wishes to find the path between 

the cities with minimum distance, and she computes the 

total distance for each possible path, she must consider a 

total of 5040 paths! ■ 

Example. 

How many permutations of the letters ABCDEFGH 

contain the string ABC ? 
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Solution. 

Because the letters ABC must occur as a block, we can 

find the answer by finding the number of permutations of 

six objects, namely, the block ABC and the individual 

letters D, E, F , G, and H. Because these six objects can 

occur in any order, there are 6! = 720 permutations 

of the letters ABCDEFGH in which ABC occurs as a 

block. ■ 

●Combinations 

● We now turn our attention to counting unordered 

selection of objects. 

Example. 

How many different committees of three students can be 

formed from a group of four students? 

Solution.  

We need only find the number of subsets with three 

elements from the set containing the four students. We 

see that there are four such subsets, one for each of the 

four students, because choosing three students is the same 

as choosing one of the four students to leave out of the 
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group. This means that there are four ways to choose the 

three students for the committee, where the order in 

which these students are chosen does not matter. ■ 

Definition.  

An r-combination of elements of a set is an unordered 

selection of r elements from the set. 

Thus, an r-combination is simply a subset of the set with 

r elements. 

Example.  

Let 𝑆 = {1, 2, 3, 4, 5}.  Then {1, 3, 4}  is a 3- combination 

of S. (Note that {4, 1, 3} is the same 3-combination as 

{1, 3, 4}, because the order in which the elements of a set 

are listed does not matter.) 

Definition.  

The number of r-combinations of a set with n elements, 

where 𝑛 is a nonnegative integer and r is an integer with 

0 ≤  𝑟 ≤  𝑛, equals 

(𝒏, 𝒓), 𝒏𝑪𝒓 𝒐𝒓 (
𝒏
𝒓
) =

𝒏!

𝒓!(𝒏−𝒓)!
. 

 

 



- 435 - 
 

Example.  

We see that 𝑪(𝟒, 𝟐)  =  𝟔, because the 2-combinations of 

{𝒂, 𝒃, 𝒄, 𝒅} are the six subsets {𝒂, 𝒃}, {𝒂, 𝒄}, {𝒂, 𝒅}, {𝒃, 𝒄}, 

{𝒃, 𝒅}, and {𝒄, 𝒅}. ■ 

Example.  

How many poker hands of five cards can be dealt from a 

standard deck of 52 cards? Also, how many ways are 

there to select 47 cards from a standard deck of 52 cards? 

Solution. 

Because the order in which the five cards are dealt from a 

deck of 52 cards does not matter, there are 

𝑪(𝟓𝟐, 𝟓)  =  𝟐, 𝟓𝟗𝟖, 𝟗𝟔𝟎  

different hands of five cards that can be dealt. 

Consequently, there are 2,598,960 different poker hands 

of five cards that can be dealt from a standard deck of 52 

cards.  

Note that there are 𝑪(𝟓𝟐, 𝟒𝟕)  =  𝟐, 𝟓𝟗𝟖, 𝟗𝟔𝟎 different 

ways to select 47 cards from a standard deck of 52 cards. 

■ 
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Example.  

How many ways are there to select five players from a 

10-member tennis team to make a trip to a match at 

another school? 

Solution.  

The answer is given by the number of 5-combinations of 

a set with 10 elements. The number of such combinations 

is 𝐶(10, 5)  =  252. ■ 

Example.  

A group of 30 people have been trained as astronauts to 

go on the first mission to Mars. How many ways are there 

to select a crew of six people to go on this mission 

(assuming that all crew members have the same job)? 

Solution  

The number of ways to select a crew of six from the pool 

of 30 people is the number of 6-combinations of a set 

with 30 elements, because the order in which these 

people are chosen does not matter. The number of such 

combinations is 𝐶(30, 6)  = 593,775. ■ 
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Example.  

How many bit strings of length n contain exactly r 1s? 

Solution.  

The positions of r 1s in a bit string of length n form an r-

combination of the set {1, 2, 3, . . . , 𝑛}. Hence, there are 

𝐶(𝑛, 𝑟) bit strings of length n that contain exactly r 1s. 

Example.  

Suppose that there are 9 faculty members in the 

mathematics department and 11 in the computer science 

department. How many ways are there to select a 

committee to develop a discrete mathematics course at a 

school if the committee is to consist of three faculty 

members from the mathematics department and four from 

the computer science department? 

Solution. 

By the product rule, the answer is the product of the 

number of 3-combinations of a set with nine elements and 

the number of 4-combinations of a set with 11 elements. 

By Theorem 2, the number of ways to select the 

committee is 𝑪(𝟗, 𝟑)  ·  𝑪(𝟏𝟏, 𝟒)  = 𝟐𝟕, 𝟕𝟐𝟎.■ 
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 Combinatorial Proofs 

To remind, 𝐶(𝑛,𝑚) is a binomial coefficient  

C(n,m) =
n!

m! (n − m)!
 

that appears in the Binomial Theorem which, for an 

integer exponent, can be written as 

(x + y)n  

= C(n, 0) xn + C(n, 1) xn-1 y + C(n, 2) xn-2 y2 + ... + C(n, n) yn  

= ∑ 𝐶(𝑛, 𝑘)𝑥𝑛−𝑘𝑦𝑘𝑛
𝑘=0 . 

● Combinatorial proof is a perfect way of establishing 

certain algebraic identities without resorting to any kind 

of algebra. For example, let's consider the simplest 

property of the binomial coefficients: 

(1)  𝐶(𝑛, 𝑘)  =  𝐶(𝑛, 𝑛 −  𝑘). 

To prove this identity we do not need the actual algebraic 

formula that involves factorials, although this, too, would 

be simple enough. All that is needed to prove (1) is the 

knowledge of the definition: 𝐶(𝑛, 𝑘) denotes the number 

of ways to select k out n objects without regard for the 

order in which they are selected. To prove (1) one needs 

to observe that whenever k items are selected, n-k items 

http://www.cut-the-knot.org/Generalization/homo.shtml#binomial
http://www.cut-the-knot.org/pigeonhole/sperner.shtml#binom
http://www.cut-the-knot.org/pigeonhole/sperner.shtml#binom
http://www.cut-the-knot.org/pigeonhole/sperner.shtml#binom
http://www.cut-the-knot.org/Generalization/cuttingcircle.shtml#comb
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are left over, (un)selected of sorts. So that proving (1) 

becomes a word usage matter. (In this example, another 

simple proof is by introducing 𝑚 =  𝑛 − k, from which 

𝑘 =  𝑛 −  𝑚 so that (1) translates into an equivalent 

form 𝐶(𝑛, 𝑛 −  𝑚)  =  𝐶(𝑛,𝑚).).◄ 

 As another example, the identity 

(2) 𝐶(𝑛, 0)  +  𝐶(𝑛, 1)  +  𝐶(𝑛, 2) + . . . + (𝑛, 𝑛 −

1), + 𝐶(𝑛, 𝑛)  =  2𝑛 

which is a consequence of the binomial theorem 

(x + y)n = Σ C(n, k) xk  yn-k, 0 ≤ k ≤ n. 

admits a combinatorial interpretation. The left hand side 

in (2) represents the number of ways to select a group - 

empty or not - of items out of a set of n distinct elements. 

The first term gives the number of ways not to make any 

selection, which is 1. The second term gives the number 

of ways to select one item (which is n), etc. What does 

the right hand side represent? Exactly same thing. Indeed, 

with every selection of items from a given set we can 

associate a function that takes values 0 or 1. A selected 

element is assigned value 1, while an unselected element 

is assigned value 0. If for the sake of counting 

http://www.cut-the-knot.org/Generalization/homo.shtml#binomial
http://www.cut-the-knot.org/do_you_know/FunctionMain.shtml
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convenience, the elements of the set are ordered with 

indices 1, ..., n, then every selection from the set is 

represented by a string of 0's and 1's; the total number of 

such strings is clearly the right hand side in (2): 2n.◄ 

Thus a combinatorial proof consists in providing two 

answers to the same question. But not to forget, finding 

the question to be answered in two ways is conceivably 

the most important part of the proof. As a matter of 

convention, it is often convenient to think of sets and 

their elements as groups of students and of selections of 

elements as endowing them with a membership on a 

committee. For a third example, consider the popular 

identity underlying the Pascal triangle: 

(3)  𝐶(𝑛, 𝑘) = 𝐶(𝑛 − 1, 𝑘) + 𝐶(𝑛 − 1, 𝑘 − 1). 

By definition, the left hand side is the number of ways to 

compose a k-member committee out of a group of n 

students. To grasp the significance of the right hand side, 

pick arbitrarily one of the students. Then the first term on 

the right gives the number of k-member committees that 

do not include the student, whereas the second term gives 

http://www.cut-the-knot.org/Curriculum/Combinatorics/LeibnitzTriangle.shtml
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the number of committees in which the student is a 

member.◄ 

Here is an additional example. Prove that 

(4) 𝐶(𝑛, 𝑟) 𝐶(𝑟, 𝑘)  =  𝐶(𝑛, 𝑘) 𝐶(𝑛 − 𝑘, 𝑟 − 𝑘), 

where 𝑘 ≤  𝑟 ≤  𝑛. C(n, r) is the number of ways to 

form an r-member committee from a group of n students. 

C(r, k) is the number of ways to form a k-member 

committee out of a group of r students. As r is the same 

in both cases, it it sensible to assume that the r students 

selected from the initial n are exactly those among whom 

we seek a more restrictive r. So we could describe the left 

hand side in (4) as the number of ways to choose a k-

member committee from an n-member student body and 

a k-member subcommittee out of the selected r. So the 

question is in how many ways is it possible to choose a r-

member committee from an n-member student body and 

a k-member subcommittee out of the selected r. The left 

hand side gives an answer to that question. The right hand 

side answers the same question but in a different way. 

First we select a k-member subcommittee out of the n-

member student population and later complete it to an r-
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member committee by selecting r-k members out of the 

remaining population of n-k students.◄ 

Example.  

How many different strings can be made by reordering 

the letters of the word TOTTOS? 

Solution. 

If all letters in the word TOTTOS would be different, 

then the answer would be 5! ! but then we would over 

count. To avoid it, we observe that there are 6  positions. 

The letter T  can be placed among these six positions in 

C(6, 3)  times, while the letter O  can be placed in the 

remaining positions in C(3, 2) ways; finally S  can be put 

in C(1, 1) ways. By the multiplication rule we have 

C(6, 3)  C(3, 2)  C(1, 1) = 60 orderings.■ 
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Exercise (6) 

1-Cells of a 15×15 square grid have been painted in red, 

blue and green. Prove that there are at least two rows of 

cells with the same number of squares of at least one of 

the colors. 

2-There are (2𝑛 −  1) rooks on a (2𝑛 −  1) × (2𝑛 −  1) 

board placed so that none of them threatens another. 

Prove that any 𝑛 × 𝑛 square contains at least one rook. 

3- In every square of a 5 × 5 board there is a flea. At 

some point, all the fleas jump to an adjacent square (two 

squares are adjacent if they share an edge). Is it possible 

that after they settle in the new squares, the configuration 

is exactly as before: one flea per square? 

4- 200 points have been chosen on a circle, all with 

integer number of degrees. Prove that the points there are 

at least one pair of antipodes, i.e., the points 180° apart. 

5- If each point of the plane is colored red or blue then 

there are two points of the same color at distance 1 from 

each other. 
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6-The integers 1, 2, ..., 10 are written on a circle, in any 

order. Show that there are 3 adjacent numbers whose sum 

is 17 or greater. 

7-Given a planar set of 25 points such that among any 

three of them there exists a pair at the distance less than 

1. Prove that there exists a circle of radius 1 that contains 

at least 13 of the given points. 

8-Prove that among any five points selected inside an 

equilateral triangle with side equal to 1, there always 

exists a pair at the distance not greater than .5. 

9-Let A be any set of 19 distinct integers chosen from the 

arithmetic progression 1, 4, 7,..., 100. Prove that there 

must be two distinct integers in A whose sum is 104. 

10-Prove that in any set of 51 points inside a unit square, 

there are always three points that can be covered by a 

circle of radius 1/7. 

11-Five points are chosen at the nodes of a square lattice 

(grid). Why is it certain that at least one mid-point of a 

line joining a pair of chosen points, is also a lattice point? 

12-Prove that there exist two powers of 3 whose 

difference is divisible by 1997. 
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13-If 9 people are seated in a row of 12 chairs, then some 

consecutive set of 3 chairs are filled with people. 

14-Given any sequence of n integers, positive or 

negative, not necessarily all different, some consecutive 

subsequence has the property that the sum of the 

members of the subsequence is a multiple of n. 

15-In every polyhedron there is at least one pair of faces 

with the same number of sides. 

16-In every polyhedron there is at least one pair of faces 

with the same number of sides. 

17-Given 12 distinct 2-digit integers. Prove there are 

some two whose difference - a 2-digit number - has equal 

digits. 

18-What is the largest number of cells of a 6×6 board that 

could be colored such that no two colored cells touch (not 

even at a corner)? 

19-17 students talked of 3 topics. There are 3 students 

that - between them - talked the same topic. 

20-Seven integers under 127 and their Ratios 

21-17 rooks are placed on an 8×8 chessboard. Prove that 

there are at least 3 rooks that do not threaten each other. 
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22-Chinese Remainder Theorem. 

Let's mark the centers of all squares of an 8x8 chess 

board. Is it possible to cut the board with 13 straight lines 

(none passing through a single midpoint) so that every 

piece had at most 1 marked point? 

23-Each of the given 9 lines cuts a given square into two 

quadrilaterals whose areas are in proportion 2:3. Prove 

that at least three of these lines pass through the same 

point. 

24-Suppose each point of the plane is colored red or blue. 

Show that some rectangle has its vertices all the same 

color.  

25-Suppose each point on a circumference of a circle is 

colored either red or blue. Prove that, no matter how 

colors may be distributed, there exist 3 equally spaced 

points of the same color. 

26-Suppose 𝑓(𝑥) is a polynomial with integral 

coefficients. If 𝑓(𝑥)  =  2 for three different integers a, b, 

and c, prove that, for no integer, 𝑓(𝑥) can be equal to 3. 

27-Prove that there exists a power of three that ends with 

001. 
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28-Show that if more than half of the subsets of an n-

element set are selected, then some two of the selected 

subsets have the property that one is a subset of the other. 

29-Let a and b be positive integers, with 𝑎 <  𝑏 <  2𝑎. 

Then, given more than half of the integers in the set 

{1, 2, . . . , 𝑎 +  𝑏}, some two of the given integers differ 

by a or by b. 

30-Given any 6 points inside a circle of radius 1, some 

two of the 6 points are within 1 of each other. 

31-Let n be a positive integer greater than 3. Let m be the 

largest integer in (𝑛 + 2)/2. Then, given more than m of 

the integers in the set {1, 2, . . . , 𝑛}, some three of the 

integers in the given set have the property that one of the 

three is the sum of the other two. 

32-If more than half of the integers from {1, 2, . . . , 2𝑛} are 

selected, then some two of the selected integers have the 

property that one divides the other. 

33-If more than half of the integers from {1, 2, . . . , 2𝑛} are 

selected, then some two of the selected integers are 

mutually prime. 
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34-Given any sequence of 𝑚𝑛 +  1 real numbers, some 

subsequence of (𝑚 +  1) numbers is increasing or some 

subsequence of (𝑛 + 1) numbers is decreasing. 

35-Given any 1000 integers, some two of them differ by, 

or sum to, a multiple of 1997. 

36-Given any 10 4-element subsets of an 11-set, some 

two of the subsets intersect in at least two elements. 

37-A person takes at least one aspirin a day for 30 days. 

If he takes 45 aspirin altogether, in some sequence of 

consecutive days he takes exactly 14 aspirin. 

38-A theatre club gives 7 plays one season. Five women 

in the club are each cast in 3 of the plays. Then some play 

has at least 3 women in its cast. 

39-At a party of n people, some pair of people are friends 

with the same number of people at the party. 

40-Given any 6 integers from 1 to 10, some two of them 

have an odd sum. 

41.  How many ways are there to select a first-prize 

winner, a second-prize winner, and a third-prize winner 

from 100 different people who have entered a contest? 
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42. How many permutations of the letters ABCDEFG 

contain the string ABC? 

43. How many different committees of two students can 

be formed from a group of four students?  

Answer 𝐶(4, 2). 

44. In how many ways can we choose a chair and a vice 

chair from a group of four students? 

How is this example different from the previous one? 

45. How many poker hands of five cards can be dealt 

from a standard deck of 52 cards? Also, how many ways 

are there to select 47 cards from a standard deck of 52 

cards? 

46. How many bit strings of length n contain exactly r 

1s? 
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Chapter (VII) 

Boolean Algebra and Their Applications 

The circuits in computers and other electronic devices 

have inputs, each of which is either a 0 or a 1, and 

produce outputs that are also 0s and 1s. Circuits can be 

constructed using any basic element that has two different 

states. Such elements include switches that can be in 

either the on or the off position and optical devices that 

can either be lit or unlit. In 1938 Claude Shannon showed 

how the basic rules of logic, first given by George Boole 

in 1854 in his book “The Laws of Thought” could be 

used to design circuits. These rules form the basis for 

Boolean algebra. 

7.1 Boolean Algebra 

 Definition.   

The Boolean algebra is a mathematical system  

(𝐵, +,∙, ⬚́, 0, 1),  where B is a non-empty set (contains at 

least two elements {0, 1}) , +,∙  are two binary operations 

on B  i .e. ,  " + ", " ∙ "   are  maps from 𝐵 × 𝐵 → 𝐵), "⬚́" 

is a unary operation, i.e., ⬚́: 𝐵 → 𝐵; and 0 ≠ 1 two 
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elements in B, satisfies for all 𝑎, 𝑏, 𝑐 ∈ 𝐵, the following 

axioms:  

1. There exist at least two elements 𝑎, 𝑏 in 𝐵 and that 

 𝑎 ≠ 𝑏. 

2. ∀ 𝑎, 𝑏 ∈ 𝐵 

(i) 𝑎 + 𝑏 ∈ 𝐵, (ii) 𝑎 ∙ 𝑏 ∈ 𝐵; 

3. Commutative laws: for all 𝑎, 𝑏 ∈ 𝐵, 

(i) 𝑎 + 𝑏 = 𝑏 + 𝑎, (ii) 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎; 

4. Associative laws: for all 𝑎, 𝑏, 𝑐 ∈ 𝐵, 

(i) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐, 

(ii) 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐; 

5. Distributive laws: 𝑎, 𝑏, 𝑐 ∈ 𝐵, 

(i) 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐,  

(ii) 𝑎 + (𝑏 ∙ 𝑐) = (𝑎 + 𝑏) ∙ (𝑎 + 𝑐);   

6. (i) Existence of zero: There exists of B such that 

     𝑎 + 0 = 𝑎 ∀𝑎 ∈ 𝐵; 

The element 0 is called the zero element. 

(ii) Existence of identity (unit): There exists 1 ∈  𝐵 such 

that 

 𝑎 ∙ 1 = 𝑎 ∀𝑎 ∈ 𝐵; 

The element 1 is called the identity (unit) element. 
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7. Existence of complement:  

For each 𝑎 ∈ 𝐵, ∃𝑎′ ∈ 𝐵 such that 

      (i)  𝑎 + 𝑎′ = 1, (ii) 𝑎 ∙ 𝑎′ = 0. 

Example.  

Let 𝐵2 = {0,1} and +, ∙ , ′  be defined as follows :  

a b 𝑎 + 𝑏 𝑎 ∙ 𝑏 

1 1 1 1 

1 0 1 0 

0 1 1 0 

0 0 0 0 

Then (𝐵,+,∙, ⬚́, 0, 1) is a Boolean algebra. ■ 

 Example.  

Let X be a non-empty set, then (𝑃(𝑋),+,∙, ⬚́, 0, 1),  is a 

Boolean algebra, where for all 𝐴, 𝐵 ∈ 𝑃(𝑋)  

𝐴 + 𝐵 = 𝐴 ∪ 𝐵, 𝐴 ∙ 𝐵 = 𝐴 ∩ 𝐵, 𝐴′ = 𝐴𝑐 , 0 = 𝜙, 1 = 𝑋.■ 

Example.  

Suppose B is the set of all propositions, then (𝐵,+,∙

, ⬚́, 0, 1)  is a Boolean algebra, where 𝑝 + 𝑞 = 𝑝 ∨ 𝑞, 𝑝 ∙

𝑞 = 𝑝 ∧ 𝑞, 𝑝′ = ~𝑝, 0 = 𝐹, 1 = 𝑇, for all 𝑝, 𝑞 ∈ 𝐵 , and T 

is the tautology and F is the contradiction. ■  

a 𝑎′ 

1 0 

0 1 
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Example.  

If B is the set of all positive divisors for 30 , then the 

system (𝐵, +,∙, ⬚́, 0, 1) is a Boolean Algebra, where  

𝑥 + 𝑦 = lcm[𝑥, 𝑦], 𝑥. 𝑦 = gcd(𝑥, 𝑦), 𝑥′ =
30

𝑥
, 0 = 1, 

1 = 30 . ■ 

Example. 

 Let B be the set of all positive divisors for 8, then (𝐵,+,∙

, ⬚́, 0, 1)  is not Boolean Algebra, where the operations is 

defined in the above example. Because 4 + 4′ =

lcm[4,2] = 4 ≠ 8 = 1. ■ 

Example. 

Let 𝑆 be the set of statement formulas involving n 

statement variables. The algebraic system 

(𝑆, ∨ , ∧ , ¬, 𝐹, 𝑇) is a Boolean algebra in 

which ∨ , ∧ , ¬ denotes the operations of conjunction, 

disjunction and negation, respectively. The element F and 

T denotes the formulas which are contradictions and 

Tautologies, respectively. ■ 
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Remark. 

We use the symbol B instead of the Boolean Algebra 

(𝐵, +,∙, ⬚́, 0, 1) and use ab instead of 𝑎 ∙ 𝑏. 

Theorem.  

Let 𝐵 be a Boolean Algebra. Then 

(1) There is at most one identity element w. r. t."+", i. e., 

the additive identity 0 is unique. 

(2) There is at most one identity element w. r. t."∙", i. e., 

the multiplicative identity 1 is unique. 

(3) The complement 𝑎′ of 𝑎 is unique. 

Proof. 

(1) Let 0′ be another additive identity.  

Since 𝑎 =  𝑎 + 0′, then 0 =  0 +  0′ = 0′ + 0 = 0′. 

(2) Let 1′ be another multiplicative identity.  

Then 1 = 1 ∙ 1′ = 1′ ∙ 1 = 1′. 

(3) Let 𝑦 ∈ 𝐵 be another complement of a, 

 i. e., 𝑎 +  𝑦 = 1 and 𝑎 ∙ 𝑦 = 0.  
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Then   

y = y ∙ 1                         (Identity element) 

   = 𝑦(𝑎 + 𝑎′)                (Complemented) 

   = 𝑦𝑎 + 𝑦𝑎′                 (Distributive law) 

   = 𝑎𝑦 + 𝑦𝑎′                 (Commutative law) 

   = 0 + 𝑦𝑎′                   (Complemented) 

   = 𝑎𝑎′ + 𝑦𝑎′               (Complemented) 

   = (𝑎 + 𝑦)𝑎′               (Distributive law) 

             = 1 ∙ 𝑎′                     (Complemented) 

   = 𝑎′.                           (Identity element) 

Therefore 𝑎′ is the unique complement of a . ■ 

Theorem. Double Complement law 

For every element a in a Boolean algebra B, (𝑎′)′ = 𝑎. 

Proof: 

Suppose B is a Boolean algebra and a is any element of 

B. Then 

𝑎 + 𝑎′ = 𝑎′ + 𝑎 by the complement law for +. 

            = 1         by the complement law for 1. and  

𝑎 ∙ 𝑎′ = 𝑎′ ∙ 𝑎 by the complement law for ∙. 

            = 0         by the complement law for 0. 
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Thus a satisfies the two equations with respect to 𝑎′ that 

are satisfied by the complement of 𝑎′. From the fact that 

the complement of a is unique,  

we conclude that (𝑎′)′ = 𝑎.◄ 

Example. 

Fill in the blanks in the following proof that for all 

elements a in a Boolean algebra B, 𝑎 + 𝑎 = 𝑎. 

Proof. 

Suppose B is a Boolean algebra and a is any element of 

B. Then  

𝑎 = 𝑎 + 0                            (a) 

    = 𝑎 + 𝑎 ∙ 𝑎′                      (b) 

    = (𝑎 + 𝑎) ∙ (𝑎 + 𝑎′)         (c) 

     = (𝑎 + 𝑎) ∙ 1                    (d) 

     = 𝑎 + 𝑎                            (e) 

Solution. 

(a) because 0 is an identity for1 

(b) by the complement law for · 

(c) by the distributive law for1over? 
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(d) by the complement law for1 

(e) because 1 is an identity for? ■ 

Definition.  

The Boolean expression in the variables 𝑥1, 𝑥2, … , 𝑥𝑛 are 

defined recursively as 0,1, 𝑥1, 𝑥2, … , 𝑥𝑛. 

If  E and F are Boolean expression , then 𝐸′, 𝐸 + 𝐹, 𝐸. 𝐹 

are Boolean expression. 

Definition.  

The dual of a Boolean expression E is denoted by Ed  and 

is obtained by interchanging Boolean Sum "+" and 

Boolean products ".";  and interchanging 0s and 1s. 

Example.   

Find the duals of  

(1) 𝐸 = 𝑥(𝑦 + 0); 

(2) 𝑇 = 𝑥𝑧′ + 𝑥 ∙ 0 + 𝑥′ ∙ 1; 

(3) 𝐹 = 𝑥′ ∙ 1 + (𝑦′ + 𝑧); 

Solution. 

(1) 𝐸𝑑 = 𝑥 + 𝑦 ∙ 1. 

(2) 𝑇𝑑 = (𝑥 + 𝑧′) ∙ (𝑥 + 1) ∙ (𝑥′ + 0). 

 (3) 𝐹𝑑 = (𝑥′ + 0) ∙ (𝑦′ ∙ 𝑧).■ 
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Theorem. (Identities (Rules) of Boolean Algebra) 

 Let B be Boolean algebra and 𝑎, 𝑏 ∈ 𝐵. Then  

(1) Idempotent  rules: 

(a) 𝑎 + 𝑎 = 𝑎,         (b) 𝑎𝑎 = 𝑎; 

(2) Identity rules: 

(a)  𝑎 + 1 = 1 ,         (b) 𝑎0 = 0; 

(3) Absorption rules: 

(a)   𝑎 + 𝑎𝑏 = 𝑎,        (b) 𝑎(𝑎 + 𝑏) = 𝑎; 

(4) (a)   0′ = 1,                (b) 1′ = 0; 

(5) De Morgan’s rules: 

(a)   (𝑎 + 𝑏)′ = 𝑎′𝑏′ ,   (b) (𝑎𝑏)′ = 𝑎′ + 𝑏′. 

Proof.  All the given properties are Boolean expression 

and it's dual. So, by the duality principle we only prove 

one of these expressions.  

 (1) (a) See the previous example. 

 (2) (a)  𝑎 + 1 = (𝑎 + 1)1                     Identity 

               = (𝑎 + 1)(𝑎 + 𝑎′)         Identity 

               = 𝑎 + (1𝑎′)                   Distributive 

              = 𝑎 + (𝑎′. 1)                   Commutative  

               = 𝑎 + 𝑎′                          Identity 

               = 1.                                Complement 
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(3) (a)  𝑎 + 𝑎𝑏 = 𝑎1 + 𝑎𝑏                 Identity 

               = 𝑎(1 + 𝑏)                Distributive 

               = 𝑎(𝑏 + 1)               Commutative 

                        = 𝑎1                          From (2) above 

                       = 𝑎.                              Identity 

(4) Since 0 + 1 = 1 and 0.1 = 0, then by uniqueness of 

the complemented we obtain 0′ = 1 and 1′ =  0.    

(5) (𝑎 + 𝑏)(𝑎′𝑏′) = (𝑎′𝑏′)(𝑎 + 𝑏)         Commutative 

                              = (𝑎′𝑏′)𝑎 + (𝑎′𝑏′)𝑏  Distributive 

                              = 𝑎(𝑎′𝑏′) + (𝑎′𝑏′)𝑏   Commutative 

                              = (𝑎𝑎′)𝑏′ + 𝑎′(𝑏𝑏′)  Associative 

                               = 0𝑏′ + 𝑎′0              Identity 

                               = 0 + 0                      From (2) above 

                                = 0.             Zero  

(𝑎 + 𝑏) + 𝑎′𝑏′ = ((𝑎 + 𝑏) + 𝑎′)((𝑎 + 𝑏) + 𝑏′) 

                         = ((𝑏 + 𝑎) + 𝑎′)((𝑎 + 𝑏) + 𝑏′) 

                         = (𝑏 + (𝑎 + 𝑎′))(𝑎 + (𝑏 + 𝑏′)) 

                         = (𝑏 + 1)(𝑎 + 1) = 1 ∙ 1 = 1. 

By uniqueness of the complement, we have 

 𝑎′𝑏′ = (𝑎 + 𝑏)′.◄ 
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     Also, we can prove the identities in the above theorem 

by the truth table as shown in the following example. 

Example.  

Show that the distributive law 

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 

is valid.  

 Solution.  

The verification of this identity is shown in the following 

table, where  1 + 1 = 1 , 1 + 0 = 1 , 0 + 1 = 1, 0 + 0 =

0 , and 1.1 = 1 , 1.0 = 0 , 0.1 = 0 , 0.0 = 0.  

The identity holds because the last two columns of the 

table agree. 

 

Theorem. [Duality principle] 

If T is an identity in a Boolean algebra B, then 𝑇𝑑 is also 

an identity in B.  
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This result is useful for obtaining new identities. 

Example.  

By taking duals construct an identity form the following  

absorption law: 

𝑥(𝑥 + 𝑦) = 𝑥. 

Solution.  

Taking the duals of both sides of this identity produces 

the identity 𝑥 + 𝑥𝑦 = 𝑥, which is also called an 

absorption law. ■ 

Example.  

Find the duals of 𝑥(𝑦 +  0) and 𝑥′ · 1 + (𝑦′ + 𝑧). 

Solution: Interchanging · signs and + signs and 

interchanging 0s and 1s in these expressions 

produces their duals. The duals are 𝑥 + (𝑦 ·  1) and 

(𝑥′ + 0)(𝑦′𝑧), respectively. ■ 
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7.2 Boolean Functions 

Definition.  

Let 𝑛 ∈ 𝑍+ and 𝐵2
𝑛 = {(𝑥1, 𝑥2, … , 𝑥𝑛); 𝑥𝑖 ∈ 𝐵2} be the 

set of all possible n- tuples of 0s and 1s. Then the function 

𝑓: 𝐵2
𝑛 → 𝐵2 is said to be Boolean function of degree n 

and  n  variables 𝑥1, … , 𝑥𝑛.  

We will use examples to illustrate one important way to 

find a Boolean expression that represents a Boolean 

function. 

Example. 

Find Boolean expressions that represent the 

functions 𝐹(𝑥, 𝑦, 𝑧) and 𝐺(𝑥, 𝑦, 𝑧), which 

are given in the Table 1. 

Solution.  

●An expression that has the value 1 when 

𝑥 = 𝑧 = 1 and 𝑦 = 0, and the value 0 

otherwise, is needed to represent 𝐹. 

●Such an expression can be formed by taking the 

Boolean product of 𝑥, 𝑦′, and 𝑧. 

●This product, 𝑥𝑦′𝑧, has the value 1 if and only if 
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 𝑥 = 𝑦′ = 𝑧 = 1, which holds if and only if 𝑥 = 𝑧 = 1 

and 𝑦 = 0. 

●To represent 𝐺, we need an expression that equals 1 

when 𝑥 = 𝑦 = 1 and 𝑧 = 0, or 𝑥 = 𝑧 = 0 and 𝑦 = 1. 

●We can form an expression with these values by taking 

the Boolean sum of two different Boolean products. 

●The Boolean product 𝑥𝑦𝑧′ has the value 1 if and only if 

𝑥 = 𝑦 = 1 and 𝑧 = 0. Similarly, the product 𝑥′𝑦𝑧′ has the 

value 1 if and only if 𝑥 = 𝑧 = 0 and 𝑦 = 1. 

●The Boolean sum of these two products, 𝑥𝑦𝑧′ + 𝑥′𝑦𝑧′, 

represents 𝐺, because it has the value 1 if and only if  

𝑥 =  𝑦 = 1 and 𝑧 = 0, or 𝑥 = 𝑧 = 0 and 𝑦 = 1. ■ 

To represent the Boolean function we use the truth table 

for it. 

Example.  

Find the values of the Boolean function represented by 

 𝐹(𝑥, 𝑦) = 𝑥𝑦 + 𝑥′. 

Solution.  

The values of this function are displayed in the following 

table 
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x 𝑦 𝑥𝑦 𝑥′ 𝑥𝑦 + 𝑥′ 

1 1 1 0 1 

1 0 0 0 0 

0 1 0 1 1 

0 0 0 1 1 

 

Example.  

Find the values of the Boolean function represented by 

 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑧′. 

Solution.  

The values of this function are displayed in the following 

table 
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Note that we can represent a Boolean function 

graphically by distinguishing the vertices of the n-cube 

that correspond to the n-tuples of bits where the function 

has value 1. 

Example.  

The function 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑧′ 

from 𝐵2
3 to 𝐵2 from the above 

example can be represented by 

distinguishing the vertices that 

correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), 

(1, 0, 0), (0, 1, 0), and (0, 0, 0), where 𝐹 (𝑥, 𝑦, 𝑧)  =  1, 

as shown in the given figure. These vertices are displayed 

using solid black circles. ■ 

Definition.  

Let 𝑓, 𝑔: 𝐵2
𝑛 → B2 be Boolean Function then f and g are 

equivalent written  𝑓 ≡ 𝑔 if and only if they have the 

same truth table or we can obtain one of them from the 

other. 

Example.  

Prove that the Boolean functions 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 and 

𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑦(𝑥𝑧′ + 𝑦𝑧) are equivalent. 
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Solution.  

𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑦(𝑥𝑧′ + 𝑦𝑧)  

                  = (𝑥𝑦)(𝑥𝑧′) + (𝑥𝑦)(𝑦𝑧) 

                  = (𝑦𝑥)(𝑥𝑧′) + 𝑥(𝑦𝑦)𝑧 

                  = 𝑦(𝑥𝑥)𝑧′ + 𝑥(𝑦𝑦)𝑧 

                  = 𝑦𝑥𝑧′ + 𝑥𝑦𝑧 

                  = (𝑥𝑦)𝑧′ + (𝑥𝑦)𝑧 

                 = 𝑥𝑦(𝑧′ + 𝑧) 

                 = 𝑥𝑦 ∙ 1 = 𝑥𝑦. 

We leave the student to prove it using truth table. ■ 

Definition.  

Let f   and g be two Boolean functions in n variables. We 

define the Boolean sum 𝑓 +  𝑔, Boolean product 𝑓 ∙  𝑔 

and 𝑓′ as follows: 

 (𝑓 + 𝑔)(𝑥1, … . , 𝑥𝑛) = 𝑓(𝑥1, … . , 𝑥𝑛) + 𝑔(𝑥1, … . , 𝑥𝑛); 

(𝑓 ∙ 𝑔)(𝑥1, … . , 𝑥𝑛) = 𝑓(𝑥1, … . , 𝑥𝑛). 𝑔(𝑥1, … . , 𝑥𝑛); 

𝑓′(𝑥1, … . , 𝑥𝑛) = [𝑓(𝑥1, … . , 𝑥𝑛)]′. 

Remark. 

The algebraic system (𝐹𝑛, +,∙, ⬚́, 0,1) is a Boolean 

algebra where 𝑛 ∈ ℤ+,   𝐹𝑛  is the set of all Boolean 

function, 0(𝑥1, … , 𝑥𝑛) = 0 and 1(𝑥1, … , 𝑥𝑛) = 1  
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Definition.  

Let 𝑓(𝑥1, … , 𝑥𝑛) be a Boolean function. 

 (a)  For every  1 ≤ 𝑖 ≤ 𝑛,   𝑥𝑖  or  𝑥𝑖′  is called literal. 

(b)  The product 𝑦1𝑦2 …𝑦𝑛,   𝑦𝑖 = 𝑥𝑖  or 𝑦𝑖 = 𝑥𝑖′  for 

every 1 ≤ 𝑖 ≤ 𝑛 is called minterm. 

Hence, a minterm is a product of 𝑛 literals, with one 

literal for each variable. A minterm has the value 1 for 

one and only one combination of values of its variables. 

More precisely, the minterm 𝑦1𝑦2 …𝑦𝑛 is 1 if and only if 

each 𝑦𝑖 is 1 and this occurs if and only if 𝑥𝑖 = 1 when 

𝑦𝑖 = 𝑥𝑖 and 𝑥𝑖 = 0 when 𝑦𝑖 = 𝑥𝑖′. 

Example.   

Find a minterm that equals 1 if 𝑥1 = 𝑥3 = 0 and 𝑥2 =

𝑥4 = 𝑥5 =1 and equals 0 otherwise.  

Solution.  

The minterm 𝑥1′𝑥2𝑥3′𝑥4𝑥5 has the correct set of values.  

Definition.  

If  f  is written as the sum of minterm , then   f  is in the 

Complete Sum of Products (CSP ) or Sum – of – 

Products Expansion.   
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We can put any function in CSP as follows:  

(1)   Find the truth table of  𝑓.  

(2)  Determine the rows that have the value 1. 

(3)  Find the minterm 𝑦1𝑦2 … . 𝑦𝑛  for each row in step 

(2), where 𝑦𝑖 = 𝑥𝑖 if 𝑥𝑖 = 1 and 𝑦𝑖 = 𝑥𝑖′ if the value of  

𝑥𝑖 is 0. 

(4)  CSP of  f  is the sum of the minterms obtained in (3). 

Definition.   

Using the duality principle we can obtain the Complete 

Product of Sums (CPS) or Product – of – Sums 

Expansion of a Boolean function  as follows:  

1. Find the truth table of  𝑓. 

2. Determine the rows that have the value 0. 

3. Find the maxterm 𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛 for each row in 

2, where 𝑦𝑖 = 𝑥𝑖   if  𝑥𝑖 = 0 and 𝑦𝑖 = 𝑥𝑖′  if  𝑥𝑖 = 1. 

4. CPS of  f  is the product of maxterms obtained in 3. 

Example.  

Find CSP(F) and CPS(F),where 𝐹(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦)𝑧′ .  

Solution.  

We can construct the CSP(F) and CPS(F) by determining 

the truth table:  
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x y z 𝑥 +  𝑦 z' 𝐹 = (𝑥 + 𝑦)𝑧′ minterm maxterm 

1 1 1 1 0 0  𝑥′ + 𝑦′ + 𝑧′ 

1 1 0 1 1 1 𝑥𝑦𝑧′  

1 0 1 1 0 0  𝑥′ + 𝑦 + 𝑧′ 

1 0 0 1 1 1 𝑥𝑦′𝑧′  

0 1 1 1 0 0  𝑥 + 𝑦′ + 𝑧′ 

0 1 0 1 1 1 𝑥′𝑦𝑧′  

0 0 1 0 0 0  𝑥 + 𝑦 + 𝑧′ 

0 0 0 0 1 0  𝑥 + 𝑦 + 𝑧 

 From the above table we have that the minterms of  F are 

𝑥𝑦𝑧′, 𝑥𝑦′𝑧′ and 𝑥′𝑦𝑧′. Therefore 

CSP(𝐹) = 𝑥𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥′𝑦𝑧′. 

Also, from the above table we have that the maxterms of  

F  are  𝑥′ + 𝑦′ + 𝑧′,  𝑥′ + 𝑦 + 𝑧′, 𝑥 + 𝑦′ + 𝑧′, 

𝑥 + 𝑦 + 𝑧′ and 𝑥 + 𝑦 + 𝑧.  

Therefore  

CPS(𝐹) = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦′ + 𝑧′) 

(𝑥′ + 𝑦 + 𝑧′)(𝑥′ + 𝑦′ + 𝑧′).■ 

We can obtain CSP(F) by the properties of the Boolean 

algebra as follows: 

𝐹(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦)𝑧′ 

              = 𝑥𝑧′ + 𝑦𝑧′                               Distributive law 

 = 𝑥1𝑧′ + 1𝑦𝑧′                             Identity law 
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             = 𝑥(𝑦 + 𝑦′)𝑧′ + (𝑥 + 𝑥′)𝑦𝑧′    Unit property 

             = 𝑥𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ + 𝑥′𝑦𝑧′ Distributive law 

             = 𝑥𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥′𝑦𝑧′             Idempotent law 

So, CSP(F) = 𝑥𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥′𝑦𝑧′ . 

Also, We can obtain CPS(𝐹) by the properties of the 

Boolean algebra as follows: 

𝐹(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦)𝑧′ 

 = (𝑥 + 𝑦 + 0)(0 + 𝑧′) 

= (𝑥 + 𝑦 + (𝑧𝑧′))((𝑥𝑥′) + 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑧′)(𝑥′ + 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 0 + 𝑧′)(𝑥′ + 0 + 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦𝑦′ + 𝑧′)(𝑥′ + 𝑦𝑦′

+ 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦𝑦′ + 𝑧′)(𝑥′ + 𝑦𝑦′

+ 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦′ + 𝑧′)(𝑥′

+ 𝑦 + 𝑧′)(𝑥′ + 𝑦′ + 𝑧′) 

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥 + 𝑦′ + 𝑧′)(𝑥′ + 𝑦

+ 𝑧′)(𝑥′ + 𝑦′ + 𝑧′) 
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Note 

● The CSP(𝐹) is unique (except ordering of the  

minterms). 

● The CPS(𝐹) is unique (except ordering of maxterms).  

●We can obtained CPS by giving the CSP for the 

complement of the function, and we take the complement 

of the CSP give the CPS. 

CPS(𝐹)  =  (CSP(𝐹′))′ 

●If CSP(𝐹′) = 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑘 , then  

CPS(𝐹) = m1′m2′ …mk′ .  

So, we can obtain CPS(𝐹) from CSP(𝐹) as illustrated in 

the following example: 

Example.  

Use CSP (𝐹′) to find CPS (𝐹) for the Boolean function 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑥𝑧′. 

Solution.  

We use the identities of the Boolean Algebra to find 

CPS(𝐹) by obtaining CSP(𝐹′) algebraically: 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑥′𝑧 

𝐹′(𝑥, 𝑦, 𝑧) = (𝑥𝑦 + 𝑥′𝑧)′ 
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= (𝑥𝑦)′(𝑥′𝑧)′        De Morgan's      

= (𝑥′ + 𝑦′)((𝑥′)′ + 𝑧′)    De Morgan's   

= (𝑥′ + 𝑦′)(𝑥 + 𝑧′) 

= 𝑥′𝑥 + 𝑥′𝑧′ + 𝑥𝑦′ + 𝑦′𝑧′ 

= 0 + 𝑥′(𝑦 + 𝑦′)𝑧′ + 𝑥𝑦′(𝑧 + 𝑧′) + (𝑥 + 𝑥′)𝑦′𝑧′ 

= 𝑥′𝑦𝑧′ + 𝑥′𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧′ + 𝑥′𝑦′𝑧′ 

= 𝑥′𝑦𝑧′ + 𝑥′𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦′𝑧′ 

Therefore  

 CSP(𝐹′) = 𝑥′𝑦𝑧′ + 𝑥′𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦′𝑧′  

and 

CPS(𝐹) = (𝑥 + 𝑦′ + 𝑧)(𝑥 + 𝑦 + 𝑧)(𝑥′ + 𝑦 + 𝑧′) 

(𝑥′ + 𝑦 + 𝑧).■ 
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7.3 Logic Gates 

●Boolean algebra is used to model the circuitry of 

electronic devices. 

●Each input and each output of such a device can be 

thought of as a member of the set {0, 1}. 

●A computer, or other electronic device, is made up of a 

number of circuits. 

●Each circuit can be designed using the rules of Boolean 

algebra. 

●The basic elements of circuits are called gates. 

The three main ways of specifying the function of a 

combinational logic circuit are: 

●Boolean Algebra. This forms the algebraic expression 

showing the operation of the logic circuit for each input 

variable either True or False that results in a logic "1" 

output. 

●Truth Table. A truth table defines the function of a logic 

gate by providing a concise list that shows all the output 

states in tabular form for each possible combination of 

input variable that the gate could encounter. 
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●Logic Diagram. This is a graphical representation of a 

logic circuit that shows the wiring and connections of 

each individual logic gate, represented by a specific 

graphical symbol, that implements the logic circuit. 

●The inverter, which accepts the value of one Boolean 

variable as input and produces the complement of this 

value as its output. 

●The OR gate. The inputs to this gate are the values of 

two or more Boolean variables. The output is the Boolean 

sum of their values. 

●The AND gate. The inputs to this gate are the values of 

two or more Boolean variables. The output is the Boolean 

product of their values. 

●The NAND gate function is a combination of the two 

separate logical functions, the AND function and the 

NOT function in series. 

● The NOR gate is also a combination of two separate 

logic functions, Not and OR connected together to form a 

single logic function which is the same as the OR 

function except that the output is inverted. 
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Combinations of Gates 

Combinational circuits can be constructed using a 

combination of inverters, OR gates, and AND gates. 

Example. 

Construct circuits that produce the following outputs: 

(a) (𝑥 +  𝑦)𝑥'; 

(b) 𝑥′(𝑦 +  𝑧′)′; 

(c) (𝑥 +  𝑦 +  𝑧)(𝑥′ 𝑦′ 𝑧′). 

Solution. 
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●Examples of Circuits 

1. A committee of three individuals decides issues for an 

organization. Each individual votes either yes or no for 

each proposal that arises. A proposal is passed if it 

receives at least two yes votes. Design a circuit that 

determines whether a proposal passes. 

Solution. 

Let 𝑥 = 1 if the first individual votes yes, and 𝑥 = 0 if 

this individual votes no; let 𝑦 = 1 if the second individual 

votes yes, and 𝑦 = 0 if this individual votes no; let 𝑧 = 1 

if the third individual votes yes, and 𝑧 =  0 if this 

individual votes no. Then a circuit must be designed that 

produces the output 1 from the inputs x, y, and z when 
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two or more of x, y, and z are 1. One representation of the 

Boolean function that has these output values is 𝑥𝑦 +

 𝑥𝑧 +  𝑦𝑧. The circuit that implements this function is 

shown in the figure. 

 

2. Sometimes light fixtures are controlled by more than 

one switch. Circuits need to be designed so that flipping 

any one of the switches for the fixture turns the light on 

when it is off and turns the light off when it is on. Design 

circuits that accomplish this when there are two switches 

and when there are three switches. 

Solution. 

We will begin by designing the circuit that controls the 

light fixture when two different switches are used. Let 

𝑥 = 1 when the first switch is closed and 𝑥 = 0 when it 
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is open, and let 𝑦 = 1 when the second switch is closed 

and 𝑦 = 0 when it is open. Let 𝐹(𝑥, 𝑦) = 1 when the 

light is on and 𝐹(𝑥, 𝑦) = 0 when it is off. We can 

arbitrarily decide that the light will be on when both 

switches are closed, so that 𝐹(1, 1) = 1. This determines 

all the other values of F. When one of the two switches is 

opened, the light goes off, so 𝐹(1, 0) = 𝐹(0, 1) = 0. 

When the other switch is also opened, the light goes on, 

so 𝐹(0, 0) = 1.  

The table displays these values.  

Note that 𝐹(𝑥, 𝑦) = 𝑥𝑦 + 𝑥 𝑦. 

This function is implemented by 

the circuit shown in the figure. 
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We will now design a circuit for 

three switches. Let x, y, and z be the 

Boolean variables that indicate 

whether each of the three switches 

is closed. We let x = 1 when the 

first switch is closed, and x = 0 

when it is open; y = 1 when the 

second switch is closed, and y = 0 when it is open; 

and z = 1 when the third switch is closed, and z = 0 when 

it is open. Let 𝐹(𝑥, 𝑦, 𝑧) = 1 when the light is on and 

𝐹(𝑥, 𝑦, 𝑧) = 0 when the light is off. We can arbitrarily 

specify that the light be on when all three switches are  

closed, so that 𝐹(1, 1, 1)  =  1. This determines all other 

values of F. When one switch is opened, the light goes 

off, so 𝐹(1, 1, 0)  =  𝐹(1, 0, 1)  =  𝐹(0, 1, 1)  =  0.  

When a second switch is opened, the light goes on, so 

𝐹(1, 0, 0)  =  𝐹(0, 1, 0)  =  𝐹(0, 0, 1)  =  1. Finally, 

when the third switch is opened, the light goes off again, 

so 𝐹(0, 0, 0)  =  0. The table shows the values of this 

function. 
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The function F can be represented by its sum-of-products 

expansion as 

 𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 +  𝑥𝑦′𝑧′ +  𝑥′𝑦𝑧′ +  𝑥′ 𝑦′𝑧′. The 

circuit shown in the following figure implements this 

function. 
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Minimization of Circuits 

Example. 

Represent the Boolean function by logic circuit: 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 + 𝑥𝑦′𝑧 

Solution. 

The sum-of-products expansion of this circuit is 𝑥𝑦𝑧 +

𝑥𝑦′𝑧. The two products in this expansion differ in exactly 

one variable, namely, y. They can be combined as 

𝑥𝑦𝑧 + 𝑥𝑦′𝑧 = 𝑥(𝑦 + 𝑦′)𝑧 = 𝑥 ∙ 1 ∙ 𝑧 = 𝑥𝑧. 

Hence, 𝑥𝑧 is a Boolean expression with fewer operators 

that represents the circuit. We show two different 

implementations of this circuit in the figure. The second 

circuit uses only one gate, whereas the first circuit uses 

three gates and an inverter. 

This example shows that combining terms in the sum-of-

products expansion of a circuit leads to a simpler 

expression for the circuit.■ 
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Example. 

Find the Boolean algebra expression for the following 

system. 

 

Solution. 
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Exercises set (7) 

1- Find the values of these expressions 

10′;   1 + 1′;   0′0;  (1 − 0)′. 

2- Find the values, if any, of the Boolean variable x 

that satisfy these equations  

𝑥. 1 = 0, 𝑥 + 𝑥 = 0, 𝑥. 1 = 𝑥, 𝑥. 𝑥′ = 1. 

3- Use a table to express the values of each of these 

Boolean functions 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥′𝑦, 𝐹(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦𝑧  

𝐹(𝑥, 𝑦, 𝑧) = 𝑥𝑦′ + (𝑥𝑦𝑧)′,  

𝐹(𝑥, 𝑦, 𝑧) = 𝑥(𝑦𝑧 + (𝑦𝑧)′). 

4- Find the duals of these Boolean expressions 

𝑥 + 𝑦, 𝑥′𝑦′, 𝑥𝑦𝑧 + (𝑥𝑦𝑧)′, 𝑥𝑧′ + 𝑥0 + 𝑥′ 

5- Find a Boolean product of the Boolean variables x, y 

and z or their complements, that has the value 1 if and 

only if 

 (a) 𝑥 = 𝑦 = 0, 𝑧 = 1;   

         (b) 𝑥 = 0, 𝑦 = 1, 𝑧 = 0; 

 (c) 𝑥 = 0, 𝑦 = 𝑧 = 1;   

         (d) 𝑥 = 𝑦 = 𝑧 = 0.  
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6-Find the sum-of-products expressions of these 

Boolean functions 

𝐹(𝑥, 𝑦) = 𝑥′ + 𝑦; 𝐹(𝑥, 𝑦) = 𝑥𝑦′; 𝐹(𝑥, 𝑦) = 1; 

𝐹(𝑥, 𝑦) = 𝑦′; 𝐹(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧; 

𝐹(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑧)𝑦; 𝐹(𝑥, 𝑦, 𝑧) = 𝑥. 

7-Find the products-of-sums expressions of these 

Boolean functions in Exercise 6. 

8-Find the output of the given circuit. 

 

 

9. Construct circuits to produce these outputs: 

a. 𝑥 + 𝑦; b. (𝑥 + 𝑦)𝑥; c 𝑥𝑦𝑧 + 𝑥𝑦𝑧; d. (𝑥 + 𝑧)(𝑦 + 𝑧). 

10. Design a circuit that implements majority voting for 

five individuals. 
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Chapter (VIII)

Graph Theory

8.1 Introduction 

Graphs are discrete structures consisting of vertices and 

edges that connect these vertices. Problems in almost 

every conceivable discipline can be solved using graph 

models. Using graph models, we can determine whether 

it is possible to walk down all the streets in a city without 

going down a street twice, and we can find the number of 

colors needed to color the regions of a map. Graphs can 

be used to determine whether two computers are 

connected by a communications link using graph modules 

of computer networks. Also, graphs can be used to 

determine whether a circuit can be implemented on a 

planner circuit board. Graph with weights assigned to 

their edges can be used to solve problems such as finding 

the shortest path between two cities in a transportation 

network.  

   This chapter will introduce the basic concepts of graph 

theory and present many different graph models. 
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8.2 Graphs and Graph Models 

Definition. 

Conceptually, a graph is formed by vertices and edges 

connecting the vertices.  

 

Formally. Let 𝑉 be a non-empty set, 𝐸 be another set, and 

𝑓 be a mapping such that 𝑓: 𝐸 → {{𝑥, 𝑦}: 𝑥, 𝑦 ∈ 𝑉}. Then 

the triple 𝐺 =  (𝑉, 𝐸, 𝑓) is called a graph.  

We call that 𝑉 (or 𝑉(𝐺)) the set of vertices of G and 𝐸 

(or 𝐸(𝐺)) the set of edges (lines) of 𝐺. The graph 𝐺 =

 (𝑉, 𝐸, 𝑓) is finite if each 𝑉 and 𝐸 is finite. We consider 

only the finite graphs without explicitly state.  

☻ If 𝑣 ∈ 𝑓(𝑒), then  𝑣 is an vertex for e.  

☻ If 𝑎, 𝑏 ∈ 𝑉, then 𝑎 is adjacent to 𝑏 if there exists 𝑒 ∈

𝐸 such that 𝑓(𝑒) = {𝑎, 𝑏}.  
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☻ Also, 𝑎 ∈ 𝑉 is adjacent to itself if there exists  𝑒 ∈ 𝐸 

such that 𝑓(𝑒) = {𝑎} and e is called a loop at a.  

☻ If 𝑒1,𝑒2 ∈ 𝐸 are incident with a common vertex, then 

we say 𝑒1 and 𝑒2 adjacent edges.  

☻If 𝑓(𝑒1) = 𝑓(𝑒2) = {𝑎, 𝑏}, then 𝑒1 and 𝑒2 are called a 

multiple edge.  

☻ If 𝑓(𝑒1) = 𝑓(𝑒2) = {𝑣}, then 𝑒1 and 𝑒2 are called a 

multiple loop at 𝑣.  

☻ A graph G with no loops and no multiple edges is a 

simple graph.  

☻ If 𝐺 = (𝑉, 𝐸, 𝑓) is a graph and 𝑓(𝑒) = {𝑎, 𝑏}, then we 

write  𝑒 = {𝑎, 𝑏} and so we write 𝐺 = (𝑉, 𝐸) instead of 

𝐺 = (𝑉, 𝐸, 𝑓).  

We sometimes consider the following generalizations of 

graphs: a multigraph is a pair (𝑉, 𝐸) where 𝑉 is a set and 

𝐸 is a multiset of unordered pairs from 𝑉 . In other 

words, we allow more than one edge between two 

vertices. A pseudograph is a pair (𝑉, 𝐸) where 𝑉 is 

a set and 𝐸 is a multiset of unordered multisets of size 
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two from 𝑉 . A pseudograph allows loops, namely edges 

of the form {𝑎, 𝑎} for 𝑎 ∈ 𝑉. 

☻ In general, we visualize graphs by using points to 

represent vertices and line segments, possibly curved, to 

represent edges. 

Definition.  

The set of all neighbors of a vertex 𝑣 of 𝐺 =  (𝑉, 𝐸), 

denoted by 𝑁(𝑣), is called the neighborhood of 𝑣. If 𝐴 is 

a subset of 𝑉 , we denote by 𝑁(𝐴) the set of all vertices 

in 𝐺 that are adjacent to at least one vertex in 𝐴. So, 

𝑁(𝐴)  = ⋃ 𝑁(𝑣)𝑣∈𝐴 . 

To keep track of how many edges are incident to a vertex, 

we make the following definition. 

Definition.  

Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑥 ∈ 𝑉. The degree of 𝑥 

(denoted by 𝑑𝐺( 𝑥)) is the number of edges incident with 

it, except a loop at 𝑥 contributes twice to the degree of  𝑥.  

☻ If 𝑑𝐺(𝑥) = 0, then 𝑥 is said to be isolated vertex.  

☻ A vertex is pendant if and only if it has degree one. 
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☻ A vertex with odd degree is said to be odd vertex and 

one with even degree is said to be even vertex.   

☻ The degree sequence of a graph 𝐺 is the sequence of 

degrees of vertices of 𝐺 in non-increasing order.  

Note. 

We represent a graph by means of a diagram. 

 

Thus, in the graph 𝐻:   

☻ The points 𝑎 and 𝑏 are adjacent, but 𝑎 and 𝑑 are not. 

☻ The lines e2 and e6 are adjacent but e6 and e7 are not.  

☻Although the lines e6 and e7 are intersect in the 

diagram but their intersection is not a vertex of the 

graph. 
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☻ The degree sequence of the graph 𝐻 is (3,3,3,3,2). 

Example. 

What are the degrees and what are the neighborhoods of 

the vertices in the graphs 𝐺 and 𝐻 displayed in the given 

figure? 

Solution. 

In 𝐺, 𝑑𝐺(𝑎) = 2, 𝑑𝐺(𝑏) = 𝑑𝐺(𝑐) = 𝑑𝐺(𝑓) = 4, 𝑑𝐺(𝑑) =

1, 𝑑𝐺(𝑒) = 3, and 𝑑𝐺(𝑔) = 0. The neighborhoods of 

these vertices are 𝑁(𝑎) = {𝑏, 𝑓}, 𝑁(𝑏) = {𝑎, 𝑐, 𝑒, 𝑓}, 

𝑁(𝑐) = {𝑏, 𝑑, 𝑒, 𝑓}, 𝑁(𝑑) = {𝑐}, 𝑁(𝑒) = {𝑏, 𝑐, 𝑓}, 

𝑁(𝑓) = {𝑎, 𝑏, 𝑐, 𝑒}, and 𝑁(𝑔) = 𝜙.  

In 𝐻, 𝑑𝐻(𝑎) = 4, 𝑑𝐻(𝑏) = 𝑑𝐻(𝑒) = 6, 𝑑𝐻(𝑐) = 1, and 

𝑑𝐻(𝑑) = 5. The neighborhoods of these vertices are 

𝑁(𝑎) = {𝑏, 𝑑, 𝑒}, 𝑁(𝑏) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑁(𝑐) = {𝑏}, 

𝑁(𝑑) = {𝑎, 𝑏, 𝑒}, and 𝑁(𝑒)  =  {𝑎, 𝑏, 𝑑}.■ 
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Example. 

Consider the graph 𝐺 = (𝑉, 𝐸), where 

𝑉 = {1, 2, 3} and 𝐸 = {{1, 2}, {1, 3}}. 

Then the given drawing represents this 

graph.■ 

Example.  

Let 𝑉 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6} be 

a set of six people at a party, and 

suppose that 𝑝1 shook hands with 

𝑝2 and 𝑝4, 𝑝3 shook hands with 

𝑝4; 𝑝5 and 𝑝6, and 𝑝5 and 𝑝6 

shook hands. Let 𝐺 = (𝑉, 𝐸) be the graph with edge set 𝐸 

consisting of pairs of people who shook hands. Then 

𝐸 = {{𝑝1, 𝑝2}, {𝑝1, 𝑝4}, {𝑝3, 𝑝4}, {𝑝3, 𝑝5}, {𝑝3, 𝑝6}, {𝑝5, 𝑝6}} 

A drawing of G is given in given figure. ■ 

Example. 

Let ℤ denote the set of integers and let 

𝑉 = {(𝑥, 𝑦) ∈  ℤ × ℤ ∶ 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 2}: 

Then 𝑉 is just the set of points in the plane with integer 

co-ordinates between 0 and 2. Now, suppose 𝐺 = (𝑉, 𝐸) 
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is the graph where 𝐸 is the set of pairs of vertices of 𝑉 at 

distance 1 from each other. In other words, (𝑥, 𝑦) and 

(𝑥′, 𝑦′) are adjacent iff (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 =  1. 

We check that the edge set is 

𝐸 = {{(0, 0)(0, 1)}, {(0, 0)(1, 0)}, {(0, 1)(0, 2)}, 

{(1, 0)(2, 0)}, {(1, 0)(1, 1)}, ({1, 1)(1, 2)}, {(1, 1), (2, 1)}, 

 {(0, 1), (1, 1)}, {(0, 2)(1, 2)}, {(2, 0)(2, 1)}, {(2, 1), (2, 2)},  

{(1, 2), (2, 2)}}: 

This is a cumbersome way to 

write the edge set of 𝐺, as 

compared to the drawing of 𝐺  

in the given figure, which is 

much easier to absorb. The 

graph is called grid graph. ■ 

Example. 

Let 𝑉 be the set of binary strings of length three, so 

𝑉 = {000, 001, 010, 100, 011, 101, 110, 111}: 

Then let 𝐸 be the set of pairs of strings which differ in 

one position. Then 

𝐸 = {{000, 001}, {010, 000}, {100, 000}, … , {111, 101}, 
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{111, 110}, {111, 011}}: 

The reader should fill in the rest of the edges as an 

exercise. Once again, this graph actually has a very nice 

drawing (which explains why it is sometimes called the 

cube graph).  

 

 

Example. 

Consider the graph 𝐺 = (𝑉, 𝐸), where the vertex set is 

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}  and the edge set is 

𝐸 = {{𝑣1, 𝑣4}, {𝑣1, 𝑣7}, {𝑣2, 𝑣3}, {𝑣2, 𝑣6}, {𝑣2, 𝑣7}, 

{𝑣3, 𝑣4}, {𝑣3, 𝑣5}, {𝑣3, 𝑣7}, {𝑣4, 𝑣5}, {𝑣4, 𝑣6}, {𝑣5, 𝑣6},  

{𝑣5, 𝑣7}}: 

In the following figure, two drawings of 𝐺 are shown (the 

reader should verify that they are both drawings of 𝐺) 
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Example.  

Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑔}, 𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, 

{𝑐, 𝑑}}   

1. Represent the graph 𝐺; 

2. Find the degree of each vertex and isolated vertices; 

3. Find multiple edges and loops; 

4. Is 𝐺 a simple graph? Why? 

Solution. 

1. 
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2. 𝑑𝐺(𝑎) = 5, 𝑑𝐺(𝑏) = 2, 𝑑𝐺(𝑐) = 4, 𝑑𝐺(𝑑) = 1,  

𝑑𝐺(𝑔) = 0. Therefore the degree sequence is 

(5, 4, 2, 1, 0). Since 𝑑𝐺(𝑔) = 0  then 𝑔 is the only 

isolated vertex. 

3. Since 𝑒3 = 𝑒4 = {𝑎, 𝑐}, 𝑒3 and 𝑒4 are multiple edges 

and hence 𝐺 is a multiple graph. Also, since 𝑒1 = {𝑎}, 

then 𝑒1 is a loop.  

4. 𝐺 is not a simple graph. It is a pseudograph as it 

contains multiple edges and a loop. ∎ 

Example.  

If 𝐺 = (𝑉, 𝐸, 𝑓) is the graph given by the following 

diagram  

 

Find 𝑉, 𝐸, 𝑓.  
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Solution.  

It is clear that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}.  and  𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10}.  

The following table represents the function f: 

𝐸 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 

𝑓(𝑒) {𝑣1, 𝑣2} {𝑣2, 𝑣3} {𝑣3, 𝑣4} {𝑣4} {𝑣4} 

 

𝐸 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 

𝑓(𝑒) {𝑣4, 𝑣5} {𝑣5, 𝑣2} {𝑣1, 𝑣5} {𝑣1, 𝑣5} {𝑣1, 𝑣6} 

.■ 

Definition.  

We write 𝛿(𝐺) = min{𝑑𝐺(𝑣): 𝑣 ∈ 𝑉} and ∆(𝐺) =

max{𝑑𝐺(𝑣): 𝑣 ∈ 𝑉} for the minimum degree and 

maximum degree of 𝐺, respectively.  

Note.  

The graphs we have introduced are undirected graphs. 

Their edges are also said to be undirected. To construct a 

graph model, we may find it is necessary to assign 

direction to the edges of a graph. 
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Definition.  

A directed graph (or digraph)  𝐺 = (𝑉, 𝐸, 𝑓) consists of 

a non-empty set of vertices 𝑉 and set of directed edges 

(or arcs) with the map 𝑓: 𝐸 → {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑉}, 𝑖. 𝑒., each 

directed edge is associated with an ordered pair of 

vertices. The directed edge associated with the ordered 

pair (𝑢, 𝑣) is said to start at 𝑢 and end at 𝑣. If 𝑓(𝑒1) =

𝑓(𝑒2) in digraph, then 𝑒1 and  𝑒2 are multiple edges. If a 

digraph  𝐺 contains no multiple edges or graph loops, 

then it a directed simple graph. 

Example. 

G is a simple directed graph while H and K are not. 

 

Note: 

(a) If 𝑒 = (𝑢, 𝑣) is an edge of a digraph 𝐺, then 𝑢 is the 
initial vertex and 𝑣 is the terminal vertex for the edge 𝑒. 
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(b) In a digraph 𝐺, let 𝑁+(𝑣) and 𝑁−(𝑣)  denote the sets 

of vertices adjacent from 𝑣 and to 𝑣, respectively. These 

are the out-neighborhood of 𝑣 and the in-neighborhood 

of 𝑣 respectively. Thus 𝑁+(𝑣) = {𝑢: (𝑣, 𝑢) ∈ 𝐸} and 

𝑁−(𝑣) = {𝑢: (𝑢, 𝑣) ∈ 𝐸}. For example, in the digraph 

drawn below,  𝑁+(𝑥) = {𝑢, 𝑣, 𝑤} and 𝑁−(𝑥) = {𝑣}. 

 

(c) A graph with both directed and undirected edge is 

called a  mixed graph. 

 

Definition.   

In a graph with directed edge the in-degree of a vertex v, 

denoted by (or 𝑑𝐺
−(𝑣)) is the number of edges with v as 
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their terminal vertex. The out-degree of a vertex 𝑣 

denoted by (or 𝑑𝐺
+(𝑣))) is the number of edges with v as 

their initial vertex. A loop at 𝑣 contributes one to the in-

degree and one to the out-degree of  𝑣. In other words, 

𝑑𝐺
−(𝑣) = |𝑁−(𝑣)|  and 𝑑𝐺

+(𝑣) = |𝑁+(𝑣)|. 

Example.    

Find the in-degree and out-degree of each vertex in the 

digraph G Shown in the following diagram. 

 

Solution. 

The following tables gives the out-degree and in-degree 

of each vertex in Graphs G-(a), G-(b) and G-(c), 

respectively. 

      G-(a):                              G-(b): 

v a b c d  a b c d 

𝑑𝐺
−(𝑣) 3 1 2 1 2 3 2 1 

𝑑𝐺
+(𝑣) 1 2 1 3 2 4 1 1 
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G-(c): 

v a b c d e 

𝑑𝐺
−(𝑣) 6 1 2 4 0 

𝑑𝐺
+(𝑣) 1 4 5 2 0 

Example.    

Find the in-degree and out-degree of each vertex in the 

graph 𝐺 with directed edges shown in the given Figure. 

 

Solution. 

The in-degrees in 𝐺 are 𝑑𝐺
−(𝑎)  =  2, 𝑑𝐺

−(𝑏)  =  2, 

𝑑𝐺
−(𝑐)  =  3, 𝑑𝐺

−(𝑑)  =  2, 𝑑𝐺
−(𝑒)  =  3, and 𝑑𝐺

−(𝑓 )  =  0.  

The out-degrees are 𝑑𝐺
+(𝑎)  =  4, 𝑑𝐺

+(𝑏)  =  1, 𝑑𝐺
+(𝑐)  =

 2, 𝑑𝐺
+(𝑑)  =  2, 𝑑𝐺

+(𝑒)  =  3, and 𝑑𝐺
+(𝑓)  =  0. ■ 

Because each edge has an initial vertex and a terminal 

vertex, the sum of the in-degrees and the sum of the out-

degrees of all vertices in a graph with directed edges are 



- 505 - 
 

the same. Both of these sums are the number of edges in 

the graph. This result is stated as the following theorem. 

The following theorem is called Handshaking Theorem. 

It describes the relation between the number of edges of a 

graph and the degrees of its vertices. 

Theorem.  

Let 𝐺 = (𝑉, 𝐸) be a graph such that 𝑉 = {𝑥1, … , 𝑥𝑛}. 

Then 

(a) ∑ 𝑑𝐺(𝑥𝑖) =𝑛
𝑖=1 2|𝐸|; 

(b) The number of odd vertices in 𝐺 is even; 

(c) In a digraph 𝐺,∑ 𝑑𝐺
−𝑛

𝑖=1 (𝑥𝑖) = ∑ 𝑑𝐺
+𝑛

𝑖=1 (xi) = |𝐸|. 

Proof.  

(a) We compute the number of times that edges of G are 

incident with its vertices by two different ways.  

First, each edge is incident with vertices twice, i. e., the 

desired number is 2|𝐸|. In other words, each vertex is 

incident with edges (𝑑𝐺(𝑥)) once. Therefore, The desired 

number is ∑ 𝑑𝐺(𝑥𝑖)
𝑛
𝑖=1 . Thus ∑ 𝑑𝐺(𝑥𝑖)

𝑛
𝑖=1 = 2|𝐸|. 
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(b) Let 𝑉1 and 𝑉2 de the set of vertices of even degree and 

set of vertices of odd degree, respectively, in 𝐺. Then 

𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅. Therefore 

 ∑ 𝑑𝐺(𝑥𝑖)
𝑛
𝑖=1 = ∑ 𝑑𝐺(𝑥) +∑ 𝑑𝐺(𝑥)𝑥∈𝑉2

= 2|𝐸|.𝑥∈𝑉1
 

Since both 2|𝐸|and ∑ 𝑑𝐺(𝑥)𝑥∈𝑉1
 are even, then 

∑ 𝑑𝐺(𝑥)𝑥∈𝑉2
 is even. Since all terms in this sum is odd, 

then there must be an even number of such terms. Thus 

there is an even number of vertices of odd degree.  

(c) Since each edge has an initial vertex and a terminal 

vertex, then the sum of the in-degrees and the sum of the 

out-degrees of all vertices in a graph with directed edges 

are the same. Both sums are the number of edges |𝐸| in 

the graph.∎ 

Example. 

Consider the grid graph. The degree sequence of this 

graph is (4, 3, 3, 3, 3, 2, 2, 2, 2). Therefore by the 

handshaking theorem, the number of edges in the grid 

graph is: 
1

2
(4 + 3 + 3 + 3 + 3 + 2 + 2 + 2 + 2) = 12. 

A manual count of the edges in the grid graph confirms 

this. The reader should check how many edges the 𝑛 by 𝑛 
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grid graph has (the vertex set is 𝑉 = {(𝑥, 𝑦) ∈  ℤ × ℤ ∶

0 ≤ 𝑥 < 𝑛, 0 ≤ 𝑦 < 𝑛} and the edge set is the set of pairs 

of vertices at distance 1 from each other.)  ∎ 

Example. 

1. How many edges are there in a graph with 10 vertices 

each of degree six?  

2. Is there a graph the sequence of degrees of its vertices 

is (5, 4, 3, 3, 2)? 

Solution. 

1. Since the degrees of the vertices is 6 × 10 = 60 =

2|𝐸|, then |𝐸| = 60/2 = 30. 

2. Since 5 + 4 + 3 + 3 + 2 = 17 is an odd number, by 

the handshaking theorem, there is no graph with these 

vertices. Or, since the number of the odd vertices is 3, 

then there is no graph with these vertices by the same 

theorem.∎ 

Example.  

The n-cube, denoted 𝑄𝑛, is the graph whose vertex set is 

the set of binary strings of length 𝑛, and whose edge set 

consists of all pairs of strings differing in one position. 
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The cube graph 𝑄3 in introduced in this section is the 3-

cube. Let us see how many edges 𝑄𝑛  has as a formula in 

𝑛. Since there are 2𝑛 binary strings of length 𝑛, there are 

2𝑛 vertices in 𝑄𝑛. Now each vertex 𝑣 is adjacent to 𝑛 

other vertices - namely flip one position in the string 𝑣 to 

get each string adjacent to 𝑣, and there are 𝑛 possible 

positions in which to do a flip. So every vertex of the n-

cube has degree 𝑛, and so the number of edges in 𝑄𝑛 is 

1

2
∑ 𝑑𝑄𝑛

(𝑣)

𝑛∈𝑉

=
1

2
∙ 2𝑛 ∙ 𝑛 = 𝑛2𝑛−1 

A manual count of the edges confirms this for the 4-cube 

𝑄4 which is drawn below: 
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8.3 Subgraph 

Definition.   

A subgraph of a graph 𝐺 = (𝑉, 𝐸) is a graph   𝐻 =

(𝑊, 𝐹), where 𝑊 ⊆ 𝑉 and  𝐹 ⊆ 𝐸. The subgraph  𝐻 of 

the graph 𝐺 is spanning the graph 𝐺 if  𝑊 = 𝑉.    If  

{𝑥1, … , 𝑥𝑛} ⊆ 𝑉 in the graph  𝐺 = (𝑉, 𝐸), we obtain the 

subgraph   𝐺 − {𝑥1, … , 𝑥𝑛} by deleting the vertices 

𝑥1, … , 𝑥𝑛 and all fallen edges. If {𝑒1, . . . , 𝑒𝑛} ⊆ 𝐸 in the 

graph 𝐺 = (𝑉, 𝐸), then we get the subgraph 𝐺 −

{𝑒1, … , 𝑒𝑘}  by deleting the edges  𝑒1, … , 𝑒𝑘 (without 

deleting the vertices). 

Example. 

Let 𝐺 be the following graph. 

 

The following three graphs all subgraphs of 𝐺: 
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The following is the subgraphs 𝐻 = 𝐺 − {𝑒1, 𝑒2, 𝑒3, 𝑣4} 

and 𝐾 = 𝐺 − {𝑒1, 𝑒6, 𝑣4}. 

 

Definition.  

The union of two simple graphs 𝐺1 = (𝑉1,  𝐸1) and 𝐺2 =

(𝑉2,  𝐸2) is the simple graph with vertex set 𝑉1⋃𝑉2 and 

edge set 𝐸1⋃𝐸2 . The union of  𝐺1 and  𝐺2 is denoted by 

𝐺1⋃𝐺2 . 
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Example.  

Find the union of the following graphs. 

 

Solution.  

The vertex set of the union  𝐺1⋃𝐺2 is the union of the 

two vertex sets, namely {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, , 𝑣7}. The 

edge set of 𝐺1⋃𝐺2 is the union of the two edge sets, 

namely {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7}. The union is displayed 

in following figure. 
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8.4 Special Graphs 

Definition.   

Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑟 ≥ 0 be an integer. The 

graph 𝐺 is said to be r-regular graph if 𝑑𝐺(𝑥)  =  𝑟  for 

each 𝑥 ∈ 𝑉. For instance, the graph 𝑄3 is 3-regular (all 

the degrees are 3). Sometimes, 3-regular graphs are also 

referred to as cubic graphs. 

Example.    

 

Theorem.  

If 𝐺 = (𝑉, 𝐸) is r-regular graph with |𝑉| = 𝑛, |𝐸| =
𝑛𝑟

2
.  

Proof. 

Since  ∑ 𝑑𝐺(𝑥)𝑥∈𝑉 = 2|𝐸|, Then  ∑ 𝑟 = 2|E|𝑥∈𝑉  . 

Therefore 𝑛𝑟 = 2|𝐸|  or  |𝐸| =
𝑛𝑟

2
.∎ 
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Definition.  

The complete graph with 𝑛 vertices, denoted by 𝐾𝑛  is the 

simple graph that contains exactly one edge between 

every pair of distinct vertices.  

 

Theorem.  

If  𝐾𝑛 = (𝑉, 𝐸), then |𝐸| =
𝑛(𝑛−1)

2
 . 

Proof. 

𝐾𝑛 is (𝑛 − 1)–regular graph. Therefore  |𝐸| =
𝑛(𝑛−1)

2
.∎ 

Definition. (Cycles).  

The cycle 𝐶𝑛, 𝑛 ≥ 3 consists of  𝑛 vertices 𝑣1, … , 𝑣𝑛 and 

edges {𝑣1, 𝑣2}, {𝑣2, 𝑣3, },…,{ 𝑣𝑛−1, 𝑣𝑛} and { 𝑣𝑛 , 𝑣1}.  
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Definition.  Wheels.  

We obtain the wheel  𝑊𝑛  when we add an additional 

vertex to the cycle 𝐶𝑛 , for 𝑛 ≥ 3 and connect this new 

vertex to each of the 𝑛 vertices in 𝐶𝑛 by new edges.  

In the following figure, the wheel graphs 𝑊𝑛 with 𝑛 

vertices are shown for 4 ≤ 𝑛 ≤ 11. 

 

Definition.  

A simple graph 𝐺 = (𝑉, 𝐸) is said to be bipartite graph 

if its vertices can be partitioned into two disjoint sets 𝑉1  

and 𝑉2  such that every edge in the graph connects a 

vertex in 𝑉1  and a vertex in 𝑉2  (so that no edge in 𝐺 

connects either two vertices in 𝑉1  or two vertices in 𝑉2  ). 

When this condition holds, we call the pair (𝑉1 , 𝑉2) a 

bipartition of the vertex set 𝑉 of 𝐺. 
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Note that partition means that 𝑉1 ≠ 𝜙, 𝑉2 ≠ 𝜙, 𝑉1 ∩ 𝑉2 =

𝜙 and 𝑉 = 𝑉1 ∪ 𝑉2.  In this case we use the symbol  (𝑉1 ∪

𝑉2, 𝐸) instead of  (𝑉, 𝐸). 

Example.   

The graph 𝐺 in (i) can be redrawn as shown in (ii). From 

the drawing in (ii), you can see that G is bipartite with 

mutually disjoint vertex sets {𝑣1, 𝑣3, 𝑣5} and  {𝑣2, 𝑣4, 𝑣6}. 

 

Definition.   

let  𝐺 = (𝑉1 ∪ 𝑉2, 𝐸)  be a bipartite graph. 𝐺 is said to be 

complete bipartite graph if every vertex in 𝑉1 is adjacent 

to every vertex in 𝑉2. If  |𝑉1| = 𝑚 and |𝑉2| = 𝑛, then this 

graph is denoted by 𝐾𝑚,𝑛.  

Example.   

The following graphs are complete bipartite graphs. 
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Theorem.   

If 𝐾𝑚,𝑛 = (𝑉1 ∪ 𝑉2, 𝐸)  such that |𝑉1| = 𝑚 and |𝑉2| =

𝑛, then |𝐸| = 𝑚𝑛.    

Proof.   

Since  ∑ 𝑑(𝑥) + ∑ 𝑑(𝑥)𝑥∈𝑣2
= 2|𝐸|𝑥∈𝑣1

, then  ∑ 𝑛 +𝑥∈𝑣1

∑ 𝑚𝑥∈𝑣2
 = 2|𝐸|. Thus  𝑚𝑛 + 𝑛𝑚 = 2|𝐸| .                  

Therefore,  |𝐸| = 𝑚𝑛.  ∎ 

Definition.  

Let 𝐺 = (𝑉, 𝐸) be a simple graph. The complement of the 

graph 𝐺 is defined to be the graph 𝐺̅ = (𝑉, 𝐸̅)  where for 

every 𝑥, 𝑦 ∈ 𝑉 and 𝑥 ≠ 𝑦 we have {𝑥, 𝑦} ∈ 𝐸̅  if and only 

if {𝑥, 𝑦} ∉ 𝐸.   

Example.   

The following diagram is the graph and its complement. 
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Remark.    

If G is r-regular simple graph with n vertices, then 𝐺̅ is 

(𝑛 − 𝑟 − 1) − regular simple graph. 

Exercise.   

Give an example of a  r- regular simple graph with 6 

vertices, where 0 ≤ 𝑟 ≤ 5. 
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8.5 Representation of Graphs  

We will represent graphs using matrices. 

The Adjacency Matrix 

Definition.  

Let 𝑉 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝐺 = (𝑉, 𝐸) be a simple graph 

The adjacency matrix of the graphs 𝐺 is the zero - one 

matrix  𝐴 = [𝑎𝑖𝑗] , where  𝑎𝑖𝑗 = {
1, {𝑥𝑖 , 𝑥𝑗} ∈ 𝐸

0, {𝑥𝑖 , 𝑥𝑗} ∉ 𝐸
 

Example.  

The adjacency matrix for the given graphs 𝐺 is:  

 

𝐴 =

[
 
 
 
 
0
1
0
0
1

  

1
0
0
1
1

  

0
0
0
1
1

  

0
1
1
0
1

  

1
1
1
1
0]
 
 
 
 

 

Example.   

Draw the graph with the adjacency matrix:  

[

0
1
1
0

  

1
0
1
1

  

1
1
0
1

  

0
1
1
0

] 

with respect to the ordering of vertices 𝑎, 𝑏, 𝑐, 𝑑. 
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Solution. 

The graph with this adjacency matrix is  

 

Remark. 

1. The adjacency matrix depends on the ordering of 

vertices so there exists 𝑛 ! adjacency matrices for a 

simple graph with n vertices.  

2. The adjacency matrix A of a simple graph G is 

symmetric, i. e.,  𝐴 = 𝐴𝑇, where 𝐴𝑇 is the transpose of A. 

3. Since the simple graph contains no loops, then  𝑎𝑖𝑖 = 0 

for every 𝑖 ∈ {1,… , 𝑛}, i. e., The diameter elements in the 

adjacency matrix are zeros.  

4. We can consider the elements 𝑎𝑖𝑗 belong to the 

Boolean algebra 𝐵2 = {0,1}.  
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Definition.   

Let 𝐺 = (𝑉, 𝐸) be a simple digraph (directed graph),  

where = {𝑥1, … , 𝑥𝑛} . Then the adjacency matrix for the 

graph 𝐺 is the matrix  𝐴 = [𝑎𝑖𝑗] , where 

𝑎𝑖𝑗 = {
1, (𝑥𝑖 , 𝑥𝑗) ∈ 𝐸

0, (𝑥𝑖 , 𝑥𝑗) ∉ 𝐸
 

In this case, 𝐴 may not be symmetric as it is possible that 

(𝑥𝑖 , 𝑥𝑗) ∈ 𝐸 but (𝑥𝑖 , 𝑥𝑗) ∉ 𝐸 . 

Definition.  

We can define the adjacency matrix of the multi-graph as 

every loop {𝑥𝑖} participates by one in 𝑎𝑖𝑖 and every edge 

{𝑥𝑖 , 𝑥𝑗}, 𝑖 ≠ 𝑗 , also , participates by one in 𝑎𝑖𝑗 . Therefore 

the elements 𝑎𝑖𝑗 is not elements of 𝐵2 = {0,1}. 

Definition.  

Adjacency matrices can also be used to represent 

undirected graphs with loops and with multiple edges. A 

loop at the vertex 𝑣𝑖 is represented by a 1 at the (𝑖, 𝑖)th 

position of the adjacency matrix. When multiple edges 

connecting the same pair of vertices 𝑣𝑖 and 𝑣𝑗, or multiple 

loops at the same vertex, are present, the adjacency 
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matrix is no longer a zero-one matrix, because the (𝑖, 𝑖)th 

entry of this matrix equals the number of edges that are 

associated to {𝑣𝑖 , 𝑣𝑗}. All undirected graphs, including 

multigraphs and pseudographs, have symmetric 

adjacency matrices..  

Example.  

Here the simple digraph 𝐺 and its adjacency matrix 𝐴. 

 

 

𝐴 =

[
 
 
 
 
0 1 1
0 0 0
1 0 0

1 1
0 0
0 1

0 0 0
0 1 1

0 0
1 0]

 
 
 
 

 

 

Example.  

The two directed digraphs shown below differ only in the 

ordering of their vertices. Find their adjacency matrices. 
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Solution.  

Since both graphs have three vertices, both adjacency 

matrices are 3 ×  3 matrices.  For (a), all entries in the 

first row are 0 since there are no arrows from 𝑣1 to any 

other vertex. For (b), the first two entries in the first row 

are 1 and the third entry is 0 since from  𝑣1 there are 

single arrows to 𝑣1 and to 𝑣2 and no arrows to 𝑣3. 

Continuing the analysis in this way, you obtain the 

following two adjacency matrices: 

 

♣If you are given a square matrix with nonnegative 

integer entries, you can construct a directed graph with 

that matrix as its adjacency matrix. However, the matrix 

does not tell you how to label the edges, so the directed 

graph is not uniquely determined. 

Example.  

Draw a directed graph that has A as its adjacency matrix. 
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𝐀 = [

0 1 1 0
1 1 0 2
0
2

0
1

1 1
0 0

] 

Solution.  

Let 𝐺 be the graph corresponding to A, and 𝑣1, 𝑣2, 𝑣3, 𝑣4 

be the vertices of 𝐺. Label A across the top and down the 

left side with these vertex names, as shown below. 

 

Then, for instance, the 2 in the fourth row and the first 

column means that there are two arrows from 𝑣4 to 𝑣1. 

The 0 in the first row and the fourth column means that 

there is no arrow from 𝑣1 to 𝑣4. A corresponding directed 

graph is shown on the next page (without edge labels 

because the matrix does not determine those). ■ 
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Example.  

The adjacency matrix of the given multi-graph  is the 

shown matrix.  

 

We used the ordering of vertices 𝑎, 𝑏, 𝑐 , 𝑑.■ 

Example.  

The adjacency matrix A for the given multi-digraph G is 

as follows: 
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Incidence matrices  

Definition.  

Another common way to represent graphs is to use 

incidence matrices. Let 𝐺 = (𝑉, 𝐸) be an undirected 

graph. Suppose that 𝒗𝟏, 𝒗𝟐, . . . , 𝒗𝒏 are the vertices and 

𝒆𝟏, 𝒆𝟐, . . . , 𝒆𝒎 are the edges of 𝐺. Then the incidence 

matrix with respect to this ordering of 𝑉 and 𝐸 is the 

𝑛 ×  𝑚 matrix 𝑀 =  [𝑚𝑖𝑗], where 

𝑚𝑖𝑗 = {
1 when edge e𝑗  is incident with 𝒗𝒊,

0 otherwise.
 

Example.  

Represent the graph shown in 

the given figure with an 

incidence matrix. 

Solution. 

The incidence matrix is: 
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Incidence matrices can also be used to represent multiple 

edges and loops. Multiple edges are represented in the 

incidence matrix using columns with identical entries, 

because these edges are incident with the same pair of 

vertices. Loops are represented using a column with 

exactly one entry equal to 1, corresponding to the vertex 

that is incident with this loop. 

Example.  

Represent the pseudograph 

shown in the given figure 

using an incidence matrix. 

 

Solution.  

The incidence matrix for this graph is 
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8.6 Isomorphism of Graphs  

Definition.  

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) and 𝐻 = (𝑉(𝐻), 𝐸(𝐻))  be two 

simple graphs and  𝑓: 𝑉(𝐺) → 𝑉(𝐻) be a map. We say 

that f  is isomorphism from G to H if it satisfies the 

following:   

(a) f is one-to-one correspondence 𝑖. 𝑒., f is bijective. 

(b) 𝑓: 𝑉(𝐺) → 𝑉(𝐻) Preserves adjacency 𝑖. 𝑒., for every 

𝑥, 𝑦 ∈ 𝑉(𝐺) then {𝑥, 𝑦} ∈ 𝐸(𝐺) if and only if  

{𝑓(𝑥), 𝑓(𝑦} ∈ 𝐸(𝐻) on the other words, 𝑥, 𝑦 are adjacent 

in 𝐺 if and only if   𝑓(𝑥), 𝑓(𝑦) are adjacent in H . In this 

case we say that 𝐺 and 𝐻 are isomorphic and we write 

𝐺 ≅ 𝐻. 

Example.  

Show that the following graphs  𝐺 = (𝑉, 𝐸)  and 𝐻 =

(𝑊, 𝐹)  are isomorphic. 
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Solution. 

We define the mapping 𝑓: 𝑉(𝐺) → 𝑉(𝐻)  as follows: 

 

 

It is obvious that f  is one - to - one correspondence.To 

see that this correspondence preserves adjacency, note 

that adjacent vertices  in 𝐺 are 𝑢1and 𝑢2 , 𝑢1 and 𝑢3 , 𝑢2 

and 𝑢4 , 𝑢3 and 𝑢4 , and each of the pair 𝑓(𝑢1) = 𝑣1  and 

𝑓(𝑢2) = 𝑣2 , 𝑓(𝑢1) = 𝑣1 and 𝑓(𝑢3) = 𝑣4 , 𝑓(𝑢2) = 𝑣2  

and 𝑓(𝑢4) = 𝑣3  and 𝑓(𝑢3) = 𝑣4 and 𝑓(𝑢4) = 𝑣3  are 

adjacent in 𝐻.  Therefore the graphs  𝐺 = (𝑉, 𝐸)  and 

𝐻 = (𝑊,𝐹)  are isomorphic.∎ 

Example.  

Determine whether the following graphs are isomorphic 

or not? Explain your answer?  

 

V 𝑢1 𝑢2 𝑢3 𝑢4 

f (V) 𝑣1 𝑣2 𝑣4 𝑣3 
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Solution. 

We define the map 𝑓: 𝑉(𝐺) → 𝑉(𝐻) as follows: 

 

 

 

It easy to see that  f  is an isomorphism. Consequently 

𝐺 ≅ 𝐻.∎  

Note that in the above example 𝐻 is the complement of  

𝐺. So, we have the following definition:  

Definition. 

A simple graph G is said to be self-complementary if  

𝐺 ≅ 𝐺̅.  

 Example.  

The following diagram is for a self-complementary 

Graph 𝐺 (why:)  

 

 

 

 

 

 

𝑣 𝑎 𝑏 𝑐 𝑑 𝑔 

𝑓(𝑣) 𝑥 𝑦 𝑧 𝑡 𝑢 

b 

G 

c 

a 

d 

a 

𝐺̅ 

b 

c d 
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It is often difficult to determine whether two simple 

graphs   are isomorphic. However, we can use invariant 

with respect to isomorphism. 

Definition. 

We say that a property   𝑃 is invariant with respect to 

isomorphism (isomorphism invariant) if the following 

condition is satisfied: 

For every two simple graphs 𝐺 and 𝐻, if  𝐺 ≅ 𝐻 and G 

has the property 𝑃, then 𝐻 has the property 𝑃.  

The following theorem gives us some isomorphism 

invariants. We can use them to discover non- isomorphic 

graphs.  

Theorem 1.  Let G and H be two simple graphs and 

 𝑓: 𝑉(𝐺) → 𝑉(𝐻) be an isomorphism. Then  

(i) |𝑉(𝐺)| = |𝑉(𝐻)|  and  |𝐸(𝐺)| = |𝐸(𝐻)| ;  

(ii) 𝑑(𝑥) = 𝑑(𝑓(𝑥)) for every 𝑥 ∈ 𝑉(𝐺) ; 

(iii) The number of vertices with degree 𝑚 in 𝐺 equals 

the number of vertices with degree  𝑚 in 𝐻.  
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Proof : We accept (i) and (iii) , and prove only (ii) ,  

(ii) Let 𝑥 ∈ 𝑉(𝐺) with 𝑑(𝑥) = 𝑚. Then there exist  

𝑥1, … , 𝑥𝑚 ∈ 𝑉(𝐺)  such that 𝑥𝑖 ≠ 𝑥𝑗 for every  𝑖 ≠ 𝑗 and  

𝑥𝑖 is adjacent to 𝑥 for every 𝑖. Since f  is one-to-one 

correspondence and preserves adjacency, then 

𝑓(𝑥1), … , 𝑓(𝑥𝑚) ∈ 𝑉(𝐻) are different vertices and each 

of them is adjacent to  𝑓(𝑥) . Therefore  𝑑(𝑓( 𝑥)) ≥ 𝑚. 

Since  𝑓  is subjective and preserves non- adjacency then 

the only vertices which are adjacency to the vertex 𝑓(𝑥)  

in H are 𝑓(𝑥1), … , 𝑓(𝑥𝑚).  Therefore 𝑑(𝑓( 𝑥))  = 𝑚.∎ 

Example.  

Show that the graphs 

displayed in the figure  

are not isomorphic. 

Solution. 

Both 𝐺 and 𝐻 have five vertices and six edges. However, 

𝐻 has a vertex of degree one, namely, 𝑒, whereas 𝐺 has 

no vertices of degree one. It follows that 𝐺 and 𝐻 are not 

isomorphic. ■ 
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Example.  

Determine whether the graphs shown in the following 

figure are isomorphic. 

Solution. 

The graphs 𝐺 and 𝐻 both have 8 vertices and 10 edges. 

They also both have 4 vertices of degree 2 and 4 of 

degree 3. Because these invariants all agree, it is still 

conceivable that these graphs are isomorphic. 

However, 𝐺 and 𝐻 are not isomorphic. To see this, note 

that because 𝑑𝐺(𝑎)  =  2, 𝑎 must correspond to either 

𝑡, 𝑢, 𝑥, or 𝑦 in 𝐻, because these are the vertices of degree 

two in 𝐻. 

However, each of these four vertices in 𝐻 is adjacent to 

another vertex of degree 2 in 𝐻, which is not true for 𝑎 in 

𝐺. 
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Example.  

The following two graphs are not isomorphic because 

𝑑𝐻(𝑢2) = 3 and there is no vertex in 𝐺 with degree 3.  

 

Example.  

Determine whether the graphs G and H displayed in the 

following figure are isomorphic.  

 

Solution. 

Both 𝐺 and 𝐻 have six vertices and seven edges. Both 

have four vertices of degree two and two vertices of 

degree three. Because 𝐺 and 𝐻 agree with respect to these 

invariants, it is reasonable to find an isomorphism 𝑓. 
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We now will define a function 𝑓 and then determine 

whether it is an isomorphism. Because 𝑑𝐺(𝑢1) = 2 

and because 𝑢1 is not adjacent to any other vertex of 

degree two, the image of 𝑢1 must be either 𝑣4 or 𝑣6, the 

only vertices of degree two in 𝐻 not adjacent to a vertex 

of degree two. We arbitrarily set 𝑓(𝑢1) = 𝑣6. [If we 

found that this choice did not lead to isomorphism, 

we would then try 𝑓(𝑢1) = 𝑣4.] Because 𝑢2 is adjacent to 

𝑢1, the possible images of 𝑢2 are 𝑣3 and 𝑣5. We 

arbitrarily set 𝑓(𝑢2) = 𝑣3. Continuing in this way, using 

adjacency of vertices and degrees as a guide, we set 

𝑓(𝑢3) = 𝑣4, 𝑓(𝑢4) = 𝑣5, 𝑓(𝑢5) = 𝑣1, and 𝑓(𝑢6) = 𝑣2. 

We now have a one-to-one correspondence between the 

vertex set of 𝐺 and the vertex set of 𝐻. To see whether 𝑓 

preserves edges, we examine the adjacency matrix of 𝐺, 
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and the adjacency matrix of 𝐻 with the rows and columns 

labeled by the images of the corresponding vertices in 𝐺,  

 

Because 𝐴𝐺 =  𝐴𝐻 , it follows that f preserves edges. 

We conclude that 𝑓 is an isomorphism, so 𝐺 and 𝐻 are 

isomorphic. ■ 
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8.7 Connected Graphs 

Definition.  

Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑎, 𝑏 ∈ 𝑉 and 𝑛 ≥ 1 be an 

integer. If 𝑣1,𝑒1, 𝑣2, 𝑒2, … . , 𝑒𝑛−1, 𝑣𝑛 is a sequence of 

vertices and edges such that 𝑣1 = 𝑎, 𝑣𝑛 = 𝑏, 𝑒𝑖 =

{𝑣𝑖 , 𝑣𝑖+1} for all 𝑖,  then the sequence is called a path 

from 𝑎 to 𝑏. A path of length 𝒏 from 𝑎 to 𝑏 is a 

sequence of 𝑛 edges. A path is a circuit (closed path) if 

𝑣1 = 𝑣𝑛. A path or circuit is simple : if  𝑒𝑖 ≠ 𝑒𝑗  for all  

 𝑖 ≠ 𝑗, 𝑖. 𝑒., it does not contain the same edge more than 

one . When the graph is simple, we denote the path or the 

circuit by its vertices sequence 𝑣1,𝑣2, … . , 𝑣𝑛. A simple 

circuit in which if  𝑣𝑖 ≠ 𝑣𝑗 for all   𝑖 ≠ 𝑗, except 𝑣1 = 𝑣𝑛 

is called a cycle.  

Example 1.  

In the simple graph.                                                     
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1. 𝑎 , 𝑑, 𝑐, 𝑓  is a simple path of length 3. 

2. 𝑑, 𝑒, 𝑐, 𝑏 is not a path since {𝑒, 𝑐} is not edge. 

3. 𝑏, 𝑐, 𝑓, 𝑒, 𝑏 is circuit of length 4. Also, it is a cycle. 

4.The path 𝑎, 𝑑, 𝑒, 𝑑, 𝑎, 𝑏 which of length 5, is not simple 

since it contains the edge {𝑎, 𝑑} twice. 

Definition.  

An undirected graph is connected if there is a path 

between every pair of distinct vertices of the graph. We 

say it is disconnected if  it is  not connected.  

Example.  

Which of the following graphs are connected? 

 

Solution.  

The graph represented in (a) is connected, whereas those 

of (b) and (c) are not. To understand why (c) is not 

connected, recall that in a drawing of a graph, two edges 

may cross at a point that is not a vertex. Thus, the graph 

in (c) can be redrawn as follows: 
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Theorem.  

There is a simple path between every pair of distinct 

vertices of a connected undirected graph. 

Definition. 

A graph that is not connected is the union of two or more 

connected subgraphs, each pair of which has no vertex in 

common. These disjoint connected subgraphs are called 

the connected components of the graph. 

 

The components of G are G1, G2, G3 and G4. 

Definition. 

A connected component of a graph G is a connected 

subgraph of 𝐺 that is not a proper subgraph of another 

connected subgraph of 𝐺. That is, a connected 
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component of a graph 𝐺 is a maximal connected 

subgraph of 𝐺. A graph 𝐺 that is not connected has two 

or more connected components that are disjoint and have 

𝐺 as their union. 

Example.  

What are the connected 

components of given the 

graph H. 

 

Solution.  

The graph 𝐻 is the union of three disjoint connected 

subgraphs 𝐻1, 𝐻2, and 𝐻3, shown in the following figure. 

These three subgraphs are the connected components of 

𝐻. 
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Theorem.  

Each connected graph with 𝑛 vertices has 𝑚 edges where 

𝑚 ≥ 𝑛 − 1.  

Theorem.  

In a simple graph G either G or 𝐺̅ is connected. 

Definition. 

Sometimes the removal of a vertex and all edges incident 

with it produces a subgraph with more connected                                        

components than in the original graph such vertices are 

called cut vertices. The removal of a cut vertex from a 

connected graph produces a subgraph that is not 

connected. 

Analogously, an edge whose removal produces a graph 

with more connected components than the original graph 

is called a cut edges or bridge. 

Example.  

Find the cut vertices and cut edges in the following graph. 
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Solution. 

The cut vertices are 𝑏, 𝑐, and 𝑒. The removal of one of 

these vertices (and its adjacent edges) disconnects the 

graph. The cut edges are {𝑎, 𝑏} and {𝑐, 𝑒}. Removing 

either one of these edges disconnects. ■ 

Theorem.  

Let 𝐴 = [𝑎𝑖𝑗] be the adjacency matrix for the graph 𝐺 =

(𝑉, 𝐸) such that 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. Let 𝐴𝑘 = [𝑏𝑖𝑗]  such 

that 𝑘 ≥ 1. Then the number of different paths from 𝑣𝑖 to 

𝑣𝑗 with length 𝑘  is equal 𝑏𝑖𝑗.  

Example.  

Find the number of paths of length 4  from 𝑣4  to 𝑣5 for 

the following graph: 
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Solution.  

The adjacency matrix is           

𝐴 =

[
 
 
 
 
0
1
0
1
0

  

1
0
1
0
1

  

0
1
0
1
1

  

1
0
1
0
0

  

0
1
1
0
0]
 
 
 
 

   and     𝐴4 =

[
 
 
 
 
9
3
11
1
6

  

3
15
7
11
8

  

11
7
15
3
8

  

1
11
3
9
6

  

6
8
8
6
8]
 
 
 
 

 

Hence 𝑏45 = 𝑏54 = 6 .    

The number of paths from 𝑣4 to 𝑣5 is 6 and the paths are: 

𝑣4𝑒4𝑒4𝑒3𝑒6𝑣5, 𝑣4𝑒3𝑒3𝑒3𝑒6𝑣5, 𝑣4𝑒4𝑒1𝑒2𝑒6𝑣5, 𝑣4𝑒3𝑒6𝑒6𝑒6𝑣5, 

 𝑣4𝑒3𝑒6𝑒5𝑒5𝑣5, 𝑣4𝑒3𝑒2𝑒2𝑒6𝑣5.∎ 

Example. 

Find the number of paths of length 3  

from 𝑣1 to 𝑣3 and find the paths for the 

given graph. 

Solution.   

The adjacency matrix of the given graph is : 

𝐴 = [
0
2
0
  
2
0
2
  
0
2
1
] .         Then       𝐴3 = [

0
16
4

  
16
4
18

  
4
18
9

] 

The number of paths of length 3 between  𝑣1 and 𝑣3 is 4: 

The paths are 

𝑥1𝑒1𝑒3𝑒5𝑥3, 𝑥1𝑒1𝑒4𝑒5𝑥3, 𝑥1𝑒2𝑒3𝑒5𝑥3, 𝑥1𝑒2𝑒4𝑒5𝑥3.∎ 
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Theorem.  

The simple graph 𝐺 is bipartite graph if 𝐺 has no odd 

cycle. 

Example. 

 

 

Petersen graph above conations cycle with length 5. So, 

it is not bipartite graph.  ∎ 

Example.   

 

The above graphs contain no odd cycles. Therefore, they 

are bipartite graphs. ∎ 
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8.8 Planar graph 

Definition.   

A graph is called planar if it can be drawn in the plane 

without any edges crossing. 

Example.  

Although the complete graph K4 is usually pictured with 

crossing edges as in figure (a), it can also be drawn with 

no crossing edges as in figure (b). Thus k4 is a planar 

graph. Also, Q3 in (c) and (d). Therefore, Q3 is a planar 

graph. Such a drawing is called a planar representation 

of the graph. 
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A planar representation of a graph divides the plane. For 

instance, consider the connected planar graph given in the 

following Figure  

 

It is clear that the graph divides the plane into five 

regions. All regions are bordered except 𝑅5. 

The border of each one is as follows 

𝑅1 bordered by the closed path 𝑢𝑒10𝑎𝑒8ℎ𝑒9𝑢𝑒11𝑡𝑒11𝑢.  

𝑅2 is bordered by the cycle 𝑎𝑒1𝑏𝑒6𝑔𝑒7ℎ𝑒8𝑎 . 

𝑅3 is bordered by the closed path 𝑏𝑒2𝑐𝑒3𝑑𝑒4𝑑𝑒3𝑐𝑒5𝑔𝑒6𝑏. 

𝑅4 is bordered by 𝑑𝑒4𝑑. 

𝑅5 is bordered inside by the cycle 

𝑎𝑒1𝑏𝑒2𝑐𝑒5𝑔𝑒7ℎ𝑒9𝑢𝑒10𝑎. 

By the degree of a region 𝑅, written 𝑑(𝑅) , we mean the 

length of the cycle or closed simple path border 𝑅. ■ 
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Theorem.  

The sum of degrees of the regions of a planar 

representation of a graph is twice the number of edges. 

We note that each edge either borders two regions or is 

contained in a region and will occur twice in any simple 

path along the border of the region.  

Example.  

The degrees of the regions of the above figure are 

𝑑(𝑅1) = 5, 𝑑(𝑅2) = 4, 𝑑(𝑅3) = 6, 𝑑(𝑅4) = 1, 𝑑( 𝑅5) =

6.  

The sum of the degrees is 22 which is twice the number 

of edges, as expected.■ 

The Regions of the Planar Representation of a Graph. 
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 Euler's formula. 

A planar representation of a graph splits the plane into 

regions, including an unbounded region. 

For instance, the planar representation of the graph shown 

in the following figure splits the plane into six regions.  

 

Euler's formula connects the number of vertices 𝑣 , the 

number of edges 𝑒  and the number of regions 𝑟 of any 

connected simple planar graph 𝐺. Euler's formula is: 

                           𝑣 − 𝑒 + 𝑟 = 2 

Euler's formula is special for connected simple planar 

graph. If G is a planar graph with 𝐾 components, then 

one can deduce that:   𝑣 − 𝑒 + 𝑟 = 𝐾 + 1. 

Example.  

Suppose that a connected planar simple graph has 20 

vertices, each of degree 3. How many regions does a 

representation of this planar graph split the plane? 
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Solution.  

This graph has 20 vertices, each of degree 3, so 𝑣 = 20. 

Because the sum of the degrees of the vertices, 

 3𝑣 = 3 ∙ 20 = 60, is equal to twice the number of edges, 

2𝑒, we have 2𝑒 =  60, or 𝑒 =  30. Consequently, from 

Euler’s formula, the number of regions is 

𝑟 =  𝑒 −  𝑣 +  2 =  30 −  20 +  2 =  12.■ 

Theorem.  

(a)  Let 𝐺 be a connected planar simple graph such that  

𝑣 ≥ 3, then 𝑒 ≤ 3𝑣 − 6; 

(b)  𝐾5 is not a planar graph.  

Proof.  

Since G is connected and 𝑣 ≥ 3, we have 𝑒 ≥ 2. Hence 

2 ≤ 3(3) − 6 = 3 and the inequality is true.  Now, 

suppose 𝑒 ≥ 3.  Since the Sam of the degrees of the 

regions is 2𝑒. But each region has degree three or more. 

Because at least 3 edges border one region. Therefore, 

3𝑟 ≤ 2𝑒. But from Euler's formula 𝑣 − 𝑒 + 𝑟 = 2. Then 

 3[2 − 𝑣 + 𝑒] = 3𝑟 ≤ 2𝑒. Therefore 𝑒 ≤ 3𝑣 − 6. 
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(b) Suppose that K5 is a planar graph. We know that 𝑣 =

5 ,  𝑒 = 10 . Since 𝐾5 is a simple connected graph, then 

from (a) above we have 10 ≤ 3(5) − 6 = 9, which is a 

contradiction. Therefore 𝐾5 is not a planar graph.∎ 

Theorem.  

(a) Let 𝐺 be a connected planar simple graph with 𝑣 ≥ 3 

and 𝐺 has no cycle of length 3. Then  𝑒 ≤ 2𝑣 − 4.  

(b) 𝐾3,3 is not a planar graph.  

Proof. 

(a) Since 𝐺 is connected and 𝑣 ≥ 3 , then 𝑒 ≥ 2. Since 

the sum of degrees of the regions is 2𝑒. But each region 

has degree 4 or more because 𝐺 has no cycle of length 3 , 

i,e, at least 4 edges border one region. Hence  4𝑟 ≤ 2𝑒.  

By Euler's formula we have 𝑟 = 2 − 𝑣 + 𝑒.  Hence 

4[2 − 𝑣 + 𝑒] ≤ 2𝑒. Therefore 𝑒 ≤ 2𝑣 − 4. 

(b)  Suppose 𝐾3,3 is a planar graph. We know that 𝑣 = 6,

𝑒 = 9. Since 𝐾3,3 is a connected planar simple graph and 

has no cycle of length 3, then 9 ≤ 2 × 6 − 4 = 8, a 

contradiction.  Therefore 𝐾3,3 is not a planar graph.∎ 
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 Graph coloring 

Each map in the plane can be represented by a planar a 

graph, where each region of  the map is represented by a 

vertex. Edges connect two vertices if the region 

represented by these vertices has a common border. Two 

regions that touch at only one point are not considered 

adjacent. The resulting graph is called the dual graph of 

the map. Let 𝑀 be a map and 𝐺 = (𝑉, 𝐸) be a planar 

graph represents the map 𝑀 (the dual graph). Where 𝑉 is 

the regions in the map and {𝑥, 𝑦} ∈ 𝐸 if and only if the 

two regions 𝑥 and 𝑦 are adjacent: 

 

 

The dual graphs of the given maps.  
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Definition.   

A coloring of a simple graph is the assignment of a color 

to each vertex of the graph so that no two adjacent 

vertices are assigned the same color. The least number of 

colors need to color the graph 𝐺 is called chromatic 

number 𝜒(𝐺). 

Four colors problem:  

" Is it possible to color a map with at most 4 colors so that 

no adjacent regions have the same color" or equivalently  

"If 𝐺 is a simple planar graph, then 𝜒(𝐺) ≤ 4 "? 

Example.  

What are the chromatic numbers of the graphs 𝐺 and 𝐻 

shown in the following figure? 

 

Solution.  

The chromatic number of 𝐺 is at least three, because the 

vertices 𝑎, 𝑏, and 𝑐 must be assigned different colors. To 

see if 𝐺 can be colored with three colors, assign red to 𝑎, 
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blue to 𝑏, and green to 𝑐. Then, 𝑑 can (and must) be 

colored red because it is adjacent to 𝑏 and 𝑐. 

Furthermore, 𝑒 can (and must) be colored green because 

it is adjacent only to vertices colored red and blue, and 𝑓 

can (and must) be colored blue because it is adjacent only 

to vertices colored red and green. Finally, 𝑔 can (and 

must) be colored red because it is adjacent only to 

vertices colored blue and green. This produces a coloring 

of 𝐺 using exactly three 

colors. The given figure 

displays such a coloring. 

 

The graph 𝐻 is made up of the graph 𝐺 with an edge 

connecting 𝑎 and g. Any attempt to color 𝐻 using three 

colors must follow the same reasoning as that used to 

color 𝐺, except at the last 

stage, when all vertices other 

than g have been colored. 

Then, because g is adjacent 

(in 𝐻) to vertices colored red, 

blue, and green, a fourth color, say brown, needs to be 
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used. Hence, 𝐻 has a chromatic number equal to 4. A 

coloring of 𝐻 is shown in the given figure. ■   

Example.  

It is clear that if 𝐺 = (𝑉, 𝐸) is a simple graph with |𝑉| =

𝑛, then 𝜒(𝐺) ≤ 𝑛.  If 𝐻 is a subgraph of 𝐺. then 𝜒(𝐻) ≤

𝜒(𝐺).  

In 𝐾𝑛, 𝑑(𝑥) = 𝑛 − 1 for every 

𝑥 ∈ 𝑉. Therefore 𝜒(𝐾𝑛) = 𝑛 

and  𝜒(𝐾𝑛
̅̅̅̅ ) = 1. For example, 

𝐾5. ■ 

Example.   

If 𝐶𝑛   is a cycle with length n, then 𝜒(𝐶𝑛) = 2 if 𝑛 is even 

and  𝜒(𝐶𝑛) = 3 if 𝑛 is odd. 

Solution.  

let 𝑥1, … , 𝑥𝑛 be the vertices of 𝐶𝑛. If we colored 𝑥1 by 

color 1, then 𝑥2 should take different color (say color 2 ). 

Thus 𝑥3 can take color 1. So, if 𝑛 is odd then we need a 

third color 3 to color 𝑥𝑛 , but, if 𝑛 is even, then 𝑥𝑛 

colored by color 2. ■ 
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Example.   

Calculate 𝜒(𝑊5), when W5 is the wheel graph shown the 

following diagram. 

Solution.  

Since 𝑊5 − 𝑥 ≅ 𝐶5 , then we need 3 

colors to color 𝐶5. Since x is adjacent to 

all vertices in 𝑊5 , then we need another 

color to color it. Consequently,  𝜒(𝑊5) = 4. ∎ 

Example.  

Calculate 𝜒(𝐺), for the given graph. 
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Solution.  

Note that 𝐺 − {g, ℎ} ≅ 𝐶6 and 𝜒(𝐶6) = 2 . But g   is 

adjacent to all vertices of   C6, and then we need a third 

color (3) for g. Hence, we can choose color (3) to ℎ. 

Therefore 𝜒(𝐺) = 3.∎ 

Theorem.  

𝜒(𝐺) = 2 if and only if G is a bipartite graph.  

Proof.  

Let G be a bipartite graph and 𝑉 = 𝑉1 ∪ 𝑉2. It is enough 

to color 𝑉1 by only one color and 𝑉2 by another one. So 

𝜒(𝐺) = 2. 

Conversely, suppose 𝜒(𝐺) = 2  and 𝑉1 be the set colored 

by first color and 𝑉2 be the set colored by the second one. 

There is no adjacent two vertices of  𝑉1(𝑜𝑟 𝑉2).  So any 

edge in G should connect a vertex in 𝑉1 and a vertex in 

𝑉2. Hence G is bipartite graph.∎ 

 

K3,4: 
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Corollary. 

  𝜒(𝐺) ≥ 3 if and only if 𝐺 contains an odd cycle. 

Example. 

 Show that  𝜒(𝐺) = 3 , where 𝐺 is Petersen graph. 

Solution.  

Since 𝐺 contains a cycle of 

length 5, then 𝜒(𝐺) ≥ 3. 

Only 3 colors are enough as 

shown in the Figure. ∎ 

Graph coloring has a variety of applications to problems 

involving scheduling and assignments. The following 

example is one of these applications.  

Example.  

How can the final exams at a university be scheduled so 

that no student has two exams at the same time? 

Solution.  

This scheduling problem can be solved using a graph 

model, with vertices representing courses and with an 

edge between two vertices if there is a common student in 

the courses they represent. Each time slot for a final exam 
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is represented by a different color. A scheduling of the 

exams corresponds to a coloring of the associated 

graph.∎  

See the following example 

Example.  

Suppose there are seven finals to be scheduled. Suppose 

the courses are numbered 1 through 7. Suppose that there 

is one student or more scheduled in each of: (1, 2), (1, 3), 

(1, 4), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (3, 4), (3, 6), 

(3, 7), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7).  

Use graph coloring to schedule the final exams so that no 

student has two exams at the same time and we have the 

least time slots.  

Solution.  

Let 𝐺 be the graph with vertices representing courses and 

{𝑥, 𝑦} ∈ 𝐸 if and only if a student or more are scheduled 

in the courses 𝑥 and 𝑦. The following diagrams shows the 

coloring graph. 

A scheduling consists of a coloring of this graph. We 

need four colors to color this graph (𝜒(𝐺) = 4). So we 

need 4 time slots as shown in the table: 
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 Euler paths 

Pregl River divide 

Konigsberg city in 

Germany into 4 parts 

included two islands 𝐴 

and 𝐷 and two regions 𝐵 and 𝐶. There are seven bridges 

connected these sections.  

The seven bridges problem say that: 

" Is it possible to start at some location in the town travel 

across all the bridges without crossing any bridge twice, 

and return to the starting point?" 

The Swiss mathematician Euler studied this problem 

using the multi-graph obtained when the four regions are 

represented by vertices and bridges by edges.  

 

The question become : Is there 

a simple circuit in this multi-

graph that contains every edge? 

The answer was no. 
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Definition.  

1.  An Euler circuit in a graph 𝐺 is a simple circuit 

containing every edge in 𝐺. In this case 𝐺 is called Euler 

graph.  

2. An Euler path in 𝐺 is a simple path containing every 

edge in 𝐺. In this case 𝐺 is called half Euler graph.   

Theorem.   

A connected multi-graph has an Euler circuit if and only 

if each of its vertices has an even degree. 

Theorem.   

A connected multi-graph has an Euler path if and only if  

it has only two odd vertices. 

We can now solve the seven bridges problem. Since the 

multi-graph representing these bridges has four vertices 

of odd degree, it does not have an Euler circuit. 

Example.  

Which of the undirected graphs in the figure have an 

Euler circuit? Which have an Euler path? 



- 561 - 
 

 

Solution.  

The graph 𝐺1 has an Euler circuit. (Connected graph with 

even vertices), for example 𝑎 , 𝑔 , 𝑐 , 𝑑 , 𝑔 , 𝑏 , 𝑎.  

Neither 𝐺2 nor 𝐺3 has an Euler circuit. However, 𝐺3 has 

an Euler path (connected graph with two odd vertices), 

namely 𝑎 , 𝑐 , 𝑑, 𝑔 , 𝑏, 𝑑 , 𝑎 , 𝑏.   

𝐺2 does not have an Euler path. ■ 

Example.  

Which graphs shown in the following figure have an 

Euler path? 

 

Solution. 

𝐺1 contains exactly two vertices of odd degree, namely, 𝑏 

and 𝑑. Hence, it has an Euler path that must have 𝑏 and 𝑑 

as its endpoints. One such Euler path is 𝑑, 𝑎, 𝑏, 𝑐, 𝑑, 𝑏. 
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Similarly, 𝐺2 has exactly two vertices of odd degree, 

namely, 𝑏 and 𝑑. So it has an Euler path that must have 

𝑏 and 𝑑 as endpoints. One such Euler path is 

𝑏, 𝑎, 𝑔, 𝑓, 𝑒, 𝑑, 𝑐, 𝑔, 𝑏, 𝑐, 𝑓, 𝑑. 𝐺3 has no Euler path because 

it has six vertices of odd degree. ■ 

Example.  

Is the following graph shown in the following figure have 

an Euler circuit? If yes find it. 

 

Solution. 

Hence all vertices have even degree. Also, the graph is 

connected. Thus, the graph has an Euler circuit. It is: 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, ℎ, 𝑒, 𝑔, ℎ, 𝑗, 𝑖, 𝑑, 𝑎. 

Then the Euler circuit is represented by the labeled edges 

shown below as it  includes every edge of the graph exact 

once.■ 

 



- 563 - 
 

Exercises Set (8) 

1. Let 𝐺 = (𝑉, 𝐸, 𝑓) be a graph, where 𝑉 = {𝑎, 𝑏, 𝑐}, 𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4}  and f represented by the following table: 

e 𝑒1 𝑒2 𝑒3 𝑒4 

f(e) {a , b} {a , b} {a , b} {b, c} 

a. Represent the graph G ; 

b. Find the degrees of vertices ; 

c. Find loops and multi-edges ; 

d. Is G simple graph ?Why ; 

e. Find the adjacency matrix and the incidence matrix of 

G. 

2. Find f , E , V, where 𝐺 = (𝑉, 𝐸, 𝑓) is : 

 

3. Give an example of a simple graph with odd vertices 

and other with even vertices.  
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4. Find the number of edges of a graph 𝐺 = (𝑉, 𝐸), where 

the sum of its vertices degrees is 48.  

5. Is there a graph the sequence of vertices degrees is : 

a. 5, 5, 5, 3, 2, 2, 1; (b) 3, 3, 3, 3, 3. 

6.  Let 𝐴1, 𝐴2, … . , 𝐴𝑛 be sets. The graph of their 

intersections is the simple graph whose vertices is 

𝐴1, 𝐴2, … . , 𝐴𝑛 and 𝐴𝑖 is adjacent to 𝐴𝑗  if 𝐴𝑖 ∩ 𝐴𝑗 ≠ ∅.  

Find the graph if :  

a. 𝐴1 = {0,2,4,6,8}, 𝐴2 = {0,1,2,3,4}   𝐴3 = {1,3,5,7,9}, 

𝐴4, {5,6,7,8,9}, 𝐴5 = {0,1,8,9}. 

b. 𝐴1 = (−∞, 0), 𝐴2 = (−1,0), 𝐴3 = (0,1), 

 𝐴4 = (−1,1), 𝐴5 = (−1,∞), 𝐴6 = 𝑅 

7. Represent 𝐾6, 𝐾7, 𝐾1,8, 𝐾4,4. 

8. Find the number of edges of a graph, the sequence of 

its vertices is 2, 2, 3, 3, 4 and represent it. 

9. Is there a simple graph the sequence of its vertices  

6, 4, 3, 2, 2, 1. 

10. Is there a graph the number of its vertices is 10 and 

the number of its edges is 50? 

11. Give an example of   2-regular bipartite graph with 6 

vertices  
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12. Give an example of   3-regular bipartite graph with 8  

 vertices 

13. Suppose that 𝐺 = (𝑉, 𝐸) is a simple graph with n 

vertices and |𝐸| >
𝑛2

4
 . Prove that G is not complete 

bipartite graph. 

14. Let 𝐺 = (𝑉, 𝐸) be a simple 4-regular graph with 10 

edges.  Compute its vertices. 

15. Determine whether the following graph is bipartite 

graph or not?  Give a suitable partition for each bipartite 

one. 

 

16. Schedule the final exams for Math115, Math116, 

Math185, Math195, CS101, CS102, CS273 and CS473 

using the fewest number of different time slots, if there 

are no students taking both Math115 and CS473, both 
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Math116 and CS473, both Math195 and CS101, both 

Math195 and CS102, both Math115 and Math116, both 

Math115 and Math185 and both Math185 and Math195 

but there are student in every other combination of 

courses.  

17. Show that a simple graph with a chromatic number of 

2 is bipartite.  

18. Show that a connected bipartite graph has a chromatic 

number of 2.  

19. Show that 𝑚 ≤  2𝑛 −  4 for a planar bipartite graph 

of n vertices and m. 

20. Show that every planar graph contains a vertex of 

degree at most five. 

21. Determine the number of vertices and edges and find 

the in-degree and out-degree of each vertex and find the 

adjacency matrix for the given directed multigraph. 
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CHAPTER (IX) 

Trees 

9.1 Tree 

 

In mathematics, and more specifically in graph theory, a 

tree is an undirected graph in which any two vertices are 

connected by exactly one simple path. In other words, any 

connected graph without simple cycles is a tree. The 

various kinds of data structures referred to as trees in 

computer science are equivalent as undirected graphs to 

trees in graph theory, although such data structures are 

generally rooted trees, thus in fact being directed graphs, 

and may also have additional ordering of branches. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Path_(graph_theory)
http://en.wikipedia.org/wiki/Connectedness
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Computer_science
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Definition. 

● A tree is an undirected simple graph G that satisfies 

any of the following equivalent conditions: 

1. 𝐺 is connected and has no cycles. 

2. 𝐺 has no cycles, and a simple cycle is formed if any 

edge is added to 𝐺. 

3. 𝐺 is connected, but is not connected if any single edge 

is removed from 𝐺. 

4. 𝐺 is connected and the 3-vertex complete graph K3 is 

not a minor of 𝐺. 

5. Any two vertices in 𝐺 can be connected by a unique 

simple path. 

If 𝐺 has finitely many vertices, say 𝑛 of them, then the 

above statements are also equivalent to any of the 

following conditions: 

6. 𝐺 is connected and has 𝑛 −  1 edges. 

7. 𝐺 has no simple cycles and has 𝑛 −  1 edges. 

Example. 

All the graphs shown in the following figure are trees. 

http://en.wikipedia.org/wiki/Simple_graph
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Complete_graph
http://en.wikipedia.org/wiki/Minor_(graph_theory)
http://en.wikipedia.org/wiki/Path_(graph_theory)
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Example. 

All the graphs shown in the following figure are not trees. 

 

The graphs in (a), (b), and (c) all have circuits, and the 

graph in (d) is not connected. ■  

Example. 

Which of the graphs shown in the following figure are 

trees? 
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Solution. 

𝐺1 and 𝐺2 are trees, because both are connected graphs 

with no simple circuits. 𝐺3 is not a tree as 𝑒, 𝑏, 𝑎, 𝑑, 𝑒 is a 

simple circuit in this graph. Finally, 𝐺4 is not a tree 

because it is not connected. ■ 

Definition. 

Let 𝑇 be a tree. If 𝑇 has at least two vertices, then a 

vertex of degree 1 in 𝑇 is called a leaf (or a terminal 

vertex), and a vertex of degree greater than 1 in 𝑇 is 

called an internal vertex (or a branch vertex). The 

unique vertex in a trivial tree is also called a leaf or 

terminal vertex. 

Example. 

Find all leaves (or terminal vertices) and all internal (or 

branch) vertices in the following tree: 
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Solution. 

The leaves (or terminal vertices) are 𝑣0, 𝑣2, 𝑣4, 𝑣5, 𝑣7, 

and 𝑣8. The internal (or branch) vertices are 𝑣1, 𝑣3, and 

𝑣6. ■ 

Example. 

A graph 𝐺 has ten vertices and twelve edges. Is it a tree? 

Solution. 

No. Since any tree with 𝑛 vertices has 𝑛 − 1 edges, then 

any tree with ten vertices has nine edges, not twelve. ■ 

Theorem. 

For any positive integer 𝑛, if 𝐺 is a connected graph with 

𝑛 vertices and 𝑛 − 1 edges, then 𝐺 is a tree. 

Example. 

Give an example of a graph with five vertices and four 

edges that is not a tree.  
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Solution. 

By the above theorem, such a graph cannot be connected. 

One example of such an unconnected graph is shown 

below. 

■ 

9.2 Examples of Trees 

●Forest  

Definition. 

A forest is an undirected graph, all of whose connected 

components are trees; in other words, the graph consists 

of a disjoint union of trees. Equivalently, a forest is an 

undirected cycle-free graph. As special cases, an empty 

graph, a single tree, and the discrete graph on a set of 

vertices (that is, the graph with these vertices that has no 

edges), all are examples of forests. 

 

 

http://en.wikipedia.org/wiki/Connected_component_(graph_theory)
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)
http://en.wikipedia.org/wiki/Disjoint_union
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Example. 

The following figure displays a forest. 

 

●A rooted tree 

Definition. 

A rooted tree is a tree in which there is one vertex that is 

distinguished from the others and is called the root. The 

level of a vertex is the number of edges along the unique 

path between it and the root. The height of a rooted tree 

is the maximum level of any vertex of the tree. Given the 

root or any internal vertex 𝑣 of a rooted tree, the children 

of 𝑣 are all those vertices that are adjacent to 𝑣 and are 

one level farther away from the root than 𝑣. If 𝑤 is a 

child of 𝑣, then 𝑣 is called the parent of 𝑤, and two 

distinct vertices that are both children of the same parent 
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are called siblings. Given two distinct vertices 𝑣 and 𝑤, if 

𝑣 lies on the unique path between 𝑤 and the root, then 𝑣 

is an ancestor of 𝑤 and 𝑤 is a descendant of 𝑣. 

These terms are illustrated in the following figure. 

 

Example. 

Consider the tree with root 𝑣0 shown below. 

 

a. What is the level of 𝑣5?  
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b. What is the level of 𝑣0? 

c. What is the height of this rooted tree?  

d. What are the children of 𝑣3? 

e. What is the parent of 𝑣2?  

f. What are the siblings of 𝑣8? 

g. What are the descendants of 𝑣3? 

h. How many leaves (terminal vertices) are on the tree? 

Solution. 

a. 2     

b. 0     

c. 3      

d. 𝑣5 and 𝑣6    

e. 𝑣0       

f. 𝑣7 and 𝑣9         

g. 𝑣5, 𝑣6 and 𝑣10          

h. 6.■ 

Example. 

In the given tree, the root is 𝑣0, 𝑣1 has level 1, 

𝑣1 is the child of 𝑣0, and both 𝑣0 and 𝑣1 are 

leaves (terminal vertices). 
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● Spanning Tree 

Definition. 

A spanning tree of a graph on 𝑛 vertices is a subset of 

𝑛 − 1 edges that form a tree. For example, the spanning 

trees of the cycle graph 𝐶4 , diamond graph, and complete 

graph 𝐾4 are illustrated above. 

 

The number of non-identical spanning trees of a graph 𝐺 

is equal to any cofactor of the degree matrix of 𝐺 minus 

the adjacency matrix of 𝐺. This result is known as the 

matrix tree theorem. A tree contains a unique spanning 

tree, a cycle graph 𝐶𝑛   contains 𝑛 spanning trees, and a 

complete graph 𝐾𝑛 contains 𝑛𝑛−2  spanning trees.  

 

http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/CycleGraph.html
http://mathworld.wolfram.com/DiamondGraph.html
http://mathworld.wolfram.com/CompleteGraph.html
http://mathworld.wolfram.com/CompleteGraph.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Cofactor.html
http://mathworld.wolfram.com/DegreeMatrix.html
http://mathworld.wolfram.com/AdjacencyMatrix.html
http://mathworld.wolfram.com/MatrixTreeTheorem.html
http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/CycleGraph.html
http://mathworld.wolfram.com/CompleteGraph.html
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● Star Graph 

 

The star graph 𝑆𝑛 of order n, sometimes simply known as 

an "n-star" is a tree on n nodes with one node having 

vertex degree 𝑛 − 1 and the other 𝑛 − 1  having vertex 

degree 1. The star graph 𝑆𝑛 is therefore isomorphic to the 

complete bipartite graph 𝐾1,𝑛−1 . The chromatic number 

is 1 for 𝑛 = 1, and 𝜒(𝑆𝑛) = 2 otherwise. 

 

 

 

 

 

http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/VertexDegree.html
http://mathworld.wolfram.com/VertexDegree.html
http://mathworld.wolfram.com/VertexDegree.html
http://mathworld.wolfram.com/ChromaticNumber.html


- 579 - 
 

● Banana Tree 

Definition. 

An (𝑛, 𝑘) -banana tree is a graph obtained by connecting 

one leaf of each of n copies of an k-star graph with a 

single root vertex that is distinct from all the stars. 

 

 

 

 

 

http://mathworld.wolfram.com/StarGraph.html
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● Centered Tree 

 

A tree (also called a central tree) having a single node 

that is a graph center. The numbers of centered trees on 

𝑛 = 1,2, . ..  nodes are 1, 0, 1, 1, 2, 3, 7, 12, 27, 55, 127, 

284, 682, 1618, ...  

 

 

 

http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/GraphCenter.html
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● Bi-centered Tree 

 

A tree (also called a bicentral tree) having two nodes that 

are graph centers. The numbers of bicentered trees on 

𝑛 = 1,2, . .. nodes are 0, 1, 0, 1, 1, 3, 4, 11, 20, 51, 108 ... ( 

● Binary Tree 

A binary tree is a tree-like structure that is rooted and in 

which each vertex has at most two children and each 

child of a vertex is designated as its left or right child. In 

other words, unlike a proper tree, the relative position of 

the children is significant. 

http://mathworld.wolfram.com/Tree.html
http://mathworld.wolfram.com/GraphCenter.html
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Dropping the requirement that left and right children are 

considered unique gives a true tree known as a weakly 

binary tree (in which, by convention, the root node is also 

required to be adjacent to at most one graph vertex). 

 

The height of a binary tree is the number of levels within 

the tree. The numbers of binary trees of height 𝑛 = 1,2, . .. 

nodes are 1, 3, 21, 651, 457653, .... A recurrence equation 

giving these counts is 

𝑎𝑛 = 𝑎𝑛−1
2 + 𝑎𝑛−1(1 + √4𝑎𝑛−1 − 3) 

with 𝑎1 = 1. 

http://mathworld.wolfram.com/WeaklyBinaryTree.html
http://mathworld.wolfram.com/WeaklyBinaryTree.html
http://mathworld.wolfram.com/Tree.html
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The number of binary trees with 𝑛 nodes are 

1, 2, 5, 14, 42, . .. which are the Catalan number 𝐶𝑛. 

For a binary tree of height ℎ with 𝑛 nodes, 

ℎ ≤ 𝑛 ≤ 2ℎ − 1 

These extremes correspond to a balanced tree (each node 

except the tree leaves has a left and right child, and all 

tree leaves are at the same level) and a degenerate tree 

(each node has only one outgoing branch), respectively. 

● Red-Black Tree 

 

http://mathworld.wolfram.com/CatalanNumber.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/Child.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/Branch.html
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An extended rooted binary tree satisfying the following 

conditions:  

1. Every node has two children, each colored either red or 

black.  

2. Every tree leaf node is colored black.  

3. Every red node has both of its children colored black. 

4. Every path from the root to a tree leaf contains the 

same number (the "black-height") of black nodes.  

Let n be the number of internal nodes of a red-black tree. 

Then the number of red-black trees for 𝑛 = 1,2, . .. is 

2, 2, 3, 8, 14, 20, 35, 64, 122, . . ..  

Let Tn be the generating function for the number of red-

black trees of black-height h indexed by the number of 

tree leaves. Then 𝑇ℎ+1(𝑥) = [𝑇ℎ(𝑥)]2 + [𝑇ℎ(𝑥)]4 

Where 𝑇1(𝑥) = 𝑥 + 𝑥2.  

If 𝑇(𝑥) is the generating function for the number of red-

black trees, then 𝑇(𝑥) = 𝑥 + 𝑥2 + 𝑇(𝑥2(1 + 𝑥)2) 

Let 𝑟𝑏(𝑛) be the number of red-black trees with n tree 

leaves, 𝑟(𝑛)  the number of red-rooted trees, and 𝑏(𝑛) the 

number of black-rooted trees. All three of the quantities 

satisfy the recurrence relation 

http://mathworld.wolfram.com/RootedTree.html
http://mathworld.wolfram.com/BinaryTree.html
http://mathworld.wolfram.com/Child.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/Child.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/TreeLeaf.html
http://mathworld.wolfram.com/RecurrenceRelation.html
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𝑅(𝑛) = ∑ (
2𝑚

𝑛 − 2𝑚
)𝑅(𝑚)

𝑛 4⁄ ≤𝑛≤𝑛 2⁄

 

Where (
𝑛
𝑘
) is a binomial coefficient, 

𝑟𝑏(1) = 1, 𝑟𝑏(2) = 2 for 𝑅(𝑛) = 𝑟𝑏(𝑛), 𝑟(1) = 𝑟(3) =

0, 𝑟(2) = 1 for 𝑅(𝑛) = 𝑟(𝑛), and 𝑏(1) = 1 for 𝑅(𝑛) =

𝑏(𝑛). 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/BinomialCoefficient.html
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Exercise Set (9) 

1. Prove that any tree is a bipartite graph. 

2. Find the number of all spanning trees in 

    (a) K4; (b) K2,3. 

3. Find all possible spanning trees for each of the 

following  graphs. 

  
4. Find a spanning tree for each of the following graphs. 

  
5. Which of these graphs are trees? 
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6. Which of these graphs are trees? 

 
7. Answer these questions about the rooted tree illustrated  

 
a) Which vertex is the root? 

b) Which vertices are internal? 

c) Which vertices are leaves? 

d) Which vertices are children of 𝑗? 

e) Which vertex is the parent of ℎ? 
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f ) Which vertices are siblings of 𝑜? 

g) Which vertices are ancestors of 𝑚? 

h) Which vertices are descendants of 𝑏? 

8. What is the level of each vertex of the rooted tree in 

Exercise 7? 

9. Draw the subtree of the tree in Exercise 7 that is rooted 

at  a) a.     b) c.     c) e. 

10. How many non-isomorphic unrooted trees are there 

with three vertices? 

11. How many non-isomorphic unrooted trees are there 

with four vertices? 

12. How many edges does a tree with 10,000 vertices 

have? 

13. How many vertices does a full 5-ary tree with 100 

internal vertices have? 

14. How many edges does a full binary tree with 1000 

internal vertices have? 

15. How many leaves does a full 3-ary tree with 100 

vertices have? 

16. How many edges are there in a forest of 𝑡 trees 

containing a total of 𝑛 vertices? 
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