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SETS, RELATION AND FUNCTIONS



Chapter (1)
Sets, Relations and Functions

Much of discrete mathematics is devoted to the study of discrete
structures, used to represent discrete objects. Many important
discrete structures are built using sets, which are collections of
objects. Relations between elements of sets occur in many
contexts. Every day we deal with relationships such as those
between a business and its telephone number, a person and a
relative and so on. In mathematics we study relationships such as
these between a positive integer and one that it divides, an integer
and one that it is congruent to modulo 5, and so on. The concept
of a function is extremely important in discrete mathematics. A
function assigns to each element of a set exactly one element of a
set. Functions play important roles throughout discrete

mathematics.

1.1 Sets

Definition.

A set is an unordered collection of objects, called elements or
members of the set. A set is said to contain its elements. We write
a €A to denote that a is an element of the set A. The

notation a € A denotes that a is not an element of the set A.



It is common for sets to be denoted using uppercase letters.
Lowercase letters are usually used to denote elements of sets.
There are several ways to describe a set. One way is to list all
the members of a set, when this is possible. We use a notation
where all members of the set are listed between braces. For
example, the notation {a, b, c, d} represents the set with the four
elements a, b, ¢, and d. This way of describing a set is known as
the roster method.

Example

The set V of all vowels in the English alphabet can be written as

V ={a,ei,ou}m

Example

The set O of odd positive integers less than 10 can be expressed
by 0 = {1,3,5,7,9}. =

Although sets are usually used to group together elements with
common properties, there is nothing that prevents a set from
having seemingly unrelated elements.

Example

{a, 2, Ali, Assiut} is the set containing the four elements a, 2, Ali,
and Assiut. m

If we can completely list (enumerate) all the elements in a set, the
set is said to be finite. The set of primary colours is finite set. If a
set isn’t finite, it is said to be infinite. The set of all positive

integers is an infinite set.



Sometimes the roster method is used to describe a set without
listing all its members. Some members of the set are listed, and
then ellipses (. . .) are used when the general pattern of the
elements is obvious.

Example

The set of positive integers less than 100 can be denoted by
{1,2,3,...,99}). =

Another way to describe a set is to use set builder notation. We
characterize all these elements in the set by stating the property or
properties they must have to be members.

Example

The set O of all odd positive integers less than 10 can be written
as

0 = {x| x is an odd positive integer less than 10}.

or, specifying the universe as the set of positive integers, as

O = {xeZ"|xisoddandx < 10}. =

We often use this type of notation to describe sets when it is
impossible to list all the elements of the set.

Example

The set Q* of all positive rational numbers can be written as
Q" = {x € R | x = p/q, for some positive integers p and g}.
Here are some common mathematical sets you are familiar with.
You need to be able to recognize the symbols.

I the set of positive integers and zero,
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Z, the set of integers
7" the set of positive integers

@  the set of rational numbers

Q" the set of positive rational numbers

R the set of real numbers

R™ the set of positive real numbers

C the set of complex numbers

(Note that some people do not consider 0 a natural number, so be
careful to check how the term natural numbers is used when you
read different books.)

Recall the notation for intervals of real numbers. When a and b

are real numbers with a < b, we write

[a,b] = {x|a < x < b}
[a,b) = {x|a < x < b}
(a,b] = {x|a < x < b}

(a,b) = {x|a < x < b}
Note that [a, b] is called the closed interval from a to b and
(a, b) is called the open interval from a to b.
Sets can have other sets as members, as the following example
illustrates.

Example.

The set {N,Z, Q, R} is a set containing four elements, each of

which is a set. The four elements of this set are N, the set of
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natural numbers; Z, the set of integers; @, the set of rational
numbers; and R, the set of real numbers. =

Remark

Note that the concept of a datatype, or type, in computer science
Is built upon the concept of a set. In particular, a datatype or type
Is the name of a set, together with a set of operations that can be
performed on objects from that set.

Example

Boolean is the name of the set {0, 1} together with operators on
one or more elements of this set, such as AND, OR, and NOT.=
e Definition of equality for sets

Two sets S and T are equal if every element of S is also an
element of T and every element of T is also an element of S. Not
surprisingly, writeas S=T.

Here are some implications of this definition.

e The ordering of elements in a set is not important

The set {red, yellow, blue} equals (i.e. is the same as) the set
{yellow, blue, red}. Why? Look at the definition of equality.
Every element in the first set is an element of the second, and
every element in the second set is an element of the first. So the
two sets are equal.

e Something is either an element of a set or not; it doesn’t make

any difference if you list it multiple times

-11 -



The set {red, red, yellow, blue, red} is the same as (i.e. is equal
to) the set {red, yellow, blue}, even though “red” is listed
multiple times in the first set. Don’t take my word for it; check
the definition of equals.

e The smallest possible set

We call the set containing no elements the null set or the empty
set. It sometimes is written as { } but more often we write it as ¢.
For instance, the set of all positive integers that are greater than
their squares is the null set.

A set with one element is called a singleton set. A common error
Is to confuse the empty set ¢ with the set {¢}, which is a
singleton set. The single element of the set {¢} is the empty set
itself! A useful analogy for remembering this difference is to
think of folders in a computer file system. The empty set can be
thought of as an empty folder and the set consisting of just the
empty set can be thought of as a folder with exactly one folder

inside, namely, the empty folder.
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e Subsets
Definition
The set A is a subset of B if and only if every element of A is also
an element of B. We use the notation A € B to indicate that A is
a subset of the set B.
We see that A < B if and only if the quantification

Vx(x € A - x € B)
Is true.
We say that S is a superset of T if every element of T is an
element of S. We write thisas S 2 T.
To show that A © B, show that if x belongs to A then x also
belongs to B.
ToshowthatA £ B, findasingle x € Asuchthatx ¢ B.
Example.
The set of all odd positive integers less than 10 is a subset of the
set of all positive integers less than 10, the set of rational numbers
Is a subset of the set of real numbers, the set of all computer
science majors at your school is a subset of the set of all students
at your school, and the set of all people in Egypt is a subset of the
set of all people in Egypt (that is, it is a subset of itself).
Each of these facts follows immediately by noting that an element
that belongs to the first set in each pair of sets also belongs to the

second set in that pair. =
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Example.

(i) The set of integers with squares less than 100 is not a subset of
the set of nonnegative integers because —1 is in the former set [as
(—1)% < 100], but not the later set.

(if) The null set is a subset of every set, i.e., If A is any set then

¢ CA =

e The relationship between subsets, supersets and equality
Reviewing the definitions, we see that for two sets Sand T,S=T
IS true whenever both S € T and S 2 T are true.

To show that two sets A and B are equal, show that A < B and

B C A.

Sets may have other sets as members. For instance, the sets A =
{0,{a},{b},{a, b}} and B = {x | x is a subset of the set {a, b}}.
Note that these two sets are equal, that is, A = B. Also note that
{a} € A,buta ¢ A.

® “Proper” subsets

Sometimes we have S € T and we want to rule out the possibility
that S = T. To do this, we write S c T, i.e. we omit the bar below
the c. To say this in words, we say that S is a proper subset of T.
The use of the word “proper” here is kind of funny. It is just the
term that mathematicians have come to use to avoid having to

say, “S is a subset of T but it isn’t equal to T.” Similarly, S D T is
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read “S is a proper superset of T ” and is a shorter way of writing
S2T andS # T.

Example

()IfA = {0,2,9},B = {0,2,7,9,11}, then Ac B (Aisa
proper subset of B).

(i) IfA = {a,a,b}, B = {a, b}, then A and B denoted the same
set,i.e., A = B.

(i) IfA = {1,2,4}, B = {2,4,6,8}, then A is proper subset of
B and B is a superset of A.m

eCombining sets: union and intersection

So far, we have defined various relations on pairs of sets (=, &, c
etc.) in terms of membership. It is also useful to define operations
that take two sets and form a third set. Once again, we will define
these operations in terms of membership. We’ll start by defining
the intersection of two sets S and T to be the set containing
anything that is both an element of S and an element of T. We’ll
write the intersection operationas SN T.

Two sets are called disjoint if their intersection is the empty set.
Similarly, we’ll define the union of two sets S and T to be the set
containing anything that is either an element of S or an element of

T. We’ll write the union operation as S U T.

-15-



eVenn diagrams

For elementary set operations, there is a conventional

method of drawing pictures called VVenn diagrams, @
named after the British mathematician John Venn.

To draw a set S, we simply draw a circle, with the ©
name of the set inside the circle.

The intent of this drawing is that the inside of the circle represents
all the elements in S. The outside of the circle represents
everything that isn’t in the set S. There isn’t any significance to
the fact that we use circles in Venn diagrams. We could just as
well draw

Now, to represent an operation on two sets, we draw two

overlapping circles, like this:

A B

@
A c B (Ais a subset of B) A n B (Shaded part) A — B (Shaded part)
00 9 CO
A~B=0¢ An(BuUC) (A0 B) (Shaded)
(BnC)=¢ (AnmB)w(An C) (Shaded part)
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Complement of B

Draw a Venn diagram (not limited to circles) that depicts every

the best you can do?

eUniversal Set

Definition.

AUB

A union B

from one discussion to another.

-17 -

AnB=Aif AcB

possible combination of intersections between four sets. What is

In many discussions all the sets are considered to be subsets of
one particular set. This set is called the universal set for that
discussion. The Universal set is often designated by the script

letter U (or by X). Universal set in not unique, and it may change



Example.
IfA = {0,2,7}, B = {3,5,6},C = {1,8,9,10}, the universal
set can be taken as the set. U = {0,1,2,3,4,5,6,7,8,9,10}.m
eThe Power Set
The power set of S is the set of all subsets of the set S. The power
set of S is denoted by P(S).
Example.
What is the power set of the set {0,1,2}?
Solution.
P({0,1,2}) = {¢, {0}, {1},{2},{1,2},{0,2},{0,1},{0,1,2}}.m
If a set has n elements, then its power set has 2™ elements.
Example.
What is the power set of the empty set? What is the power set of
the set {¢}?
Solution.
The empty set has exactly one subset, namely, itself.
Consequently,

P(¢) = {¢}.
The set {¢} has exactly two subsets, namely, ¢ and the set {¢}
itself. Therefore, P({¢p}) = {¢p,{¢}}. =
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e Disjoint Sets

Definition.

Two sets are said to be disjoint if they have no element in
common.

Example.

Thesets A = {0,4,7,9}and B = {3,6,10} are disjoint. m
eCartesian Product

The order of elements in a collection is often important. Because
sets are unordered, a different structure is needed to represent
ordered collections. This is provided by ordered n-tuples.
Definition.

The ordered n-tuple (a4, a,,...,a,) is the ordered collection that
has a, as its first element, a, as its second element, . . ., and a,,
as its nth element. We say that two ordered n-tuples are equal if
and only if each corresponding pair of their elements is equal. In
other words, (a4, a,,...,a,) = (by,b,,...,by) ifand only if a; =
b; fori = 1,2,...,n. In particular, ordered 2-tuples are called
ordered pairs. The ordered pairs (a,b) and (c,d) are equal if
andonly ifa = cand b = d. Note that (a,b) and (b, a) are not

equal unlessa = b.
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Definition.
Let A and B be sets. The Cartesian product of A and B, denoted
by A X B, is the set of all ordered pairs (a, b) where a € A and
b € B. Hence
AXB ={(a,b):a€ AANDb € B}

Example.
What are the Cartesian products A X B and B X A, where A =
{1,2}and B = {a, b, c}?
Solution.
AxB={(,a),(1,b),(1,c),(2,a),(2,b),(2,c)}.
B x A = {(a1),(a?2),(,1),(,2),(,1),(c2)}m=
Note that the Cartesian product B x A is not equal to the
Cartesian product A X B.
Definition.
The Cartesian product of the sets A,, A,,...,A,, denoted by
Ay X A, X ... X A, is the set of ordered n-tuples (a4, a,, ..., a,),
where a; € A; fori = 1,2, ..., n. In other words,

A XA, X ..x A, ={(a,a,,...,a,):a; € A;,i =1,2,...,n}
Example.
What is the Cartesian product A X B X C,where A = {0, 1},
B = {1,2},and C = {0,1,2}?

-20-



Solution.

The Cartesian product A X B X C consists of all ordered triples

(a,b,c),wherea € A,b € B,andc € C.

Hence,

A x B x € = {(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),

0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),
(1,2,2)}.m

Remark.

Note that when A, B, and C are sets, (A X B) X C is not the

sameasA X B x C.

Definition.

A subset R of the Cartesian product A x B is called a relation

from the set A to the set B. The elements of R are ordered pairs,

where the first element belongs to A and the second to B. For

example R = {(a,0),(a,1),(a,3),(b,1),(b,2),(c,0),(c3)} is

a relation from the set {a, b, c} to the set {0, 1, 2, 3}.

A relation from a set A to itself is called a relation on A.

Example.

What are the ordered pairs in the less than or equal to relation,

which contains (a,b) if a < b, on the set {0,1,2,3}?

Solution.

The ordered pair (a, b) belongs to R if and only if both a and b
belong to {0, 1, 2,3} and a < b. Consequently, the ordered pairs
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in R are (0,0),(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,2),(2,3),
and (3,3). =

We will study relations and their properties in Section 1.3.
eCardinality

Sets are used extensively in counting problems, and for such
applications we need to discuss the sizes of sets.

eCardinality of a Set

Definition.

Let S be a set. If there are exactly n distinct elements in S where n
IS a nonnegative integer, we say that S is a finite set and that n is
the cardinality of S. The cardinality of S is denoted by |S].
Example.

Let A be the set of odd positive integers less than 10.

Then |[A| = 5.m

Example.

Let S be the set of letters in the English alphabet.

Then |S| = 26. =

Example.

Because the null set has no elements, it follows that |¢p| = 0. =
We will also be interested in sets that are not finite.

Definition.

A set is said to be infinite if it is not finite.
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Example.

The set of positive integers is infinite. m

eCardinality of Union of Two Sets

To find the number of elements in the union of two finite sets A
and B, not that |A| + |B| counts each element that is in A but not
in B or in B but not in A exactly once, and each element that is in
both A and B exactly twice. Thus, if the number of elements that
are in both A and B is subtracted from |A| + |B], elements in A N
B will be counted only once.

Hence |AUB| = |A| + |B| — |AN B|.

eCardinality of Union of Three Sets

Number of elementsin AU B U C: If A, B and C are any three
finite sets, then

JAUBUC| =|A|+|B|+I|C|—|AnB|—]AnC|—|BnC|+
|ANnBNC|.

e Comparable Sets

Definition.

Two sets A and B are said to be comparable if A € B or B c A.

Definition.

Two sets A and B are said to be comparable if A ¢ B and B ¢ A.
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Example.

LetA = {1,2,3}and B = {1, 2, 3,4, 6} then A is comparable to
B, since A is a subset of B.m

Example.

IfA = {a,c},B = {b,c,d,e,f}thenA & B and B ¢« A.
Therefore the sets A and B are not comparable. m

e Multiset

Definition.

A collection of objects that are not necessarily distinct is called a

multiset.
Example.
{a,a,b,bc,c}.m
e Multiplicity
Definition.

Let S be a multiset and x € S . The multiplicity of x is defined to

be the numbers of times the element x appears in the multiset S.

Example

LetS = {a,a,b,b,b,d,d,d,e}. Then

Multiplicity of a IS 2;
Multiplicity of b IS 3;
Multiplicity of d IS 3;
Multiplicity of e IS 1.
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If A and B are multisets then A U B and A N B are also multisets.
The multiplicity of an element x e AUB is equal to the
maximum of the multiplicity of x in A and B.
The multiplicity of x € An B is equal to the minimum of the
multiplicities of x in A and in B.

Example.

LetA = {a,a,a,b,b,c,c,d,d}and B = {a,a,b,c,d}. Then
AUB ={a,a,a,b,b,c,c,d, d}andANB ={a,a,b,c,d}. =
eSet Operations

Let A and B be sets. The difference of A and B, denoted by A- B,
Is the set containing those elements that are in A but not in B.

The difference of A and B is also called the complement of B

with respect to A.
ThusA—B={x:x€ AANx & B} =AnNB".

— U
Pl

The symmetric difference of A and B, denoted by A @ B, is
definedas A®B = AUB — AnNB = (A—B) U (B —A).

Venn Diagram forA-B

Ap B
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For example, {1,3,5}—{1,2,3} = {5}, {1,2,3} — {1,3,5} = {2}
and {1,35}@{1,2,3} = {5} U {2} = {2,5}.

e The complement

Let U be the universal set. The complement of the set A, denoted
by A€ (or A), is the complement of A with respect to U. In other
words, the complement of the set A is U - A. An element belongs
to A€ ifand only if x € A. Thistellsus that A€ = {x:x & A}.

A

Once the universal set U has been specified, the complement of a

set can be defined.
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eSet Identities
The following table lists the most important set identities. We will

prove several of these identities here, using three different

methods.
Identity Name
Augp =A Identity laws
ANU=A
AuU=U Domination laws
Ang=¢
AUA=A Idempotent laws
ANA=A
(A9) =A Complementation
law
AUB=BUA Commutative laws
ANB=BnNA
Au(BUC)=(AUB)UC Associative laws

ANn(BNnC)=(AnB)NC

AN(BUuC)=(ANB)U(ANC) Distributive laws
AUBNC)=(AUB)N(AUCC)

(AUB)¢ = A° n B¢ De Morgan’s laws
(AN B)¢ = A°U B¢
AU((ANB)=A Absorption laws
AN(AUB) =4
AUAC=U Complement laws
ANAC =¢

Example.
We will prove that (A N B)¢ = A€ U B¢ Dby showing that each is
a subset of the other. First suppose that x € (A n B)¢. By the
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definition of complement, x € AN B. Hence, x ¢ A or x € B.
By the definition of the complement x € A° or x € B€. By the
definition of the union that x € A€ U B€. So (A N B)¢ € A€ U B€.
Now, suppose that x € A€ U B€. By the definition of union, x €
A° or x € B°. Hence, x ¢ A or x ¢ B. By the definition of
complement, x € A N B. It follows x € (A N B)“. This shows that
AU B¢ € (AN B)*. Since we have shown that each set is a
subset of the other, the two sets are equal, and the identity is
proved.m
Example.
We will use set builder notation and logical equivalence to show
that (A N B)¢ = A° U B¢ as follows:
(AnB) ={x:x¢& ANB} = {x:—|(x € (AnB))}

={x:a(x€AANx€E€B)}={x:x &€ AV x & B}

={x:x € A°Vx € B} = {x:x € A° U B}

= A°U B¢. <
Set identities can also be proved using membership tables. We
consider each combination of sets that an element can belong to
and verify that elements in the same combinations of sets belong
to both the sets in the identity. To include that an element is in a
set a 1 is used; to indicate that an element is not in a set, a 0 is

used.
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Example.

We will use membership table to show that
Xul¥nz2)=XuY)n(Xu?2).

The membership table for these combinations of sets is shown in

the following table. This table has eight rows. Since the columns

forXu(YnZz)and (XUY)n (X UZ) are the same, the identity

is valid.

Membership Tables

X [ Z\mz’qumZ)}XquYuz (X D) Z)

ool o [
I T I I I
I

Additional set identities can be established using those that we
have already proved.

Example.

Let A, B and C be sets. To show that
(AU(BNC)) =(C°UBS)N A

We have

-29-



(AUBNC) =4N(BNC)E

= A°n (B°UCY)

= (B°UC)NnAS

=(C°UB°)NA°.m
Since unions and intersections of sets satisfy associative laws, the
sets AUB U C and An B N C are well defined when A, B and C
are sets. We can also consider unions and intersections of an
arbitrary number of sets as follows:

(i) The union of a collection of sets is the set that contain those
elements that are members of at least one set in the collection.

We use the notation 4; U...U 4, = UL, 4; to denoted the union
of the sets A, A,,..., A,

(i) The intersection of a collection of sets is the set that
contains those elements that are members of all the sets in the
collection.

We use 4, n...n 4,, = N}, 4; to denote the intersection of the

sets Ay, Ay, ..., Ay
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e Computer Representation of the sets

There are various ways to represent sets using a computer. We
will present a method for storing elements using an arbitrary
ordering of the elements of the universal set. This method of
representing sets makes computing combinations of sets easy.
Assume that the universal set U is finite (and of reasonable size so
that the number of elements of U is not larger than the memory
size of the computer being used). First, specify an arbitrary
ordering of the elements of U, for instance a,,a,,..,a,.
Represent a subset A of U with the bit string of length n, where
the i bit in this string is 1 if a; belongs to A and is 0 if a; does
not belong to A.

Example.

Let U={1,2,3,4,5,6,7,8,9,10}, and the ordering of elements
of U has the elements in increasing order, i.e, a; = i.

What bit strings represent the subset of all odd integers in U, the
subset of all even integers in U, and the subset of integers not
exceeding 5 in U?

To do this. The bit string that represents the set of odd integers in
U, namely, {1,3,5,7,9}, has one bit in the first, third, fifth,
seventh, and ninth positions, and a zero elsewhere. It is
1010101010.

Similarly, we represent the subset of all even integers in U,
namely, {2, 4, 6, 8,10} by the string 01 0101 0101.
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(we have split this bit string of length ten into locks of length four
for easy reading since long bit strings are difficult to read).

The set of all integers in U that do not exceed 5, namely,
{1,2,3,4,5}, is represented by the string 11 1110 0000.=

Using bit strings to represent sets, it is easy to find complements
of sets and unions, intersections, and difference of sets.

To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to 0 and each 0 to 1,
since x € A ifand only if x & A°.

To obtain the set string for the union and intersection of two sets
we perform bitwise Boolean operations on the bit strings
representing the two sets.

The bit in the i position of the bit string of the union is 1 if either
of the bits in the i™" position in the two strings is 1, and is 0 when
both bits are 0.

Hence, the bit string for the union is the bitwise OR of the bit
strings for the two sets.

The bit in the i position of the bit string of the intersection is 1
when the bits in the corresponding position in the two strings are
both 1, and is 0 when either of the two bits is 0 (or both are).
Hence, the bit string for the intersection is the bitwise AND of the

bit strings for the two sets.
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Example.

We have seen that the bit string for the set {1,3,5,7,9} (with
universal set {1,2,3,4,5,6,7,8,9,10}) is
101010 1010
The bit string for the complement of this set is obtained by
replacing O's with 1's and vice versa. This yields the string
0101010101
which corresponds to the set {2,4,6,8,10}.m
Example.
The bit strings for the sets {1,2,3,4,5} and {1,3,5,7,9} are
111110 0000 and 10 1010 1010, respectively.
We use bit strings to find the union and intersection of these sets.
The bit string for the union of these sets is
1111100000V 1010101010 = 1111101010,
which corresponds to the set {1, 2, 3,4, 5, 7, 9}.
The bit string for the intersection of these sets is
1111100000 1010101010 = 1010100000,

which corresponds to the set {1,3,5}.m

-33-



Exercise Set (1.1)

1. List the members of these sets
e {x: X is a real number such that x? = 1}.
o {X: X IS a positive integer less than 12}.
e {X: X is the square of an integer and x < 100}.
e {X: X is an integer such that x? = 2}.
2- Use set builder notation to give description of each of these
sets.
(@) {0, 3,6,9,12};
(b) {-3,-2,-1,0,1,2,3}.

3- Determine whether each of these statements is true or false.

@ 0€q; (b) ¢ €0}
© {0jce; d) ¢ c{o}
(e) {0} €{0}; () {0} = {0};

@) {¢}<{o} (h) ¢ e{o}h

(i) ¢ e{d o} () xe{x}

K (¢} € {{o3); ) 3 e

(m)  {x} < {x} (n) ¢ e{x}
4- What is the Cartesian product A X B, where A is the set of
courses offered by the mathematics department at a university and
B is the set of mathematics professors at this university?
5-Let Abeaset. Showthatp X A=A X ¢p = ¢.
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6- Find the power set of each of these sets.
@ {a}; (b) {a,b}; () {e, {#}}
7- Let A be the set of students who live within one mile of school
and let B be the set of students who walk to classes.
Describe the students in each of the following sets.
(@ ANnB;(b)AUB; (c)A- B; (d) B - A.
8-LetA=1{1,2,3,4,5}and B = {0, 3,6}. Find
@AUB;(b)ANnB; (c)A- B;(d)B- A.
9- Let A, B and C be sets. Show that
(@ (AuB)< (AUBUC);
(b)) (AnBNC) < (ANB);
(c)(A—B)—-C< A-C;
@d@A-C)Nn(C—-B)=¢;
(e)(B—A)u((C—-A)=(BuUC)-A.
10- What can you say about the sets A and B if we know that
@ AUB =A4;
(b) AnB = A;
(C)A- B = 4;
(dANB=BnNA;
()A- B = B- A.
11- Suppose that the universal set is U = {1,2,3,4,5,6,7,8,9,10}.
Express each of these sets with bit strings.
(@) {3,4,5}; (b) {1,3,6,10}; (c){2,3,4,7,8,9).
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12- Suppose that the universal set is U = {1,2,3,4,5,6,7,8,9,10}.
Find the set specified by each of these bit strings
(@) 1111001111; (b) 010111 1000; (c)10 0000 0001.
13- What subsets of a finite universal set do these bit strings
represent?
(a) The string with all zeros;
(b) The string with all ones.
14- Let A and B be sets. Show that
(@ (ANB) CA4;
(b) A € (AU B);
(c) A— B C A
(dAN(B-A4)=¢;
(e)Au(B—A)=AUB.
15- Show that if A, B and C are sets then
JAUBUC| =|A|+|B|+|C|—|AnB|—-]|AnC|—|BnNnC|
+|AnBnNC|
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1.2 Functions

What is a Function?

A function relates an input to an output.

It is like a machine that has an input and }:‘:}/r . )
an output. The output is related N
somehow to the input. w
"f(x) =.."isthe classic way of writing a function.

And there are other ways, as you will see!

| will show you many ways to think about functions, but there
will always be three main parts:

eThe input e The relationship e The output

Example.

"Multiply by 2" is a very simple function. Here are the three parts:

Input Relationship  Output

0 X2 0
1 X2 2
7 X2 14
10 X2 20

e Some Examples of Functions
e x2 (squaring) is a function
e x3+1 is also a function

e Sine, Cosine and Tangent are functions used in trigonometry
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e Names
First, it is useful to give a function a name.

The most common name is "f", but you can have other names like

/,f({)

function name

"g" ...

nput

You would say "f of x equals x squared"
The function f(x) = x? shows you that function "f™" takes "x"
and squares it.
The "x" is Just a Place-Holder!
Don't get too concerned about "x", it is just there to show you
where the input goes and what happens to it. It could be anything!
So this function: f(x) = 1 — x + x2
Would be the same function if we wrote:
of(()=1—-qg+q* h(A)=1-A+A%w®O) =1-6+ 62
It is just there so you know where to put the values:

f2)=1-2422=23

Sometimes There is No Function Name
Sometimes a function has no name, and you might just see
something like: y = x?2. But there is still:

o an input (X) ° a relationship (squaring) ° and an output (y)
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What Types of Things Do Functions Process?
A function takes elements of a set, and gives back elements of a
set.

This can be said in one definition:

Definition.

Let A and B be nonempty sets. A function f from A to B
IS an assignment of exactly one element of B to each
element of A. We write f (a) = b if b is the unique
element of B assigned by the function f to the element a
of A. If fis a function from Ato B, we write f : A - B.

Remark: Functions are sometimes also called mappings

or transformations.

¥

AN

N Formal Definition of a Function
0 7 O 0 A function relates each element of a set

"—'—-—._._.IT_:_..-_"_'_‘_O | .

o with exactly one element of another set
| 0 | | o 8] ! .
— (possibly the same set).
o=/ \_° /

The Two Important Things!

1."...each element..." means that every element in X is related to
some element in Y. We say that the function covers X (relates
every element of it). (But some elements of Y might not be

related to at all, which is fine.)
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2."...exactly one..." means that a function is single valued. It

will not give back 2 or more results for the same input.

@ [ =0 R
—\—\—\;\_‘I‘%H : — =
(one-to-many) (many-to-one)

This is NOT OK in a function But this is OK in a function

If a relationship does not follow those two rules then it is not a

function ... it would still be a relationship, just not a function.

Example

The relationship x - x2

X y
f/f")l 3‘_\\ x,.f -g‘*\\\.
[o——F=1 _,

| |
| A1 |
| _4 S
; / II" - "’
\\\._ 8w E-T?/; \_\k eTE///

e o ~_ ——

It is a function, because:
« Everyelementin Xisrelatedto Y.
« No element in X has two or more relationships.
So it follows the rules.
(Notice how both 4 and -4 relate to 16, which is allowed.)
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Example.

This relationship is not a function:

o L
il it
>/\\, o

i Ry P ---..__\

,/"-- S -

(4 38 | [ =23 )
\ -ﬁ.:—-——"’ﬁ'—: ——=5 6
.S > ———~—=7

e -

It is a relationship, but it is not a function, for these reasons:
« Value "3" in X has no relation in Y.
« Value "4" in X has no relationin Y.
« Value "5" is related to more than one value in Y.
(But the fact that "6™ in Y is not related to does not matter)
eVertical Line Test
On a graph, the idea of single valued
means that no vertical line would ever |

cross more than one value. ? AB

If it crosses more than once it is still a

=y

. . Not a Function
valid curve, but it would not be a

function.

Set of Ordered Pairs

Here is another way to think about functions:

You can write the input and output of a function as an "ordered
pair". They are called ordered pairs because the input always
comes first, and the output second: (input, output). So it looks
like this: (x, f(x)).
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Example.
{(2,4), (3,5),(7,3)} is a function says "2 is related to 4", "3 is
related to 5" and "7 is related 3".
Also, notice that:
But the function has to be single valued, so we also say "if it
contains (a, b) and (a, c), then b must equal c". Which is just a
way of saying that an input of "a" cannot produce two different
results.
Example.
{(2,4),(2,5),(7,3)} is not a function because (2,4) and (2,5)
means that 2 could be related to 4 or 5. In other words it is not a
function because it is not single valued
e Piecewise Functions: A Function Can be in Pieces
You can create functions that depending on the input value.
Example
A function with two pieces:

« Wwhen x is less than 0, it gives 5,

« when x is 0 or more it gives x2.
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Example

A function with three pieces:

y.it

=y

A function made up of 3 pieces
Example
A function with three pieces:
It looks like this: ¥y
x? x <2 . \\’04
flx) = 6 x =2 L .
10—x x>2andx <6 o
(a solid dot means "including”, an open 3

dot means "not including™)

@® The Absolute Value Function

The Absolute VValue Function is a famous Piecewise Function.

It has two pieces: y
o below zero: —x
« from 0 onwards: x

. Thisis its graph:

Foo=1xl={* %20

—-x x<0
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e Floor and Ceiling Functions
The Floor and Ceiling Functions are a Piecewise Functions.
They give you the nearest integer up or down.

Example

What is the floor and ceiling of 2.31?

| 2,31
! © >
0 1 2 3 4
} }
Flaor Ceiling

The Floor of 2.31 is 2

The Ceiling 0f 2.31is 3

What if you want the floor or ceiling of a number that is already
an integer? That's easy: no change!

Example.

What is the floor and ceiling of 5?

The Floor of 5 is 5. The Ceiling of 5 is 5.

Here are some example values for you:

X | Floor |Ceiling

-1.1) -2 -1
0 0 0
101 1 2
2.9 2 3
3 3 3
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eSymbols

The symbols for floor and ceiling are like the square brackets
[ ] with the top or bottom part missing:

> | [ o< ]

floor(x) ceil(=)
But I prefer to use the word form: floor(x) and ceil(x)
Definition
Floor Function:
the greatest integer that is less than or equal to x.
Ceiling Function:
the least integer that is greater than or equal to x.
e As A Graph

»4 ST B
o .
o5 = < o
¥R X
&—O -@

The Floor Function  ‘T'he Ceiling Function
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The following table, with x denoting a real number and n is
integer, displays some simple but important properties of the floor

and ceiling functions.

(1a) |x] =n ifandonlyifn<x<n+1
(1b) [x]=n ifandonlyifn—1<x<n
(1c) |x]=n ifandonlyif x—1<n<x

(1d) [x]=nifandonlyifx<n<x+1

2) x—-1<[x]<x<[x]<x+1
Ba) |—x|=—I[x]

Bb) [—x] = —|x]

(4a) [x+n|=|x]+n

(4b) [x+n]=[x]+n

Each property in this table can be established using the definitions
of the floor and ceiling functions properties (1a), (1b), (1c) and
(1d) follow directly from these definitions.

For example (1a) states that |x| = n if and only if the integer n is
less than or equal to x and n + 1 is larger than x. This is
precisely what it means for n to be the greatest integer not
exceeding X, which is the definition of |x| = n.

Properties (1b), (1c) and (1d) can be established similarly.

We will prove (4a) as follows:
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Suppose that [x| = m, where m is a positive integer. By (1a) it
follows that m < x <m + 1. Adding n to both sides of this
inequality shows that

m+n<x+n<m+n+1.
Using property (1a) again, we see that

lx+n]=m+n=|x|+n.

This completes the proof.
Example.
Prove or disprove that [x + y] = [x] + [y] for all real numbers x
and y.
Solution.

Although this statement may appear reasonable, it is false.

A counter example is supplied by x = % and y = % With these
values we find that [x + y]| = E + ﬂ =[1] = 1.

But [x]+ [yl = 1| +[5|=1+1=2
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e Domain, Codomain and Range

How to Specify Domains and Ranges
In our examples above
o the set "X" is called the Domain,
o theset"Y" is called the Codomain, and
« the set of elements that get pointed to in Y (the actual
values produced by the function) is called the Range.
Let us look at a simple example:

In this illustration: X —> Zx+l

othe set "A" is the Domain,

othe set "B" is the Codomain,

Y

cand the set of elements that get

y vy
chm~NotnhN-—

pointed to in B (the actual
values produced by the ool
function) are the Range, also called the Image.
In that example:

. Domain: {1,2,3,4}

. Codomain: {1,2,3,4,5,6,7,8,9,10}

« Range: {3,5,7,9}
Part of the Function
Now, what comes out (the Range) depends on what you put in
(the Domain) ... but YOU can define the Domain!
In fact the Domain is an essential part of the function. Change the

Domain and you have a different function.
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Example.

A simple function like f(x) = x? can have the domain (what
goes in) of just the counting numbers {1,2,3,...}, and the range
will therefore be the set {1,4,9,...}

= N q "

And another function g(x) = x? can have the domain of integers
{...,—3,—-2,-1,0,1,2,3,...}, in which case the range will be the
set {0,1,4,9,...}

=y

Even though both functions take the input and square it, they
operate on a different set of inputs, and so give a different set of
outputs. In this case the range of g(x) also includes 0. Also they
will have different properties. For example f(x) always gives a
unique answer, but g(x) can give the same answer with two
different inputs (such as g(—2) = 4, and also g(2) = 4). So, the

domain is an essential part of the function.
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Does Every Function Have a Domain?
Yes, but in simpler mathematics you never notice this, because
the domain is assumed:
« Usually it is assumed to be something like "all numbers
that would work".
« Orif you are studying whole numbers, the domain is
assumed to be whole numbers.
But in more advanced work you need to be more careful!
Codomain vs Range
The Codomain and Range are both on the output side but are
subtly different.
The Codomain is the set of values that could possibly come out.
The Codomain is actually part of the definition of the function.
And the Range is the set of values that actually do come out.

Example.

you can define a function f(x) = 2x with a domain and
codomain of integers (because you say so). But by thinking about
it you can see that the range (actual output values) would be just
the even integers. So the codomain is integers (you defined it that
way), but the range is even integers.

The Range is a subset of the Codomain.

Why both? Well, sometimes you don't know the exact range

(because the function may be complicated or not fully known),
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but you know the set it lies in (such as integers or reals). So, you
define the codomain and continue on.

The Importance of Codomain

Let me ask you a question: Is square root a function?

If you say the codomain (the possible outputs) is the set of real
numbers, then square root is not a function! ... is that a surprise?
The reason is that there could be two answers for one input, for
example f(9) = 3 or —3.

A function must be single valued. It can not give back 2 or more
results for the same input. So "f(9) = 3 or -3" is not right!

But it can be fixed by simply limiting the codomain to non-

negative real numbers. In fact, the radical symbol (like /x)

always means the principal (positive) square root, so vx is a
function because its codomain is correct. So, that you choose for
the codomain can actually affect whether something is a

function or not.
Domains

Now you must consider the Domains of the functions.

A
f(x) the values that go into a

T function.
Range . The function must work for all
—+—— _ values you give it, so it is up to

you to make sure you get the

The domain is the set of all

\

- —_— domain correct!
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Example: the domain for v/x (the square root of x)
You cannot have the square root of a negative number (unless you

use imaginary numbers, but we aren't), so we must exclude

negative numbers: The Domain of v/x is all non-negative Real

Numbers. On the Number Line it looks like:

e =

Using set-builder notation it is written: {x|x € R,x = 0}. Or

using interval notation it is: [0, 4+o0). It is important to get the

Domain right, or you will get bad results! There is also:

Dom(f) or Dom f meaning "the domain of the function f".

Ran(f) or Ran f meaning "the range of the function f".

Definition

If f is a function from A to B, we say that A is the domain of f and
B is the codomain of f. If f(a) = b, we say that b is the image of
aand a is a preimage of b. The range, or image, of f is the set of
all images of elements of A. Also, if f is a function from A to B,
we say that f maps A to B.

Example

Let f be the function that assigns the last two bits of a bit string of
length 2 or greater to that string. For example, f(11010) = 10.
Then, the domain of f is the set of all bit strings of length 2 or
greater, and both the codomain and range are the set
{00,01,10,11}.m
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Example.

Let f:Z — 7Z assign the square of an integer to this integer. Then,
f(x) = x2, where the domain of f is the set of all integers, the
codomain of f is the set of all integers, and the range of f is the set
of all integers that are perfect squares, namely, {0,1,4,9,...}.m

Example.

The domain and codomain of functions are often specified in
programming languages. For instance, the Java statement

int floor(float real){. . .}

and the C++ function statement

int function (float x){. . .}

both tell us that the domain of the floor function is the set of real
numbers (represented by floating point numbers) and its
codomain is the set of integers. m

A function is called real-valued if its codomain is the set of real
numbers, and it is called integer-valued if its codomain is the set
of integers.

e Injective, Surjective and Bijective

A A A A
s . I .
Lo L] @ Lo @ [} @ [
@ Lo ] o3 @ o .§O
."’/f‘?o o ./’,,’-7 @ o
General Tnjective Surjective Bijective
Function Mot surjective Mot injective (injective and

surjective)

A General Function points from each member of "A" to a

member of "B".
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Injective means that every member of "A" has its own unique
matching member in "B". As it is also a function one-to-many is
not OK. And you won't get two "A"s pointing to the same "B", so
many-to-one is NOT OK. But you can have a "B" without a
matching "A". Injective functions can be reversed!

If "A" goes to a unique "B" then given that "B" value you can go
back again to "A" (this would not work if two or more "A"S
pointed to one "B" like in the "General Function™). Injective is
also called "one-to-one".

Surjective means that every "B" has at least one matching "A"
(maybe more than one). There won't be a "B" left out. Bijective
means both Injective and Surjective together. So there is a perfect
"one-to-one correspondence™ between the members of the sets.
(But don't get that confused with the term "one-to-one" used to
mean injective).

On The Graph

Let me show you on a graph what a "General Function™ and a

"Injective Function" looks like:

}tjh -___.E—.‘L
canbe |\ N always s
same! " \ unigue :
g;f“’#’- ; E “‘“”Eh‘“..g__‘“‘“a\
*1 Xz x"’ ] Mo X
General Function "Injective" (one-to-one)
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In fact you can do a "Horizontal Line Test":
To be Injective, a Horizontal Line should never intersect the

curve at 2 or more points. Note that: Strictly Increasing (and

Strictly Decreasing) functions are Injective.

e Formal Definitions

A function f is said to be one-to-one if and only if f(a) = f(b)
implies that a = b for all a and b in the domain of f. A function
Is said to be injective if it is one-to-one.

We illustrate this concept by giving examples of functions that are
one-to-one and other functions that are not one-to-one.

Example.
Determine whether the function f from {a, b, c,d} to {1, 2, 3, 4, 5}
with f(a) = 4, f(b) =5, f(c) = 1,and f(d) = 3 is one-to-one.

Solution.

The function f is one-to-one because f takes .« .
on different values at the four elements of be .
its domain. This is illustrated in the figure. ~ “* o3
] “ “_1
Example. *

f(x) = x4+ 5 from the set of real numbers Rto R is an
injective function. This function can be easily reversed. for

example: f(3) = 8. Given 8 we can go back to 3. m
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Example.

f(x) = x? from the set of real numbers R to R is not an injective
function because: f(2) = 4and f(—2) = 4. Thisis against the
definition f(x) = f(y),x = y, because f(2) = f(—2) but
2 # —2.In other words, there are two values of "A" that point to
one "B", and this function could not be reversed (given the value
"4" ... what produced it?). BUT if we made it from the set of
natural numbers N to N then it is injective, because: f(2) = 4.
There is no f(—2), because —2 is not a natural number. =
Example.

Study the injection of the function f(x) = ax + b.

Solution.

Let f(x;) = f(x,) thenax; + b = ax, + b Thus, ax; = ax,. If
a # 0,thenx; = x, and f is one-to-one. Ifa = 0, then f(x) =
b foreveryx e R and f(1) = f(2), for example. Hence f is
not one-to-one. =

Example.

The function f : R > R, defined by f(x) = x? is not one-to-
one. For example, f (=3) = f(3) = 9. But, if we restrict the
function on the interval [0, o) , the function will be one-to-one as
flx) = f(xy) = x2 =x% = x; = +x,. Since x4 , X, are

positive thenx; = x,. =
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Example.

Prove that f(x) = 2 s injective.
5-2x

Solution.

Letx, ,x, € D(f) = R —{5/2}, then

fln) = flr) = o=

5—2x1 o 5—2x2
= 15x; — 6x1 x5 + 5 — 2x, = 15x, — 6x7%x, + 5 — 2x; =

X1 = Xy.
Thus, f is injective.m

e Surjective (Also Called "Onto")
A function f (from set A to B) is surjective if and only for every y
in B, there is at least one x in A such that f(x) = y. In other words
f is surjective if and only if f(A) = B. So, every element of the
range corresponds to at least one member of the domain.
Remark
A function fis onto if Vy3x(f (x) = y), where the domain for x
Is the domain of the function and the domain for y is the
codomain of the function.

Example
Let f be the function from {a, b, c, d} to {1, 2, 3} defined by
f(a)=3,f(b) =2,f(c) =1 and f(d) = 3.

Is f an onto function?
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Solution

Because all three elements of the codomain

are images of elements in the domain, we be .l
see that f is onto. This is illustrated in the ce 02
figure. Note that if the codomain were de ————= @3

{1, 2, 3,4}, then f would not be onto. =

Example

The function f(x) = 2x from the set of natural numbers N to the
set of non-negative even numbers is a surjective function.
However, f(x) = 2x from the set of natural numbers N to N is
not surjective, because, for example, nothing in N can be mapped
to 3 by this function. m

Example

The function f: R - R defined by f(x) = x? is not surjective
because Im(f) = [0,00) #R. But, the functiong: R - R
defined by f(x) = x3 is surjective because Im(f) = R. =

Examples of Different Types of Correspondences.

(a)  One-to-one, (b) Onto, (¢)  One-to-one, (d) Neither one-to-one (e) Not a function
not onto not one-to-one and onto nor onto

ol ae ae ol ae el ol
ae ol >< ae

el he be el be e LY
bhe (¥ / be

3 e ce 3 e e3 83
ce 3 / ce

od de de ol de [ ol
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e Bijective

A function f (from set A to B) is bijective if, for every y in B, there
Is exactly one x in A such that f(x) =y. Alternatively, f is
bijective if it is a one-to-one correspondence between those sets,
in other words both injective and surjective.

Example

The function f(x) = x? from the set of positive real numbers to
positive real numbers is injective and surjective. Thus, it is also
bijective. But not from the set of real numbers R because you
could have, for example, both f(2) =4and f(-2)=4. =
Exercise. Which of the following functions is NOT injective?

A) f(x)=x3+4fromRto R; B) f(x) =x3+4 fromNto N

C) f(x) =x?+ 4 from Rto R; D) f(x) =x?+ 4 from N to N

e Inverse function

Let f be a one-to-one correspondence from the set A to the set B.
The inverse function of f s the function that assigns to an
element b belonging to B the unique element a in A such that
f(a) = b. The inverse function of f is denoted by f~1. Hence
f~1(b) = a when f(a) = b. If a function f is not a one-to-one
correspondence, we cannot define an inverse function of f. When
f Is not one-to-one correspondence, either it is not one-to-one, or
it is not onto. If f is not one-to-one, some element b in the

codomain is the image of more than one element in the domain. If
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f is not onto, for some element b in the codomain, no element a in
the domain exists for which f(a) = b. Consequently, if f is not a
1-1 correspondence, we cannot assign to each element b in the
codomain a unique element a in the domain such that f(a) = b.

Example

Let f be the function from {a, b, c} to {1,2,3} such that f(a) =
2,f(b) = 3,and f(c) = 1. The function f is invertible since it
is one-to-one correspondence. The inverse function f~1 reverses
the correspondence given by f, so that f~1(1) =¢,f1(2) =a
and f~1(3)=b.m

Example

The function f:Z — Zsuch that f(x) = x + 1 has an inverse
since it is a one-to-one correspondence. To reverse the
correspondence, suppose y is the image of x, sothat y = x + 1.
Then x = y - 1. This means that y — 1 is the unique element of
Z that is sent to y by f. Consequently, f~1(y) =y —1. =

Example

The function f:Z — Z with f(x) = x? is not invertible since f is

not one-to-one, since, for instance, f(1) = f(—-1) = 1. =
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e Operations with Functions

You can add, subtract, multiply and divide functions!

The result will be a new function

Let us try doing those operations on f(x) and g(x).

Addition

You can add two functions: (f + g)(x) = f(x) + g(x)
Note:put the f + g inside () so you know they both work on x.
Example

Let f(x) = 2x + 3 and g(x) = x2. Then, we have
f+g9)(x) = 2x+3) + (x*) = x> +2x+3. =

Example

Let v(x) = 5x+ 1 and w(x) = 3x — 2. Then, we have
w+w)(x) = 5x+1) + B3x—2) =8x—1.=

The only other thing to worry about is the Domain (the set of
numbers that go into the function), but | will talk about that later!

Subtraction

You can subtract two functions:

f—9x) = f(x) — g).
Example
f(x) = 2x+3and g(x) = x2. Then, we have

f-9) = (2x+3) — (x*). =
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Multiplication
You can multiply two functions:

f-9)x) = f(x) - gx)
Example
f(x) = 2x+3and g(x) = x?,
(f-g9)x)= 2x+3) (x?) =2x3+3x% m
Division
And you can divide two functions:
(F/9x) = f(x)/gx).
Example
f(x) = 2x+3and g(x) = x?,
(f/9)x) = 2x+3) /(x*). =
How to Work Out the New Domain
When you do operations on functions, you end up with the
restrictions of both.

It is like cooking for friends:
one can't eat peanuts, the other can't eat

dairy food. So what you cook can't have

peanuts and also can't have dairy products.

Example

f(x) =+xand g(x) =/(3—x)
The domain for f(x) = +/x is from 0 onwards:

o

T —

The domain for g(x) = /(3 — x) is up to and including 3:
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3

_.( #
The new domain (after adding or whatever) is therefore from 0 to
3:

8] 3

—

If you choose any other value, then one or the other part of the

new function won't work. In other words, you want to find where

the two domains intersect.m

Note

We can put this whole idea into one line using Set Builder

Notation:

Dom(f + g) = {x € R:x € Dom(f) and x € Dom(g)}.

Which says "the domain of f plus g is the set of all Real Numbers

that are in the domain of f AND in the domain of g"

The same rule applies when you add, subtract, multiply or divide,

except divide has one extra rule.

An Extra Rule for Division

There is an extra rule for division:

As well as restricting the domain as above, when we divide:
(f/a)x) = f(x) / g(x)

we must also make sure that g(x) is not equal to zero (so we

don't divide by zero).

Example: £(x) = vxand g(x) =v3—x. (//g) () = =

The domain for : f(x) = v/x is from 0 onwards:
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—

The domain for g(x) = v3 — x is up to and including 3:

3

R 1+

But we also have the restriction that v3 — x cannot be zero, so x
cannot be 3:
3

€ N

(Notice the open circle at 3, which means not including 3)

So all together we end up with:

—

e Composition of Functions

"Function Composition" is applying one function to the results of

another:

0O 900 )

VAR
The result of () is sent through g()
It is written: (g o f)(x). Which means: g(f(x)).
Example
f(x) = 2x+3and g(x) = x2."x"is just a placeholder, and to
avoid confusion let's just call it "input™:

f (input) = 2(input) + 3, g(input) = (input)?.
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So, let's start: (g o f)(x) = g(f(x)).
First we apply f, then apply g to that result:

x 2x+3 (2x+3)°

(g°f)x) = (2x+3)°
What if we reverse the order of f and g?
(f ° @) = f(gx)).
First we apply g, then apply f to that result:
x %2 2x2+3

(f e @) = 2x*+3
We got a different result! So be careful which function comes
first.m
e Symbol
The symbol for composition is a small circle: (g o f)(x).
It is not a filled in dot: (g. f)(x) as that would mean multiply.
e Composed With Itself
You can even compose a function with itself!
Example
fG) = 2x43. (Fo ) = FF@).
First we apply f, then apply f to that result:

X 2x+3 2(2x+3)+3

Zlnput)3
(f o H(x) = 22x+3)+3 = 4x + 9

-65-



You should be able to do this without the pretty diagram:
f ° N = F(f()
= f(2x + 3)
= 2(2x+3)+3
=4x + 9. m
e Domain of Composite Function
You must get both Domains right (the composed function and
the first function used). When doing, for example, (g o f)(x) =
g(f (x)):
« Make sure you get the Domain for f(x) right,
« Then also make sure that g(x) gets the correct Domain.
Example
f(x) =+vxand g(x) = x?. The Domain of f(x) = x is all
non-negative Real Numbers. The Domain of g(x) = x? is all
the Real Numbers. The composed function is:
(9 ° ) = g(f®) = ()? = x
Now, "x" would normally have the Domain of all Real Numbers
...... but because it is a composed function you must also
consider f(x).

So the Domain is all non-negative Real Numbers. =
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Why Both Domains?
Well, imagine the functions were machines ... the first one melts a
hole with a flame (only for metal), the second one drills the hole a

little bigger (works on wood or metal):

Metal Only Wood or Metal

What you see at the end is a drilled hole, and you may
think "that should work for wood or metal”. But if you
put wood into g o f then the first function f would
make a fire and burn everything down!

So what happens "inside the machine” is important.

Example.
Let f(x) =x? and g(x) = 3x + 5.

Find (f 2 g)(x),(g ° f)(x) Dom (f o g)and Dom (g ° f).
Solution.

(f c)(@) =f(g(0) = f(2x +3) = (2x +3)?
(g o) =g(f(x) = g(x?) = 2x* +3
It is obvious that Dom(f) = R and Dom(g) = R. So,

Dom (f o g) = {x: x € Dom(g),g(x) € Dom(f)}
={x:xeER,2x+3€ER}=R

Dom(g ° f) = {x : x € Dom(f), f(x) € Dom(g)}
={x:x€ER,x? ER]=R. =
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Example.
Let f(x) = =, g(x) ==,

X

Find (f c g)(x),(g ° f)(x), Dom(f o g) and Dom(g ° f).

Solution.
Note that Dom(f) = R — {2}, and Dom(g) = R — {0}
x—1
x—1 x—1
(f <)) = fl9) = F(F—) = Pt
X
x \_grzol_ -2
2N =g(f) =9(—5) = 5=~
)

Dom(f o g)(x) = {x : x € Dom(g), g(x) € Dom(f)}
{x:xi O,xT_li —2}

{x:x;tO,x;t%}:]R—{O,%}.

Dom(g ° f)(x) = {x : x € Dom(f), f(x) € Dom(g)}

:{x:xi—Z,xiziO}

:{x:x¢—2,x7‘:0}=R_{0)_2}.

Remark
(i) Composition of function is not abelian (commutative), i.e,

(f e g)(x) # (g ° f)(x). Ingeneral, Dom(f o g) # Dom(g ° f)
(if) Composition of function is associative:

Dom(f o (g ° h)) = Dom((f © g) © h)
={x : x € D(h),h(x) € Dom(g), g(h(x)) € Dom(f)}.
Also, (f o (goh))(x) = (f o g) o h(x) = f(g(h(x)).

(iii) In the above example, we note that:
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Dom(g e f) = R—{0,—2}and (g o f)(x) = —= and

Dom (— ;2?) =R —{0}. So, we cannot find the domain of the

composite function by, addition, subtraction, product, quotient, or

composition by final rule.
e De-Composing Function

You can go the other way and break up a function into a
composition of other functions. For example: (x + 1/x)2.

That function could have been made from these two functions:
f(x) = x + 1/x, g(x) = x%. And we would have:

(g° &) = g(f(x) = glx + 1/x) = (x + 1/x)°
This can be useful if the original function is too complicated to
work on. Note that the composition f o g cannot be defined
unless the range of g is a subset of the domain of f. Also, note that
even though f o g and g o f are defined for the functions f and g.
But fog and gof are not equal. In other words, the
commutative law does not hold for the composition of functions.

Remark.
Suppose that f: A — B is a one-to-one correspondence. Then the

inverse  function f~':B—> A exists and a one-to-one
correspondence. f~1 reverse the correspondence of f, so that
f~1(b) = a when f(a) = b and f(a) = b when f~1(b) = a. Hence
feN@=ff@)=f"b)=a and (fef)(b)=
f(f~1(b)) = f(a) = b. Consequently, f~lof =1, and fo
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f~1 =1z, where I, and I are the identity function on sets A and
B, respectively. Thatis (f~1)"1 = f.
e Cardinality

We defined the cardinality of a finite set as the number of
elements in the set. We use the cardinalities of finite sets to tell us
when they have the same size, or when one is bigger than the
other. In this section we extend this notion to infinite sets. We
will be particularly interested in countably infinite sets, which are
sets with the same cardinality as the set of positive integers.

The concepts developed in this section have important
applications to computer science. A function is called
uncomputable if no computer program can be written to find all
its values, even with unlimited time and memory.

Definition

The sets A and B have the same cardinality if and only if there is
a one-to-one correspondence from A to B. When A and B have the
same cardinality, we write |A| = |B].

Definition

If there is a one-to-one function from A to B, the cardinality of A
Is less than or the same as the cardinality of B and we write |4| <
|B|. Moreover, when |A| < |B| and A and B have different
cardinality, we say that the cardinality of A is less than the

cardinality of B and we write |A| < |B]|.
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e Countable Set

We will now split infinite sets into two groups, those with the
same cardinality as the set of natural numbers and those with a
different cardinality. The following graph shows a one-to-one

correspondence between Z* and the set of odd positive

integers.
1 2 3 4 5 6 7T & 9 10 11 12 ...
1 3 5 7 0 11 13 15 17 19 21 23 ..
Definition

A set that is either finite or has the same cardinality as the set of
positive integers is called countable. A set that is not countable is
called uncountable. When an infinite set S is countable, we
denote the cardinality of S by &, (where X is aleph, the first letter
of the Hebrew alphabet). We write |S| = N, and say that S has
cardinality "aleph null".

Example.
Show that the set of odd positive integers is countable?
Solution

To show that the set of odd positive integers is countable, we will
exhibit a one-to-one correspondence between this set and the set
of positive integers.
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Consider the function
f(n) = 2n-1

from Z* to the set of odd positive integers. We show that f is a
one-to-one correspondence by showing that it is both one-to-one
and onto. To see that it is one-to-one, suppose that f(n) =
f(m). Then2n—1=2m—1,son = m. To see that it is onto,
suppose that o is an odd positive integer. Then o is 1 less than an
even integer 2k, where k is a natural number. Hence o = 2k =
f (k). We displayed this one-to-one correspondence in the above
figure.m

Example
Show that the set of all integers is countable.?
Solution

To show that the set of all integers is countable. we can list all
integers in a sequence by starting with 0 and alternating between
positive and negative integers; 0,1,—1, 2, —2, .... Alternately, we
could find a one-to-one correspondence between the set of
positive integers and the set of all integers. We leave it to the
reader to show that the function f(n) = n/2 when n is even and
f(n)=—m—-=1)/2 when n is odd is such a function.
Consequently, the set of all integers is countable.m

It is not surprising that the set of odd integers and the set of all
integers are both countable sets. Now we show that the set of
rational numbers also is countable.
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Example

Show that the set of positive rational numbers is countable.?
Solution

We can list the positive rational numbers as a sequence
1,19, ey Ty oo

First note that every positive rational number is the quotient p/q
of two positive integers. We can arrange the positive rational
numbers by listing those with denominator ¢ = 1 in the first
row, those with denominator ¢ = 2 in the second row, and so on,
as displayed in the following figure.

The key to listing the rational numbers in a sequence is to first
list the positive rational numbers p/q withp + q = 2, followed
by those with p + q = 3, followed by those with p + g = 4,
and so on, following the path shown in below figure. Whenever
we encounter a number p/q that is already listed, we do not list it
again. For example, when we come to 2/2 = 1 we do not list it
because we have already listed 1/1 = 1. The initial terms in the
list of positive rational numbers we have constructed are
1,1/2,2,3,1/3,1/4,2/3, 3/2,4,5, and so on. These numbers
are not deleted; the other numbers in the list are those we leave
out because they are already listed. Because all positive rational
numbers are listed once, as the reader can verify, we have shown

that the set of positive rational numbers is countable.m
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Example.

Prove that the set of real numbers is not countable.

Solution

To show that the set of real numbers is uncountable, we suppose
that the set of real numbers is countable and arrive at a
contradiction. Then, the subset of all real numbers that fall
between 0 and 1 would also be countable (any subset of a
countable set is also countable). Under this assumption, the real
numbers between 0 and 1 can be listed in some order, say,
7,712, 13,.... Let the decimal representation of these real numbers
be

r; = 0.dy1dq2d13d14. -

r, =0.dy,d1,d 3d 4. .

r3 = 0.d3,d3,d33d34. ..
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T'4_ == 0 d41d42d43d44. .-

where d;; € {0,1,2,3,4,5,6,7,8,9}. (For example, if r; =
0.23794102...,we have d;, = 2,d,, = 3,d;3 = 7, and so on).
Then, form a new real number with decimal expansion r =
0.d,d,dsd,..., where

; _{4 ifd; + 4
i_5 lfdu:4‘

(As an example, suppose that r; = 0.23794102..., 1, =
0.44590138..., r; = 0.09118764..., , = 0.80553900..., and so
on. Then we have r = 0.d;d,d3d,...= 0.4544..., where d, = 4
because d,; # 4, d, = 5 because d,, = 4, d; = 4 because d;; #
4,d, = 4because d,, # 4, and so on).

Every real number has a unique decimal expansion. Then the real
number r is not equal to any of r,r,,13,... because the decimal
expansion of r differs from the decimal expansion of 7; in the i"
place to the right of the decimal point, for each i.

Because there is a real number r between 0 and 1that is not in the
list, the assumption that all the real numbers between 0 and 1
cannot be listed, so the set of real numbers between 0 and 1 is
uncountable. Any set with an uncountable subset is uncountable.
Hence, the set of real numbers is uncountable.m

Theorem

If A and B are countable sets, then A U B is also countable.
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Theorem (SCHRODER-BERNSTEIN THEOREM)

If A and B are sets with |A| < |B| and |B| < |A]|, then |4| =
|B|. In other words, if there are one-to-one functions f from A to
B and g from B to A, then there is a one-to-one correspondence
between A and B.

Example.

Show that the |(0,1)| = |(0,1]].

Solution

It is not at all obvious how to find a one-to-one correspondence
between (0,1) and (0,1] to show that |(0,1)|] = |(0,1]].
Fortunately, we can use the Schroder-Bernstein theorem
instead. Finding a one-to-one function from (0,1) to (0,1] is
simple. Because (0,1) < (0,1], f (x) = x is a one-to-one
function from (0, 1) to (0, 1]. Finding a one-to-one function from
(0,1] to (0,1) is also not difficult. The function g(x) = x/2 is
clearly one-to-one and maps (0,1] to (0,1/2] < (0,1). As we
have found one-to-one functions from (0,1) to (0,1] and
from (0, 1] to (0, 1), the Schroder-Bernstein theorem tells us that
1(0, ] = [(0,1]].m

Definition

We say that a function is computable if there is a computer

program in some programming language that finds the values of
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this function. If a function is not computable we say it is
uncomputable.

To show that there are uncomputable functions, we need to
establish two results. First, we need to show that the set of all
computer programs in any particular programming language is
countable. This can be proved by noting that a computer
programs in a particular language can be thought of as a string of
characters from a finite alphabet (see Exercise 44). Next, we
show that there are uncountably many different functions from a
particular countably infinite set to itself. In particular, Exercise
45 shows that the set of functions from the set of positive integers
to itself is uncountable. This is a consequence of the
uncountability of the real numbers between 0 and 1 (as shown in
previous example). Putting these two results together (Exercise

46) shows that there are uncomputable functions.
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Exercise Set (1.2)
1- The function f is defined on the real numbers by f(x) =2 +
x — x? . What is the value of f(—3)?
2- The function g is defined on the real numbers by g(x) =
(x> + 1)(3x — 5). What is the value of g(4)?
3- The function f is defined on the real numbers by f(x) =
x? — x-10.If f(a) = —4, what is the value of a?
4-The function f is defined on the real numbers by f(x) =
2x% — 5x + 12.1f f(k) = 10, what is the value of k?

5- Which one of the following relations is not a function?

N : “
. —=

6-What function is defined by the set of ordered pairs
{...,(—2,-5),(—1,-8),(0,—-9),(1,-8),(2,-5),...}?
Choose.

(@) f(x) = x* — 9 on the set of integers;

(b) f(x) = x? — 9 on the set of whole numbers;

(©) f(x) = x% — 9 on the set of real numbers;

(d) There is no such function.
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7-Here is a set of ordered pairs:
{....(-2,7),(-1,1),(0,-1),(1,1),(2,7),...}
Which function satisfies them?

(@ f(x) = 2x — 1 onthe set of integers;
(b) f(x) = —6x — 5 on the set of integers;
(c) f(x) = x? + 3 onthe set of integers;

(d) f(x) = 2x? — 1 on the set of integers.

8-Which one of the following is not a function?

(a) (b)

Ay

(c) (d)

X

¥x
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9-Which one of the following is not a function?

(a) (b)

XY

10- Why is f not a function from R to R if
(8) f(x) =27 (0) f(x) = V% (0) f(x) = Va7 + 12,
11- Determine whether f is a function from Z to R if

@ f(m) =xn;(b) f(n) =vn?+1;(c) f(n) =

1
(n?2-4)’

12- Find the domain and range of these functions
(a) The function that assigns to each nonnegative integer its last
digit;
(b) The function that assigns the next largest integer to a positive
integer;
(c) The function that assigns to a bit string the number of one bits
in the string.

(d) The function that assigns to a bit string the number of bits in
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the string;
(e) The function that assigns to each pair of positive integers the
maximum of these two integers.

13- Find these values
(@) [1.1]; (b) [1.1]; (c)[—0.1]; (d) [-0.1]; (e) [2.99];
0 299 02+ oo 1+ 3}
14- Determine whether each of these functions from Z to Z is

one-to- one.
@fm =n-1(0)fM)=n*+1;
© F(m) =n (@) fm) = [5]
15- Determine whether the function f:Z X Z — Z is onto if
(@) f(m,n) = m + n;(b) f(mn) = m? + n?;
(©) f(m,n) = In[; (d) f(m,n) = m;(e) f(m,n) = m-n.

16- Determine whether each of these functions is a bijection
fromR to R:

@) f(x) = 2x + 1;() f(x) = x2 + 1;
© F() = x% (@) F o) = S22,
17-Find f o g and g o f, where f(x) = x?> + 1 and

g(x) = x + 2 are functions from R to R.

18-Letf(x) = ax + bandg(x) = cx + dwherea, b, c
and d are constants.
Determine for which constants a, b, ¢ and d it is true that
feg=g-of.
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19- Show that the function f(x) = ax + bfromRtoR s
invertible, where a and b are constants with a # 0, and
find the inverse of f.
20- Let f be a function from the set Atothe set B, letSand T
be subsets of A. show that
@fFSUT) =SV ST); O)FSNT) <SS NfD).

21- Let f be the function from R to R defined by f(x) = x2. Find
@ F7 A ) fH {0 < x < 11); () £ ({xr x > 4)).

22- Suppose that f is a function from A to B, where A and B are
finite sets with |A| = |B|. Show that f is one-to-one if and
only if it is onto.

23- Determine whether each of these sets is countable or
uncountable. For those that are countable, exhibit a one-to-
one correspondence between the set of natural numbers and
the set.

(a) the integers greater than 10.

(b) the odd negative integers.

(c) the real numbers between 0 and 2.

(d) integers that are multiple of 10.

(e) all positive rational numbers that cannot be written with
denominators less than 4.

() all bit strings not containing the bit 0.
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24- Write an equation to represent the function from the following

table
Ty
—2| 4
-1 1
0| 0
1| 1
2| 4

@y = —-2x;b)y =2x;)y = x + 2;d)y = x2
25 - Write an equation to represent the function from the

following table of values:

£
P

-1
—2

s G b = D | E
=

@y=—x+2;0)y=x-2;C)y=x+4;(d)y=x-4.
26- The following shows part of graph of the function f(x) =
0.05x3 — 0.3x2+ 7.

X

——o—

What are the Domain and Range of f?
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(@) Domain = R, Range = R;
(b) Domain= {x e R| —10 < x < 10}, Range = R;
(c) Domain=R;Range= {y e R| —16 < y < 16};
(d) Domain= {x e R| —10 < x < 10},
Range= {y eR| —16 < y < 16}.
27- The following shows part of graph of the function f(x) =

2.5 sin (x — g)

What are the Domain and Range of f?
(@) Domain = R, Range = R;
(b) Domain= {x e R| —2rn < x < 2m},
Range= {y e R| — 25 < y < 2.5}
(b) Domain = R,Range= {y e R| —1 <y < 1};
(d) Domain = R,Range= {y e R| —2.5 < y < 2.5},
28-If f(x) =Inxand g(x) = x + 1, what is the domain
of (f c 9)(%)?
@{x eR|x =2 -1};(b){x eR|x > —1};
) {x eR|x > 0}; (d)R.
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29- The function f(x) = x? is defined from R to R. What is the
Codomain?

(@) {y e Rly = 0}; (b) {y € R|y > 0}; (c) {y € R|y # 0}; (d) R.
30- The function f(x) = e* + 3 is defined from R to R. What is
the Range?

(@) {y e Rly = 3}; (b) {y € Ry > 3}; (c) {y € Ry = 0}; (d) R.
31- The function f(x) = floor(x) is defined from R to R. What
is the Range?

32- Which one of these graphs does not illustrate a function?

e

\ IR
33- The following sets of ordered pairs represent relations from
the set X to the set Y. Which one is not a function?
(@) {(1,2),(2,4),(3,6),(48)};
(b) {(1,2),(1,4),(1,6),(1,8)};
(€) {(1,1),(2,4),(3,9), (4, 16)};
(d) {(1,1),(2,3),(3,5), (4. 7)}.
34- If f(x) =+vVx — 3 and g(x) = V4 — x, what is the domain of
the function (f + g)(x)?
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35-If f(x) =x+1and g(x) = V1 — x, what is the domain of

the function (f/g)(x)?

36- If f(x) = —and g(x) = —, what is the domain of the
function (f — g)(x)?

37- If f(x) = 3x — 15 and g(x) = Vx — 5, then what is the
function (f/g)(x) and what is its domain?

38-If f(x) = x%2+x—6and g(x) = x—; then what is the
function (f - g)(x) and what is its domain?

39- If f(x) = x% + 3 and g(x) = Vx — 3, then what is the
function (f o g)(x) and what is its domain?

40. fand g are both defined on the set of real numbers, f(x) =

x?and g(x) = x + 2.For what value of x does (f o g)(x) =
(gefHx)?

41 . fand g are both defined on the set of real numbers and c is a
constant, where f(x) = cx- 3,g(x) = c¢x + 5.
If (f o g)(x) = (g ° f)(x) for all x, what is the value of c?

42 1f f(x) = x + 2 and g(x) = fz then what is the function
(g ° f)(x) and what is its domain?
43 . f(x) = x3and g(x) = §+ 1. The domain for f = R and the

domainforg = {x € R|x # 0}. For what value of x does

(feg)x)=(ge°f)x)?
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44, Show that the set of all computer programs in a particular
programming language is countable.

[Hint: A computer program written in a programming language
can be thought of as a string of symbols from a finite alphabet.]
45. Show that the set of functions from the positive integers to the
set{0,1,2,3,4,5,6,7,8,9} is uncountable.

[Hint: First set up a one-to-one correspondence between the set of
real numbers between 0 and 1 and a subset of these functions. Do
this by associating to the real number 0.d,d, ...d,, ... the
function f with f(n) = d,,.]

46. We say that a function is computable if there is a computer
program that finds the values of this function. Use Exercises 44

and 45 to show that there are functions that are not computable.
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1.3 Relations

Definition.

A subset R of the Cartesian product A X B is called a

from the set A to the set B. The elements of R are ordered pairs,
where the first element belongs to A and the second element to B.
We use the notation aRb to denote that (a, b)) € R which means
a is said to be related to b by R. Moreover, when (a,b) € R we
mean, a is not related to b by R.

Example

R ={(a,0),(a1),(a,3),(b,1),(b,2)} is a relation from the set
{a,b, c}to the set {0, 1, 2, 3}.

The Cartesian product, A X B and B X A are not equal, unless
A=¢orB=¢ (sothat Ax B = ¢)orunlessA = B.
Definition

In mathematics, a binary relation on a set A is a collection of
ordered pairs of elements of A. In other words, it is a subset of the
Cartesian product A% = A x A. More generally, a binary
relation between two sets A and B is a subset of A X B.

Example

The "divides" relation between the set of prime numbers P and
the set of integers Z, in which every prime p is associated with
every integer z that is a multiple of p (and not with any integer

that is not a multiple of p). In this relation, for instance, the prime
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2 is associated with numbers that include —4, 0, 6, 10, but not 1 or
9; and the prime 3 is associated with numbers that include 0, 6,
and 9, but not 4 or 13.

Binary relations are used in many branches of mathematics to
model concepts like:

"Is greater than™, "is equal to", and "divides" in arithmetic,

"Is congruent to" in geometry,

"Is adjacent to" in graph theory,

"is orthogonal to" in linear algebra.

The concept of function is defined as a special kind of binary
relation.

A Dbinary relation is the special case n = 2 of an n-ary relation
R € A; X .. X A,, that is, a set of n-tuples where the jth
component of each n-tuple is taken from the jth domain A; of the
relation.

Example

Some Examples of Relations include:
{(0,1),(55,22),(3,-50) };
{(0,1),(5,2),(=3,9 };
{(-1,7),(1,7),(33,7),(32,7) }.
Definition
of the relation is the set of all the first numbers of

the ordered pairs. In other words, the domain is all of the x-
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values. The range is the set of the numbers in each pair,
or the y-values.

Example

The relation {(0,1),(3,22),(90,34)} its domain is {0,3, 90}
and therange is { 1, 22, 34 }.

Relations are often represented using arrow charts connecting the
domain and range elements.

Example

Relation

wiwnw . mathwarehouse.com

Example

Let A be the set {1, 2, 3,4}. Which ordered pairs are in the relation
R = {(a,b) | adivides b}?

Solution

Because (a, b) is in R if and only if a and b are positive integers
not exceeding 4 such that a divides b, we see that

R = {(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)}.

Il &> — a1 Fod | 1 3 4

> el

¥oX N

>
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=
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The pairs in this relation are displayed both graphically and in
tabular form in the above figure. =
The following are relations on an infinite set.

Example

Consider these relations on the set of integers:

R, = {(a,b) | a < b},

R, = {(a,b) |a > b},

R; = {(a,b)|a = bora = —b},

R, = {(ab)|a = b},

Rs = {(a,b)|a = b + 1},

R¢ = {(a,b)|a + b < 3}.

Which of these relations contain each of the pairs
(1,1),(1,2),(2,1),(1,—-1),and (2,2)?

Solution

The pair (1,1) isin Ry, R3, R4, and R;

The pair (1,2) isin R, and Rg;

The pair (2,1) isin R,, Rs, and Rg;

The pair (1,—1) isin R,, R3, and Rg;

The pair (2,2)isin Ry, Rz, and R,. =

It is not hard to determine the number of relations on a finite set,

because a relation on a set A is simply a subset of A x A.

-91 -



Example

How many relations are there on a set with n elements?
Solution

A relationonaset Aisasubsetof A X A. Because A X A has

n? elements when A has n elements, and a set with m elements
has 2™ subsets, there are 2" subsets of A X A. Thus, there are

2 . .
2™ relations on a set with n elements. =

Example

There are 23° = 29 = 512 relations on the set {a, b, c}.m
eFunctions as Relations

Recall that a function f from a set A to a set B assigns exactly
one element of B to each element of A. The graph of f is the set of
ordered pairs (a,b) such that b = f (a). Because the graph of f
IS a subset of A x B, it is a relation from A to B.
Moreover, the graph of a function has the property that every
element of A is the first element of exactly one ordered pair of the
graph.

Conversely, if R is a relation from A to B such that every element
in A is the first element of exactly one ordered pair of R, then a
function can be defined with R as its graph. This can be
done by assigning to an element a of A the unique element b € B
such that (a, b) € R. A relation can be used to express a one-to-

many  relationship  between the elements of the
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sets A and B, where an element of A may be related to more than
one element of B. A function represents a relation where exactly
one element of B is related to each element of A.
Relations are a generalization of graphs of functions; they can be
used to express a much wider class of relationships between sets.
(Recall that the graph of the function f from A to B is the set of
ordered pairs (a, f (a)) fora € A.)

What makes a relation a function?

As soon as an element in the domain repeats, the relation is not a
function.

Example.

Which relations below are functions?

Relation #1 { (—1,2), (—4,51),(1,2),(8,—51) };

Relation #2 {(13,14), (13,5), (16,7), (18,13) };

Relation #3 { (3,90), (4,54), (6,71), (8,90) }.

Solution

Both Relation #1 and Relation #3 are functions, but Relation #2 is
not a functions as the x-place 13 appeared twice.
Practice
For the following relation to be a function, X cannot be what
values?

{(8,11),(34,5),(6,17),(X ,22) }
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eProperties of Relations

In some relations an element is always related to itself. For
instance, let R be the relation on the set of all people consisting of
pairs (x,y), where x and y have the same mother and the same
father. Then xRx for every person x, which is defined as follows:
Definition

A relation R on a set A is called reflexive if (a,a) € R for every
elementa € A. <

Example

LetA = {a,b,c}and R = {(a,a),(b,b),(c,c)}. ThenRisa
reflexive relation in A. m

Example

‘Equality’ is a reflexive relation, since an element equals itself. m
In some relations an element is related to a second element if and
only if the second element is also related to the first element. The
relation consisting of pairs (x,y), where x and y are students at
your school with at least one common class has this property,
which is defined as follows:

Definition

A relation R on a set A is called symmetric if (b,a) € R

whenever (a,b) € R, foralla,b € A. <
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Example

Let R be relation ‘is perpendicular to’ in the set of all straight
lines, then R is a symmetric relation. =

Other relations have the property that if an element is related to a
second element, then this second element is not related to the
first. The relation consisting of the pairs (x,y), where x and y are
students at your school, where x has a higher grade point average
than y has this property, which is defined as follows:

Definition

Arelation Ron aset Asuchthatforall a,b € A, if (a,b) € R

and (b,a) € R,thena = b is called antisymmetric. <
Example.

Let N be the set of Natural Numbers R be a relation in N, defined
by ‘ais adivisor’ of b, i.e., aRb if a divides b then R is
antisymmetric since a divides b and b dividesa = a = b. =

Let R be the relation consisting of all pairs (x,y) of students at
your school, where x has taken more credits than y. Suppose that x
is related to y and vy is related to z. This means that x has taken
more credits than y and y has taken more credits than z. We can
conclude that x has taken more credits than z, so that x is related
to z. What we have shown is that R has the transitive property,

which is defined as follows:
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Definition.

A relation R on a set A is called transitive if whenever (a,b) € R
and (b,c) € R, then (a,c) € R,foralla,b,c € A. 4
Example.

Let A be the set of straight lines in a plane and R be a relation in A
defined by ‘is parallel to’. Then R is a transitive relation in A. m
Example.

LetA = {1,2,3}and R = {(1,1),(2,2),(2,3),(3,2),(3,3)}
then R is transitive. =

Example.

Consider these relations on the set of integers:

R, = {(a,b) | a < b};

R, = {(a,b) |a > b};

R; = {(a,b) |a = bora = —b},

Ry = {(a,b) |a = b};

Rs = {(a,b)|a = b + 1};

R¢ = {(a,b)|a + b < 3}.

Which of these relations are:

(a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.?
Solution.

(a) The reflexive relations are R, (because a < a for every

integer a), R, and R,. For each of the other relations in this
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example it is easy to find a pair of the form (a, a) that is not in
the relation.

(b) The relations R3, R,, and R, are symmetric. R5 IS symmetric,
for if a =b or a = —b, then b = a or b = —a. R, is
symmetric because a = b implies that b = a. R6 is symmetric
because a + b < 3 impliesthat b + a < 3. The reader should
verify that none of the other relations is symmetric.
(c) The relations R;, R,, R4, and Rs are antisymmetric. R, is
antisymmetric because the inequalities a < b and b < a imply
that a = b. R, is antisymmetric because it is impossible that
a > band b > a. R, is antisymmetric, because two elements
are related with respect to R, if and only if they are equal. Rs is
antisymmetric because it is impossible thata = b + 1and b =
a + 1. The reader should verify that none of the other relations
IS antisymmetric.

(d) The relations R, R,, R4, and R, are transitive. R, is transitive
because a < b and b < c imply that a < c. R, is transitive
because a > b and b > c¢ imply that a > c. R5 is transitive
because a = +bhand b = +c imply thata = +c. R, is clearly
transitive, as the reader should verify. R< is not transitive because
(2,1) and (1,0) belong to Rs, but (2,0) does not. Ry is not
transitive because (2,1) and (1,2) belong to R, but (2,2) does

not. m
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Example.

Consider the following relations on {1, 2, 3, 4}:

Ry = {(1,1),(1,2),(2,1),(2,2),3,4),(4 1), (4 4)},

R, = {(1,1),(1,2), (2,1},

Ry = {(1,1),(1,2),(1,4),(2,1),(2,2),(3,3), (4, 1), (4, 4)},

R, = {(2,1),(3,1),(3,2),(41),(4,2),(4,3)},

Rs
={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4), (4, 4)}
Re = {38, D}

Which of these relations are:

(a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.?
Solution.

(@) The relations R, and R are reflexive because they both
contain all pairs of the form (a, a), namely, (1,1),(2,2),(3,3),
and (4,4). The other relations are not reflexive because they do
not contain all of these ordered pairs. In particular, R,, R,, R4,
and R, are not reflexive because (3,3) is not in any of these
relations.

(b) The relations R, and R; are symmetric, because in each case
(b, a) belongs to the relation whenever (a, b) does. For R,, the
only thing to check is that both (2,1) and (1,2) are in the
relation. For R, it is necessary to check that both (1,2) and
(2,1) belong to the relation, and (1,4) and (4, 1) belong to the
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relation. The reader should verify that none of the other
relations is symmetric. This is done by finding a pair (a, b) such
that it is in the relation but (b,a) is not.
(¢) R4, Rs, and Ry are all antisymmetric. For each of these
relations there is no pair of elements a and b with a # b such
that both (a,b) and (b,a) belong to the relation. The reader
should verify that none of the other relations is antisymmetric.
This is done by finding a pair (a, b) with a # b such that (a, b)
and (b, a) are both in the relation.

(d) R4, Rs, and Ry are transitive. For each of these relations, we
can show that it is transitive by verifying that if (a, b) and (b, ¢)
belong to this relation, then (a, c¢) also does. For instance, R, is
transitive, because (3,2) and (2,1), (4,2) and (2,1), (4,3) and
(3,1),and (4,3) and (3, 2) are the only such sets of pairs, and
(3,1), (4,1), and (4, 2) belong to R,. The reader should verify
that R and R, are transitive. R; is not transitive because (3, 4)
and (4, 1) belong to R, but (3, 1) does not. R, is not transitive
because (2,1) and (1, 2) belong to R,, but (2, 2) does not. R5 is
not transitive because (4,1) and (1, 2) belong to R3, but (4, 2)
does not.m

Example.

Is the “divides” relation on the set of positive integers:

(a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.?
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Solution.

(@) Because ala whenever a is a positive integer, the “divides”
relation is reflexive. (Note that if we replace the set of positive
integers with the set of all integers the relation is not reflexive
because by definition 0 does not divide 0.)

(b) This relation is not symmetric because 1|2, but 2 1.

(c) It is antisymmetric, for if a and b are positive integers with
alb and b|a, then a = b (the verification of this is left as an
exercise for the reader).

(d) Suppose that a divides b and b divides c. Then there are
positive integers k and | such that b = ak and ¢ = bl. Hence,
¢ = a(kl), so a divides c. It follows that this relation is
transitive. m

Example.

How many reflexive relations are there on a set with n elements?

Solution.

A relation R on a set A is a subset of A X A. Consequently, a
relation is determined by specifying whether each of the n?
ordered pairs in A X A is in R. However, if R is reflexive,
each of the n ordered pairs (a,a) for a € A must be in R. Each
of the other n(n — 1) ordered pairs of the form (a, b), where
a # b, may or may not be in R. Hence, by the product rule for

counting, there are 2™ ™= reflexive relations [this is the number
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of ways to choose whether each element (a,b), with a # b,
belongs to R]. =

e Operations on binary relations

Because relations from A to B are subsets of A X B, two relations
from A to B can be combined in any way two sets can be
combined. Consider the following examples.

Example.

LetA = {1,2,3}and B = {1, 2,3,4}. The relations

R, = {(1,1),(2,2),(3,3)} and

R, = {(1,1),(1,2),(1,3),(1,4)}

can be combined to obtain

Ry U R, = {(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)},

Ry N R, = {(1, 1},

Ry — Ry, = {(2,2),(3,3)},

R, — R, = {(1,2),(1,3),(1,4)}. =

Example.

Let A and B be the set of all students and the set of all courses at a
school, respectively. Suppose that R, consists of all ordered pairs
(a,b), where a is a student who has taken course b, and R,
consists of all ordered pairs (a,b), where a is a student who
requires course b to graduate.

What are the relations R; U R,, R, N R,, R, @® R,, R, — R,,
and R, — R,?
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Solution.

The relation R; U R, consists of all ordered pairs (a, b), where a
Is a student who either has taken course b or needs course b to
graduate.

R; N R, is the set of all ordered pairs (a, b), where a is a student
who has taken course b and needs this course to graduate.

Also, R; @ R, consists of all ordered pairs (a, b), where student
a has taken course b but does not need it to graduate or needs
course b to graduate but has not taken it.

R; — R, is the set of ordered pairs (a, b), where a has taken
course b but does not need it to graduate; that is, b is an elective
course that a has taken. R, — R, is the set of all ordered pairs
(a,b), where b is a course that a needs to graduate but has not
taken. m

Example.

Let R, be the “less than” relation on the set of real numbers and
let R, be the “greater than” relation on the set of real numbers,
thatis, R; = {(x,y) |x < y}andR, = {(x,y) |x > y}.
What are the relations

R, UR,,Ry N R,,,R, — Ry,,R, — Ry, andR; @ R,?
Solution.

We note that (x,y) € R; U R, if and only if (x,y) € R, or
(x,y) € R,. Hence, (x,y) € Ry U Ry ifandonly if x < y or
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x > y. Because the condition x < y or x > y is the same as
the condition x # y, it follows that R; UR, = {(x,y) | x # y}.
In other words, the union of the ‘“less than” relation and the

13

“greater than” relation 1s the “not equals” relation.
Next, note that it is impossible for a pair (x,y) to belong to both
R, and R, because it is impossible that x < y and x > y. It
followsthat R, N R, = ¢.

We also seethat R, — R, = R{,R, — R; = R,,

andRy @ R, = R, UR, — R NR,={(x,y)|x # y}.m
Definition.

Let R be a relation from a set A to a set B and S a relation from B
to a set C. The composite of R and S is the relation consisting of
ordered pairs (a,c), where a € A, ¢ € C, and for which there
exists an element b € B such that (a,b) € R and (b,c) € S.
We denote the composite of Rand Shy S o R. «

Computing the composite of two relations requires that we find
elements that are the second element of ordered pairs in the first
relation and the first element of ordered pairs in the second
relation, as the following examples.

Example.

What is the composite of the relations R and S, where R is the
relation from {1, 2,3} to {1,2,3,4} withR = {(1,1),(1,4),
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(2,3),(3,1),(3,4)} and S is the relation from {1, 2, 3,4} to
{0,1,2} with S = {(1,0),(2,0),(3,1),(3,2), (4,1)}?
Solution.
S o R is constructed using all ordered pairs in R and ordered pairs
in S, where the second element of the ordered pair in R agrees
with the first element of the ordered pair in S. For example, the
ordered pairs (2,3) in R and (3,1) in S produce the ordered pair
(2,1) in S o R. Computing all the ordered pairs in the composite,
we findSo R = {(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)}. m
Example.
Let R be the relation on the set of all people such that (a, b) in R
if a is a parent of b. Then (a,c) in R o R, if (b,c) in R. This
means that a is a grandparent of c.
o R"
Definition.
The power R™, forn = 1,2,3,...are defined by R = R, and
R™1 = R™ o R where R is a relation on the set A. <
The definition shows that RZ = Ro R, R3 = R?o R =
(RoR)o R,andso on.
Example
LetA = {2,4,6}and B = {3,6,9}

A X B

= {(2,3),(2,6),(2,9),(4.3),(4,6),(4,9), (6,3), (6,6),(6,9)}
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Let R be a relation from A to B such that

R = {(2,3),(2,6),(4,3),(4,9),(6,6),(6,9) }.

R* = {(2,6),(2,9),(6,6),(6,9)}

R3 = {(2,6),(2,9),(6,6),(6,9) } etc.

Example

LetR = {(1,1),(2,1),(3,2),(4,3)}.

Find the powers R*, n = 2,3,4,....

Solution

Because R = R o R, we find R? = {(1,1),(2,1),(3,1),(4,2)}.
Furthermore, R® = (R°oR) o R = {(1,1),(2,1),(3,1), (4, 1)}.
Additional computation shows that R* is the same as R3, so R* =
{(1,1),(2,1),(3,1),(4,1)}. It also follows that R = R3 for
n=>56,7...m

Definition.

A relation R on sets X and Y is said to be contained in a relation S

on X and Y if R is a subset of S, that is, if x R y always implies

xSy.

In this case, if R and S disagree, R is said to be smaller than S. «
Example.

> is contained in >.m

Theorem.

The relation R on a set A is transitive if and only if R™ < R for
n=123..A
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If R is a binary relation over A and B, then the following is a
binary relation over B and A:

Definition

Let R be a relation from A to B. Then the relation R~1 =
{(b,a)|(a,b) € R}fromB to A is called the inverse of R. <
Example

"is less than" (<) is the inverse of "is greater than" (>).m
Example

LetA = {1,2,3},B = {4,5}and R = {(1,4),(2,5),(3,5)} be
a relation from Ato B.then R~ = {(4,1),(5,2),(5,3)}. =
Theorem.

A binary relation over a set is equal to its inverse if and only if it
IS symmetric. A

Definition

If R is a binary relation over X and Y, then the following too:
The complement R€ is defined as x R y if not x R y.

Example

On real numbers, < is the complement of >.m

Example

LetA = {1,2,3}and R = {(1,1),(1,2),(1,3),(2,2),(3,3)}
Then R¢ = {(2,1),(2,3),(3,1),(3,2)}. =

The complement of the inverse is the inverse of the complement.

If a relation is symmetric, the complement is too.

- 106 -


http://en.wikipedia.org/wiki/Complement_(set_theory)

e Equivalence Relations

Example

Let R be the relation on the set of real numbers such that aRb if
and only if a - b is an integer. Is R an equivalence relation?
Solution

Because a - a = 0 is an integer for all real numbers a, aRa for
all real numbers a. Hence, R is reflexive. Now suppose that aRb.
Then a - b is an integer. Then b- a = — (b - a) is an integer.
Hence bRa. It follows that R is symmetric. If aRb and bRc, then
a—b and b — c are integers. Therefore a-c = (a- b) +
(b- c) is also an integer. Hence aRc. Thus, R is transitive.
Consequently, R is an equivalence relation. m

Example (Congruence Modulo m).

Let m be a positive integer with m > 1. Show that the relation
R = {(a, b): a = b(mod m)} is an equivalence relation on the set
of integers. Where a = b(mod m) if and only if m divides a - b.
Solution

Note that a- a = 0 is divisible by m, because 0 = 0 - m.
Hence a = a(mod m), so that congruence modulo m is reflexive.
Now, suppose that a = b(mod m). Then a — b is divisible by m,
sO a-b = km, k is an integer. It follows that b- a =
(—k) m, so that b = a(modm). So congruence modulo m is

symmetric. Suppose a = b(modm) and b = ¢ (mod m). Then

- 107 -



there are integers k and £ with a- b = km and b — c = ¥m.
Adding these two equations shows that
a—c=(@a—-b)+b—-c)=km+{m=(k+{)m. Thus, a =
c(mod m). Therefore, congruence modulo m is transitive. It
follows that congruence modulo m is an equivalence relation. =
Discussion.
If a = b(mod m), then by definition of congruence, m|(a — b).
This means that there is an integer k such that a — b = km, so
that a = b + km. Conversely, if there is an integer k such that
a = b+ km, then km = a — b. Hence m divides a - b, so that
a = b(mod m). From this discussion we can state that "Let m be
a positive integer. The integers a and b are congruent modulo m if
and only if there is an integer k such that a = b + km.
Example
Suppose ~ is relation on N x N

(mn)~(@p,q) &m+q=p+n
Prove that ~ is an equivalence relation on N X N.
Solution
Since m + n =n+ m, then (m,n)~(m,n)vm,n € N.
Therefore ~ is reflexive.
Let (m,n)~(p,q). Thenm+qg=p+norp+n=m+gq
Therefore (p, q)~(m,n) and ~ is symmetric.

(m,n)~(p,q) and (p, 9)~(r,s) =
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m+qg=p+nandp+s=gq+r.
Then m+s=n+r = (m,n)~(r,s) and ~ is transitive.
Therefore, ~ is an equivalence relation. =
Example.
Let S be a relation on R defined as
x2—y?2=2(y—x)= (x,y) €S

Prove that S is an equivalence relation.
Solution
Not that x? — y? = 2(y — x) & x% + 2x = y? + 2y.
Sincex?+2x=x*>+2x VxER= (x,x) ES=Sis
reflexive
Let (x,y) ES=x2+2x=y?+2y =

y2 +2y = x? + 2x = (y,x) € S is symmetric.
Since (x,v),(v,z) € S = x? + 2x = y? + 2y and
y2+2y=2z°+42z2=x*+2x=z2+2z2= (x,2) €S
Hence S is transitive.
Therefore, S is an equivalence relation. =

Example

Let ~ be arelation on Q* such that: x~y < 5 eEQ*

Prove that ~ is an equivalence relation.

Solution

Since~ =1 € Q" = (x,x) € ~ or ~ is reflexive.
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If %e Qt = % € Q" = ~ is symmetric.

Since=,2eQt* ==
y Zz

Z

5% € Q" = ~ is transitive.
Hence ~ is an equivalence relation. m
e Equivalence Classes

Let A be the set of all students in your school who graduated from
high school. Consider the relation R on A that consists of all pairs
(x,y), where x and y graduated from the same high school. Given
a student x, we can form the set of all students equivalent to x
with respect to R. This set consists of all students who graduated
from the same high school as x did. This subset of A is called an
equivalence class of the relation.

Definition

Let R be an equivalence relation on a set A. The set of all
elements that are related to an element a of A is called
equivalence class of a. The equivalence class of a with respect to
R is denoted by [a]z. When only one relation is under
consideration, we can delete the subscript R and write [a] for this
equivalence class.

In other words, if R is an equivalence relation on a set A, the
equivalence class of the element a is [a]z = {s:(a,s) € R}. If
b € [a]g, then b is called a representative of this equivalence
class. Any element of a class can be used as a representative of
this class. <
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Example
What are the equivalence classes of 0 and 1 for congruence
modulo 4?

Solution

The equivalence class of 0 contains all integers x such that
x =0 (mod 4),

I.e. the integers divisible by 4. So, the equivalence class of 0 is

[0], = {...,-12,-8,-4,0,4,8,12,...}.
The equivalence class of 1 contains all integers y such that

y = 1(mod4),

I.e. the integers with remainder 1 when divided by 4. Hence, the
equivalence class of 1 is

[1]4 = {...,-11,-7,-3,1,5,9,13,...}.m
Definition
The equivalence classes of the relation congruence modulo m are
called the congruent classes modulo m. The congruence class of
an integer a modulo m is denoted by [a],,,. Hence,

[al,, ={..,a—2m,a—m,a,a+m,a+2m,...}. 4

Example
From the above example it follows that
[0],={., =8, —4, 0, 4, 8, ...};
[1],={..,—-7,-3,1, 5,09, ...}
2, ={., =6, =2, 2, 6, 10, ...}.m
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Example

We have proved that ~ is an equivalence relation on N x N
defined by (m,n)~(p,q) & m + q = p + n. So, we can find
[(1,1)] and [(3,4)] as follows.
[(1,1)] = {(a,b) € N X N:(a,b)~(1,1)}
={(a,b) ENXNia+1=b+1}
= {(a,a):a € N} = {(0,0),(1,1),(2,2), ...}
[((3,4)] ={(a,b) e NXN:a+4=>b+3}
={(a,b) ENXN:b=a+1}
={(0,1),(1,2),(2,3),..... }. m
Example
Let S be the equivalence relation on R defined as
x2—y?2=2(y—-x)= (x,y) €S
We can find [0] and [1] as follows:
[0] = {x € R:xS0}
={x € Rix?+ 2x = 0%+ 2(0) =0}
={x e Rix(x + 2) =0}
= {0,—-2}.
[1] = {x € R:x? + 2x = (1)* + 2(1) = 3}
={x € R:x?> + 2x — 3 = 0}
={1,—-3}.m
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Example

We find the equivalence classes for congruence modulo 5 as

follows:

Leta e Z

[a] = {x € Z:x = a (mod5)}
={x € Z:5\x — a}

={x€Z:x—a=5kkeZ}
={x€Z:x=a+5kk€Z}
[0] ={x € Z:x =5k, k € Z}
={..,—10,-5,0,5,10,....}
[1]={x€Z:x =1+5k,k € Z}
={..,—9,—4,1,6,11, ...}
2] ={x€Z:x=2+5kkeZ}
={..,—8,-3,2,7,12,..}
[3] = -
[4] = --m
In the following section we will discuss two alternative methods
for representing relations. One method uses zero-one matrices.
The other method uses pictorial representations called directed

graphs.
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eRepresenting Relations Using Matrices
A relation between finite sets can be represented using a zero-one
matriX. Suppose that R is a relation from A = {a,, a,,...,a,,} to
B ={by,b,,...,b,}. The relation R can be represented by the
matrix Mg = [m;;], where

_ {1 if (a;, b;) €R

Y oif (a, b)) € R

Example.
Suppose that A = {1,2,3}and B = {1,2}. Let R be the relation
from A to B containing (a,b) if a € A, b € B, and a > b.
What is the matrix representingRifa; = 1,a, = 2,and
a; = 3,andb; = land b, = 2?
Solution
Because R = {(2,1),(3,1),(3,2)}.
The matrix representing R is My, where

mip My 0 0

Mg = [m21 mzz] = [1 O].

mz;p M3y 1 1
The 1s in My show that the pairs (2, 1), (3, 1), and (3, 2) belong to
R. The 0s show that no other pairs belong to R. m
Example
Let A = {a,, a,,as}and B = {by, b, b3, by, bs}.

The ordered pairs in the relation R represented by the matrix
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== O

SLEEELE

{(a1,b;), (az, by), (az, bs), (az, bs),(asz, by), (as, b3), (as, bs)}. m
The matrix of a relation on a set, which is a square matrix, can be

O O =
N
O = O
_ o O

used to determine whether the relation has certain properties. R is
reflexive if and only if (a;,a;) e R fori = 1,...,n, where A =
{a,,...,a,} is the set on which the relation R defined.

Hence R is reflexive ifand only if m;; = 1 fori = 1, ...,n.

The form of the matrix for an reflexive relation is illustrated in the

following figure.

The relation R is symmetric if and only if (a,b) € R implies
(b,a) € R. Consequently the relation R on the set A=
{ay,a,,...,a,} is symmetric if and only if (a;,a;) € R whenever
(a;a;) €R. Thus R is symmetric if and only if mj; =1
whenever m;; = 1. This also means m;; = 0 whenever m;; = 0.
Consequently R is symmetric if and only if m;; = m;; for all
pairs i, jwithi = 1,..,n and j = 1,..,n. The form of the

matrix for an symmetric relation is illustrated in Figure (a).
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(a) Symmetric

The relation R is antisymmetric if and only if (a,b) € R and
(b,a) € R implythata = b. Consequently, the matrix of an
antisymmetric relation has the property that if m;; = 1 with

i # j,thenmj; = 0. Or, in other words, either m;; = 0 or m;; =
O wheni # j. The form of the matrix for an antisymmetric

relation is illustrated in Figure (b).

(b) Antisyvmmetric

Example
Suppose that the relation R on a set is represented by the matrix
1 1 0
Mp=1|1 1 1]
0 1 1
Since all diagonal elements of this matrix are equal to 1, R is
reflexive. Moreover, My is symmetric M = (M), it follows

that R is symmetric. It is easy to see that R is not antisymmetric. =
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Definition

Let A = [a;;] and B = [b;;] be n x n zero-one matrices. Then the
join of A and B, denoted by A V B, is the zero-one matrix with (i,
j)"entry a;; V by;.

The meet of A and B, denoted by A A B, is the zero-one matrix
with (i, j)" entry a;; A by;.

Definition.

Let A= [a;;| be an m X k zero-one matrix and B = [b;;| be
k x n zero-one matrix. Then the Boolean product of A and B,
denoted byA ® B is the m x n matrix with (i, j)" entry [c;],
where ¢;; = (ajy Aby;) V (aiz Abyj) V...V (ay A by;).

Example.

The join and meet of the zero-one matrices of A and B, where

1 0 11, _[0 1 0 :
A—[O 1 O],B— 1 1 0]areAvBandA/\Bandglven
as follows:

_[1vo Ov1l 1voyl_q1 1 1
AVB_[ov1 1v1 0v0]-[1 10
and
_[LAO0 OA1l 1A01_[0 O O
AAB_[O/\l 1A1 OAO]_[O 1 o™
Example

The Boolean product A ® B of A and B, where
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1 0
0 1
1 0

1 0

A= ,Bz[(l) 1 1is:

OA1)v(@aA0 (OA1)V(AAL) (OAO0)V(IAD
AA1)v(OAa0 (AA1)V(OAL) (AAO0)V(OAD

llVO 1vO OVOI [1 1 0]
= = N |

AA1)v(OAa0 (AA1)V(OAL) (AAO0)V(OAD
AQRQB =

Ovo Ovl Ovi1 0 1 1
1vo 1v0 O0vO 1 1 0

The Boolean operations join and meet can be used to find the
matrices representing the union and the intersection of two
relations as follows:

Mg yr, = Mg, V MRzand Mg g, = Mg, A Mpg,
Example.
Suppose that the relations R, and R,0n a set A are represented by

the matrices

1 0 1 1 0 1
Mg, =|1 0 OfandMp, =0 1 1
01 0 1.0 0

The matrices representing R; U R, and R; N R, are

1 0 1
MR1UR2 =MR1VMR2 =11 1 1
1 1 0

1 0 1
0 0 O m
0 0 O

We now turn our attention to determining the matrix for the

Mg nr, = Mg, A Mg, =

composite of relations. This matrix can be found using the

Boolean product of the matrices as follows: Mg,z = Mp @ M
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Example

The matrix representing the relation S o R where the matrices

representing R and S are

1 0 1 0 1 0
MR=l1 1 OlandMs=[0 0 1]:
0 0O 1 0 1
Is given as follows:

1 1 1
M50R=MR®MS=O 1 1| m
0 0 O
The matrix representing the composite of two relations can be

used to find the matrix for Mgn. In particular, Mzn = Mgl].
Example

Find the matrix representing the relation R2, where the matrix

0 1 0
representingRisMz = (0 1 1

1 0 0
Solution

0 1 1
The matrix for R% is Mgz = M}[f] = [1 1 1]. m
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e Representing Relations Using Digraphs

There is another way of representing a relation on a set using a
pictorial representation. Each element of the set is represented by
a point and each ordered pair is represented using an arc with its
direction indicated by an arrow.

e A directed graph

Definition

A directed graph, or digraph, consists of a set of vertices V (or
nodes) together with a set E of ordered pairs of elements of V
called edges (or arcs). The vertex a is called the initial vertex of
the edge (a, b) and the vertex b is called the terminal vertex of
this edge. An edge of the form (a, a) is represented using an arc
from the vertex a back to itself. It is called a loop. <

Example

The directed graph with vertices a, b,
c,and d, and edges (a, b), (a, d),
(b,b),(b,d),(c,a),(c,b),and

(d, b) is displayed in the given

figure. m d c

The relation R on a set A is represented by the directed graph that
has the elements of A as its vertices and the ordered pairs (a, b),
where (a, b) € R, as edges. This assignment sets up a one-to-one

correspondence between the relations on a set A and the directed
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graphs with A as their set of vertices. Thus, every statement about
relations corresponds to a statement about directed graphs, and
vice versa. Directed graphs give a visual display of information
about relations. As such, they are often used to study relations and
their properties. (Note that relations from a set A to a set B can be
represented by a directed graph where there is a vertex for each
element of A and a vertex for each element of B, as shown above.
However, when A = B, such representation provides much less
insight than the digraph representations described here.) The use
of directed graphs to represent relations on a set is illustrated in
the following examples.

Example

The directed graph of the relation

R = {(1,1),(1,3),(21),(23), (24,
(3,1),(3,2),(4,1)} on the set
{1,2,3,4}

is shown in the given figure. =

Example
What are the ordered pairs in the relation R
represented by the directed graph shown in

the given figure?

Solution

The ordered pairs (x, y) in the relation are
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R =
{(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4 1), (4, 3)}.
Each of these pairs corresponds to an edge of the directed graph,
with (2, 2) and (3, 3) corresponding to loops. =

Example

The less than relation R on the 1

setof integers A = {1,2,3,4}

iIsR =1{(1,2),(1,3),(1,4), 5 4
(2,3),(2,4),(3,4) } and it can

be represented by the given

digraph. m 3

#The directed graph representing a relation can be used to
determine whether the relation has various properties. For
instance, a relation is reflexive if and only if there is a loop at
every vertex of the directed graph, so that every ordered pair of
the form (x, x) occurs in the relation.

A relation is symmetric if and only if for every edge between
distinct vertices in its digraph there is an edge in the opposite
direction, so that (y, x) is in the relation whenever (x, y) is in the
relation. Similarly, a relation is antisymmetric if and only if there
are never two edges in opposite directions between distinct
vertices. Finally, a relation is transitive if and only if whenever

there is an edge from a vertex x to a vertex y and an edge from a
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vertex y to a vertex z, there is an edge from x to z (completing a
triangle where each side is a directed edge with the correct
direction).

Example

The following figures show the digraph of relations with different

properties.
(& (o
(o - / \
(a) (b) (c)

N -

«d>
e)

(a) is reflexive, antisymmetric, symmetric and transitive.
(b) is not reflexive, and it is antisymmetric, symmetric and
transitive.

(c) has none of the four properties.

(d) symmetric, but none of the other three.

(e) is antisymmetric and transitive but neither reflexive nor

symmetric.m

-123 -



Example

Determine whether the relations for the directed graphs shown in
the following figure are reflexive, symmetric, antisymmetric,

and/or transitive.

a b
a

b c c d

(a) Directed graph of R (b) Directed graph of §

Solution

Because there are loops at every vertex of the directed graph of R,
it is reflexive. R is neither symmetric nor antisymmetric because
there is an edge from a to b but not one from b to a, but there are
edges in both directions connecting b and c. Finally, R is not
transitive because there is an edge from a to b and an edge from b
to ¢, but no edge from a to c.

Because loops are not present at all the vertices of the directed
graph of S, this relation is not reflexive. It is symmetric and not
antisymmetric, because every edge between distinct vertices
Is accompanied by an edge in the opposite direction. It is also not
hard to see from the directed graph that S is not transitive,
because (c,a) and (a, b) belong to S, but (c, b) does not belong
toS. m
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Example

Consider the set S = {1, 2, 3}. We construct the Hasse diagrams

of the partial order € among the subsets of S as follows:

Example

The ordered pairs in the relation R represented by the directed

graph shown in the following figure:

areR = {(1,2),(1,4),(2,4),(3,2),(3,1),(4,3)}.=
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Exercises Set (1.3)

1- List the ordered pairs in the relation R from A = {0, 1, 2, 3, 4}
to B ={0,1, 2,3}, where (a,b) € R if and only if
@a=b;(b)a+b=4; (c)a>b;(d)a]b.
2- For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, symmetric, antisymmetric or transitive.
(@) {(2,2),(2,3),(2,4),(3.2), (3.3), BD};
(b) {(1,1), (1,2),(2,1),(2,2), (3,3), (4 4)};
(c) {(1,2),(2,3), BD};
(d) {(1,1),(2,2), (3,3), (44)}.

3- Determine whether the relation R on the set of all

people is reflexive, symmetric, antisymmetric or

transitive, where (a, b) € R if and only if

(@) a is taller than b;

(b) a and b were born on the same day;
(c) a has the same first name as b;

(d) a and b have a common grandparent.

4- Determine whether the relation R on the set of all integers is
reflexive, symmetric, antisymmetric or transitive, where
(a,b) € R ifand only if

@x#y,b)xy=1,Cc)x =y +1lorx =y —1,
(d) x = y(mod 7); (e) x is a multiple of y;
(f) x and y are both negative or both nonnegative;
(@) x = y? (h)x =y
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5- Consider these relations on the set of real numbers
R, ={(a,b) € R?>:a > b};
R, = {(a,b) € R?:a > b};
R; ={(a,b) € R?*:a < b};
R, ={(a,b) € R?:a < b};
R ={(a,b) € R*:a # b};
Rs = {(a,b) € R*:a # b}.
Find:
(@ R,UR3, RiURs, R, NR,, Ry — Ry;
(b)R, UR,, Rz URy, RsNRs, Ry — Rs, R, ® Ry
(C) Ry o Ry, Ry°Ry RyoR3 RyoR3 R3oR3;
(d)R, o Ry, Ry°oR,, R3oRg, RsoRs.
6- Let R, and R, be the "divides" and ' is multiple of" relations on
the set of all positive integers, respectively.
Thatis R; = {(a, b): a divides b} and
R, = {(a, b): a is a multiple of b}.
Find
(@) Ry U Ry; (b) Ry N Ry; (¢) Ry — Ry;
(d) R; — Ry; (8) Ry © R,
7- Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of these statements
(@) R U S isreflexive; b) RN S is reflexive,

(c) R - Sisreflexive; (d) R o S is reflexive.
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8- Represent each of these relations on {1, 2, 3} with a matrix
(a) {(1,1),(1,2), (1,3)};
(b) {(1,2), (2,1), (2,2), (3,3)};
(c) {(1,1),(1,2),(1,3),(2,2),(2,3), 3,3)};
(d) {(1,3), B,1)}.
9- List the ordered pairs in the relation on {1,2,3} corresponding
to these matrices (where the rows and columns correspond to the
integers listed in increasing order).
1 0 1 0 1 0 1 1 1
(a) [0 1 0]; (b) [0 1 0]; (©) [1 0 1].
1 0 1 0 1 0 1 1 1
10- Let Ry, R, be relations on a set A represented by the matrices

0 1 0 0 1 0
1 1 1fandMg, =10 1 1]
1 0 0 1 1 1

Find the matrices that represent

(@) Ry U Ry; (b) Ry N Ry; (C) Ry o Ry; (d) Ry o Ry (6)Ry D R,.

11- Represent each of these relations on {1, 2, 3,4} with a matrix

MR1 =

(with the elements of this set listed in increasing order.)
(@) {(1,2), (1,3), (1,4), (2,3), (2,4), 34D)};
(b) {(1,1), (1,4),(2,2), (3,3), (4. 1)};
(€) {(1,2), (1,3),(1,4), (2,1),(2,3),(2,4), (3,1), (3,2)};
(d) {(24), (3,1),(3,2),(34)}.

-128 -



12- List the ordered pairs in the relations on {1,2,3,4}
corresponding to these matrices ( where the rows and columns

correspond to the integers listed in increasing order.)

101 0 1 111 0
10 1 of 01 0 of
@f 11 1 ®fo o 1 1f
1 0 1 1 100 1
0 1 0 1]

101 0
©fy 1 o0 1f

1 0 1 0

13- Draw the digraph representing each of the relations from
Exercises 2 and 5.
14- Draw the digraph represents the relation
{(a,a), (a,b), (b,c), (c,b), (¢, d), (d, @), (d, b)}.
15- Picture the divisibility relation on {1, 2, ..., 12} by a digraph.
16- Determine whether each of the following relations are
reflexive, symmetric and transitive:
(i) RelationR intheset A = {1,2,3...13,14} defined as
R = {(x, ¥):3x —y = 0}
(if) Relation R in the set N of natural numbers defined as
R ={x vy):y =x+ 5andx < 4};
(ili) Relation Rintheset A = {1,2,3,4,5,6} as
R = {(x, y): yis divisible by x}.;
(iv) Relation R in the set Z of all integers defined as

R = {(x, y): x — yisasinteger};
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(v) Relation R in the set A of human beings in a town at a
particular time given by

(@ R={(x, y): xand y work at the same place};

(b) R ={(x, y): xand y live in the same locality};

(c) R={(x, y): xis exactly 7 cm taller than y};

(d) R ={(x, y): x is wife of y};

(e) R ={(x, y): x is father of y},
17- Show that the relation R in the set R of real numbers, defined
asR = {(a, b): a < b?}is neither reflexive nor symmetric nor
transitive.
18- Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6}
asR = {(a, b): b = a + 1} is reflexive, symmetric or
transitive.
19- Show that the relation R in R definedas R =
{(a, b): a < b}, is reflexive and transitive but not symmetric.
20- Check whether the relation R in R defined as R =
{(a, b): a < b3} is reflexive, symmetric or transitive.
21- Show that the relation R in the set {1, 2,3} given by R =
{(1,2),(2,1)} is symmetric but neither reflexive nor transitive.
22- Show that the relation Rintheset A = {1, 2, 3,4, 5} given by
R = {(a,b): |a — b| is even}, is an equivalence relation. Show
that all the elements of {1, 3, 5} are related to each other and all
the elements of {2, 4} are related to each other. But no element of
{1, 3,5} is related to any element of {2, 4}.
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23. Given an example of a relation. Which is
(i) Symmetric but neither reflexive nor transitive.
(if) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
24- What are the ordered pairs in the relation R represented by the

directed graph shown in the following figure?

0
oﬂo “
0

d C

a b

25- What are the ordered pairs in the relation R represented by the

directed graph shown in the following figure?
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o
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26. Given the directed graphs representing two relations, how
can the directed graph of the union, intersection, symmetric
difference, difference, and composition of these relations be

found?
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CHAPTER (11

MATHEMATICAL LOGIC
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Chapter (1)

Mathematical Logic

The rules of mathematical logic specify methods of
reasoning mathematical statements. Greek philosopher,
Aristotle, was the pioneer of logical reasoning. Logical
reasoning provides the theoretical base for many areas of
mathematics and consequently computer science. It has
many practical applications in computer science like
design of computing machines, artificial intelligence,
definition of data structures for programming languages

etc.

2.1 Propositional Calculus

Propositional Logic is concerned with statements to

29

which the truth wvalues, “true” and “false”, can be
assigned. The purpose is to analyze these statements
either individually or in a composite manner.

Definition.

In logic, a proposition (or a statement) is a meaningful
declarative sentence that is either true or false, but not
both.
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The truth value of a proposition is True "T or 1" if it is a
true proposition and false "F or 0" if it is a false
proposition. Letters p,q,r,.. are used to denote
proposition and are called propositional variables.
* The following propositions are true

(i) A triangle has three sides.

(ii) 7 is odd.

(iii) 2 divides 24.
* The following propositions are false:

()5+3=09.

(if) Makkah is the capital of Saudi Arabia.

(iii) 2 divides 7.
* The following are not proposition:

(1) Who are you?

Not declarative sentences
(2) Help yourself!
Not declarative sentence.
B u—-2=1
Neither true nor false.
Du—-—v=w.

Neither true nor false.
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(5) Broccoli tastes good.
Meaningful declarative sentences, but is not proposition
but rather matters of opinion or taste.

Definition.

A formula (or a compound proposition) A formula is
formed from existing propositions using connectives.

Definition.

Since we need to know the truth value of a proposition in
all possible scenarios, we consider all the possible
combinations of the propositions which are joined
together by Logical Connectives to form the given
compound proposition. This compilation of all possible
scenarios in a tabular format is called a truth table.

In particular, truth tables can be used to tell whether a
propositional expression is true or false for all legitimate
input values. Practically, a truth table is composed of one
column for each input variable (for example, p and q),
and one final column for all of the possible results of the
logical operation that the table is meant to represent (for
example, p — q). Each row of the truth table therefore

contains one possible configuration of the input variables
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(for instance, p is true (written 1 or T) q is false (written O
or F)), and the result of the operation for those values.

% Logical Connectives

Connectives are either unary operations like logical
identity and logical negation, or binary operations like
logical conjunction, logical disjunction and logical
implication.

Definition. (Logical identity and logical Negation).

Let p be a proposition.

e Logical identity

Logical identity is an operation on one logical value,
typically the value of a proposition that produces a value
of true if its operand is true and a value of false if its
operand is false. The truth table for the logical identity

operator is as follows:

Logical Identity
p p
Operand | Value
1 1
0 0
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e Logical negation

Logical negation is an operation on one logical value,
typically the value of a proposition, which produces a
value of true if its operand is false and a value of false if
its operand is true.

The truth table for logical negation (written as -p or ~p)

is as follows:
Logical negation
p -p
1 0
0 1
Example.

The negation of the proposition "The sun shines on the

screen" is "The sun does not shine on the screen".m

We will now introduce the logical connectives (binary
operations) that are used to form formulas.

Definition. (Logical Conjunction” A")

Logical conjunction is an operation on two logical
values, typically the values of two propositions, that

produces a value of true if both of its operands are true.
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The truth table for p AND q (written as p A Q) is as

follows:
Logical Conjunction

p q pAq

1 1 1

1 0 0

0 1 0

0 0 0
Example.

Let p be the proposition “It is sunny today” and q be the
proposition “The sun shines on the screen”. Then the
conjunction of these propositions, p A g, is the
proposition “It is sunny today and the sun shines on the
screen”. This proposition is true when the day is sunny
and the sun shines on the screen. It is false otherwise. m
Definition. (Logical Disjunction" v ")

Logical disjunction is an operation on two logical
values, typically the values of two propositions, that
produces a value of true if at least one of its operands is

true.
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The truth table for p OR q (written as p Vv q) is as

follows:
Logical disjunction

p q pVvVgq

1 1 1

1 0 1

0 1 1

0 0 0
Example.

The disjunction of the propositions p and g where p and g
are the same propositions as in the above example, p V q,
is the proposition “It is sunny today or the sun shines on
the screen”. This proposition is true on any day that is
either sunny day or the sun shines on the screen
(including both). It is only false on days that are not
sunny and when it also does not shine on the screen. m

Definition.
(“Logical Implication” or “Conditional Statement” " — "
Logical implication is associated with an operation on

two logical values, typically the values of two
propositions, that produces a value of false just in the
singular case the first operand is true and the second

operand is false.
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The truth table associated with the Logical implication if

p then g (symbolizedas p — q) is as

Logical implication

P q P—4q
1 1 1
1 0 0
0 1 1
0 0 1

It may also be useful to note that p - g and —=p V ¢q
have the same truth table. A variety of terminology is
used to express p = q. Some of them are: “if p, then g,
“p implies g”, “if p, q”, “ponlyif g”, “p is sufficient for
q”, “a sufficient condition for q is p”, “q if p”, “q
whenever p”, “qwhen p”, “qis necessary for p”

“a necessary condition for p is q”, “q follows from p”

and "q unless —p.
Example.

Let p the proposition "Aly study well* and q the
proposition "Aly will be a Computer Science student".
Then the formula p — q -as a formula in English- is "If
Aly study well, then he will be a Computer Science

student". m

- 141 -



Definition. (Converse, Contra-positive and Inverse)

There are some related conditional statements that can be
formed from p — q. The conditional statement g — p is
called the converse of p - q. The contra-positive of

p — q is the conditional statement —q — —p.
The statement —p — —q is called the inverse of p — gq.

The contra-positive, =q — —p, of a conditional statement

p — q has the same truth value as p — q.

On the other hand, neither the converse, g — p, nor the
inverse —p — —q, has the same truth value as p — q for

all possible truth values of p and q.

Example.

What are the contra-positive, the converse, and the
inverse of the conditional statement “The home team

wins whenever it is raining”.

Solution.

Because “q whenever p” is one of the ways to express the
conditional statement p — g, the original statement can

be rewritten as “If it is raining, then the home team wins”.
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Consequently, the contra-positive of this conditional
statement 1s “If the home team does not win, then it is not
raining”.

The converse 1s “If the home team wins, then it is
raining”.

The inverse “If it is not raining, then the home team does
not win”. Only the contrapositive is equivalent to the

original statement. m
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We now introduce another way to combine propositions.
Definition. (Biconditional " & ").

Biconditional (also known as logical equality) is an
operation on two logical values, typically the values of
two propositions, that produces a value of true if both
operands are false or both operands are true.

The truth table for p XNOR g (writtenasp < q)isas

follows:

Logical Equality

1% q pP<g
1 1 1
1 0 0
0 1 0
0 0 1

So p « g is true if p and g have the same truth value
(both true or both false), and false if they have different
truth values. There are some other ways to express p < g
“p is necessary and sufficient for q”; “p iff g” where
“iff” is the abbreviation for “if and only if” and " if p

then g and conversely "
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Example.

Let p be the statement ““You can pass the exam.” and let q
be the statement “You study well”. Then p & q is the
statement “You can pass the exam if and only if you
study well”. m

Remark.

The previous operators (=, A, V, =, <) are the

common operators which we will focus on.

Definition. (Exclusive Or" @ ").
Truth table for Exclusive Or" @ "

Logical Equality

p q ' pPg
1 1 0
1 0 1
0 1 1
0 0 0

Actually, this operator can be expressed by using other
operators:
p @ qisthesameas = (p < q).

@ is used often in CSE. So we have a symbol for it.
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® Order of precedence

As a way of reducing the number of necessary
parentheses, one may introduce precedence rules for
operators. — has higher precedence than A, A higher than
Vv, and V higher than —.

Here is a table that shows a commonly used precedence
of logical operators.

The order of precedence determines which connective is

the "main connective™ when interpreting a formula.

Operator | Precedence
R 1
A 2
V 3
— 4
- 5

Example.

—p A g means (=p) A q;

pAq —rmeans (pAq) —;

pV qA-—r — sisshort for [p Y (q A (—rr))] - s.

When in doubt, use parenthesis. m
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Example.

Find the truth table for the following formula: "If you
studied discrete Mathematics well and did not neglect
studying logic, you would gain high marks in the exam".
Solution,

Suppose that

p: studied discrete Mathematics well;

q: neglect studying logic;

r: gain high mark in the exam.

The formulaisp A =g — r

plqg| r | 2q | pAaq | pAag—oT
111] 1] o 0 1
11] 0] o 0 1
110 1 1 1 1
1/o] o] 1 1 0
ol 1] 1] o 0 1
ol 1] o] o 0 1
00 1 1 0 1
olo] o | 1 0 1
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e Tautologies and Contradictions
Definition.

A formula that is always true, no matter what the truth
values of the propositions that occur in it, is called a

tautology.
A formula that is always false is called contradiction.

A formula that is neither a tautology nor a contradiction

is called a contingency.
Example.

We can construct examples of tautologies and
contradictions using just one proposition. Consider the
truth tables of p v —p and p A —p. Since p vV —p is always
true, it is a tautology. Since p A —p is always false, it is a

contradiction.

Example of a tautology and a contradiction

P |=Pp |pVaPp |pASP
110 1 0

0] 1 1 0
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e Logical Equivalence

Definition.

Two formulas p and g are logically equivalent, denoted
by p = gq, if and only if they have the same truth values
for all possible combination of truth values for the

propositional variables. Also,

Definition.

Two formulas p and q are called logically equivalent if

p < q is a tautology.

| Checking logical equivalence |

1. Construct and compare truth tables (most powerful)
2. Use logical equivalence laws

Example.

The formulas p — g and —p V q are logically equivalent.

plq | P|p=>q| "pPVQq
1] 1 0 1 1
1107} 0 0 0
0 1 1 1 1
0] 0 1 1 1
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Example.

The formulas —(p vV q) and —=p A —q are logically

equivalent.
p| q |-P|q pVqg | ~(Vq | —PA-q
1 0]0] 1 0 0
1{o]o0o 1] 1 0 0
ol 1]1|0]| 1 0 0
0/lo0] 1|1 O 1 1

Since the truth values of the formulas —(p Vv q) and
—p A —q agree for all possible combinations of the truth
values of p and g, it follows that =(p V q) & =p A =q
Is a tautology and these formulas are logically equivalent.

Similarly, we can prove that —=(p A q) = —p V —q.m
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Theorem. (Algebraic properties of connectives)
(1) Commutative rules:
@ pAq=qnp, (B)pvg=qVp.
(2) Associative rules:
@ @Ag)AT=pA(qAT),
(b) pvg)vr =pv(gvr).
(3) Distributive rules:

@pA(@vr)=(@EAqQV(pAT),

(b) pv@Aar)=@Vg@ A(Vr).
(4) ldentity rules:
(@pv0=p, (b) pAl=p
(5) Negation rules:
pA-p=0and pVv-ap=1.
(6) Double negation rule:
—(=p) =p.
(7) Idempotent rules:
pVp=p and pAp=p.
(8) De Morgan's rules:
@ -(pArqg) =-pV-q,
(b) ~(pVq) =-pA-q.
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(9) Universal rules:
pA0O=0 and pv1=1.
(10) Absorption rules:
@pv@Arg =p,
O)pA(pVva) =p.

(11) Alternative proof rule:
@p—=@Vvr)=@A-q) =r=@PA-T)—q.
O)pvg—r=@—or)A(g—r1).

(12) Conditional rules:
@p—q=-pVq
(b) =(p = @) =pAr-q.

(13) Biconditional rules:
@peog=@—=q9A@—Dp)
)peqg=@Aq)V(=pA-q)
Cpreqg=EpVve AV q)

(14) Rules of contrapositive:

p—q=—~q—"p

(15) Exportation — importation rule:

p—(@—1r)=EpAq—rT

Proof. Exercise. €
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Example.

Use the algebraic properties of connectives to prove:

@ =(pA(=pVq)=-pV-g;

b)) [(Vvg A(p — 1) A(q — r)] — risatautology.

Solution.

(a) Exercise.
®) [V A (@ =A==
=[@evOAr(pvg) —r)-r
Alternative proof rule
=[vaAr(=(pvgVvr]—r
Conditional rule
=[(pvA=@VODV (Vv Ar)] —r
Distributive rule
=[0V((pVq)Ar)] — r Negation rule
=[(pVvq)Ar] — r ldentity rule
= =[(pVvq)Ar]vr Conditional rule
=[=(pVq)V r]vr DeMorgan's rule
=-(pVvq)V[-rvr] Associative rule
=-(pvg)Vvli Negation rule

=1 Idempotent rules. =
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Exercise Set (2.1)

1- Which of the following are propositions?

(a) Buy Premium Bonds!

(b) The Apple Macintosh is a 16-bit computer.

(c) There is a largest even number.

(d) Why are we here?

(e)8 + 7 = 13.

Ha+ b = 13,
2- p is "1024 bytes is known as 1IMB" and q is "A
computer keyboard is an example of a data input device".
Express the following formulas as English sentences in as
natural a way as you can. Are the resulting propositions
true or false?
(@ pAg; (b)) pVvg; ;(c)p.
3-pis"x < 50";qis"x > 40"
Write as simply as you can:
@ —p;(b) =q; ©)pAg; (d)p Vv q;(e) =p Ag;
() =p A gq.
One of these compound propositional functions always
produces the output true, and one always outputs false.
Which ones?
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4- pis "l like Math" and g is "'l am going to spend at least
6 hours a week on Math". Write in as simple English as

you can:
@ (=p) Aq; (b) (=p) V q;
(€) =(=p); (d) (=p) V (=q);
€)@ Vv q); () (=p) A(=q);
@p-q;(h) prg.
5- Construct a truth table for each of these formulas:
(@) p A —p;
(0) p v —p;
) (Vv -q)—aq
d@vae - @Ar;
(&) p - —p;
() p < —p.
6- Show that each of these implications is a tautology by

using truth tables.
@ [~pA(eVval-gq
) [(p=DA@->1IAPp—->T1)

- 155 -



7- Show that each implication in Exercise 6 is a tautology

without using truth tables.

8- Show that every pair in the following are logically

equivalent:
(@) p - qgand —q - —p
(b)=p < gandp < —q
(€) —(p « q) and—p © —q
@d (@-q9)A(—>r)andp = (qAT)
€ (@-qVvp->r)andp—(qVvr)
9- Show that(p vV g) A (=p V1) — (q Vr) is a tautology.
10- Show that (p - q) »rand p —»(q —»r) are not
logically equivalent.
11-Prove that:
@ p—q=-q9—
(b) —(Vvqg)=-pV-g;
() p—q=-pVvg;
d @Aq —r=-r—(apV-gq).
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2.2 Predicates and Quantifiers
(A) Predicates

Predicates are statements involving variables ( called
predicate variables), such as:
"x > 3" "x=y+3""x +y = z".
They are not propositions because the truth value you
give them will depend on the values assigned to the
variables x and y. The domain of a predicate variable is
the set of all values that may be substituted in place of the
variable.
In English you may have statements like this:

1- She is Tall and Fair.

2- X was born in a city y in the year z.
Often pronouns (I, he, she, you etc.) are used in place of
variables.
In the first case - we cannot say if the statement is true
because that depends of who she is and in the second case
the statement will get a truth value depending on variable
X,y and z.

Predicate are noted something like this P(x, y, z).
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For example

P(x,y,z). This stands for the predicate "x + y = z".
M (x, y). This stands for "x is married to y".

In general, you have predicates in the form of:

P(x) - this is a unary predicate (has one variable).
P(x,y) - this is a binary predicate (has two variables).
P(xq1,x5,...,%,) - this is an n-ray or n-place predicate —
(has n individual variables in a predicate).

You have to choose the values for the variables - these
can be from a set of humans - a specific human, a set of
places or a place, a set of integers or an integer, a set of
real numbers or a real number and so on.

The values are chosen from a particular domain of values
called a universe or a universe of discourse.

If we take a look at this again:

X was born in a city y in the year z. x is taken from a set of
human beings, y is taken from a set of cities and z is taken
from a set of years. This is called the underlying universe.
Looking at this again:

P(x,y,z).The values for the variables x, y and z will be

taken from a set of integers or negative integers.
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In some cases, you will have to specify the underlying
universe because a certain predicate may be true for real
numbers but false for not real numbers.

In the case x has to be a human being and y has to be a
city and z has to be a year. You cannot have y as an
integer or z a colour for example.

If you assign a particular value to each of the n place
values in P(xq, x5, ..., X,) then the predicate becomes a
proposition and takes a truth value - true or false.

Again the statement “x is greater than 3" has two parts.
The first part, the variable x, is the subject of the
statement. The second part, the predicate, “is greater
than 37, refers to a property that the subject of the
statement can have. We can denote the statement “x is
greater than 3” by P(x) where P denotes the predicate
“is greater than 3" and x is the variable. Once a value
has been assigned to the variable x, the statement P(x)

becomes a proposition and has a truth value.

-159 -



Example.

Let P(x) denote the statement “x > 3”. What are the
truth values of the propositions P(4) and P(2)?

Solution.

We obtain the proposition P(4) by setting x = 4 in the
statement “x > 3”. Hence P(4), which is the proposition
“4 > 3”istrue.

However, P(2) which is the proposition“2 > 3”, is
false.m

Example.

Let Q(x,y) denote the statement "x = y + 3." What
are the truth values of the propositions Q(1,2) and
Q(3,0)?

Solution.

To obtain proposition Q(1,2),set x = 1 and y = 2 in
the statement Q(x,y). HenceQ(1,2) is the proposition
"1 = 2 + 3" which is false.

The proposition Q(3,0) is the proposition "3 = 0 + 3"

which is true. m
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Example.

What are the truth values of the propositions P(1,2,3)
and P(0,0,1), where P(x,y,z) denote the statement
“x +y =27

Solution.

The proposition P(1,2,3) is obtained by setting x =
1,y = 2,and z = 3 in the statement P(x, y, z). We see
that P(1,2,3) is the proposition"1 + 2 = 3", which is
true.

Also, note that P(0,0, 1), which is the proposition"0 +
0 = 1"is false.m

Definition.

If P(x) is a predicate and x has domain D, the truth set
of P(x) is the set of all elements of D that make P (x)
true when they are substituted for x. The truth set of P(x)
Is denoted {x € D : P(x)}and we read as “the set of all
x in D such that P(x).”
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Example.

Let Q(n) be the predicate “n is a factor of 8.” Find the
truth set of Q(n) if:

(a) the domain of n is Z™, the set of all positive integers.
(b) the domain of n is Z, the set of all integers.

Solution.

(a) The truth set is {1, 2, 4, 8} because these are exactly
the positive integers that divide 8 evenly.

(b) The truth setis {1, 2, 4, 8,—1,—2,—4,—8} because
the negative integers —1, —2, —4, and —8 also divide into
8 without leaving a remainder. =

Definition.

Let P(x) and Q(x) be predicates with common domain D
of x. The notation P(x) = Q(x) means that every
element in the truth set of P(x) is in the truth set of Q (x).
Similarly, P(x) & Q(x) means that P(x) and Q(x) have
identical truth sets.

Example.

Let P(x) be “X is a factor of 87,

Q(x) be “x is a factor of 4”,
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R(x)be“x < 5andx # 37,

and let the domain of x be set of positive integers. Then
Truth set of P(x) is {1, 2, 4, 8}.

Truth set of Q(x) is {1, 2,4}.

Since every element in the truth set of Q (x) is in the truth
set of P(x), then Q(x) = P(x).

Further, truth set of R(x) is {1, 2, 4}, which is identical to
the truth set of Q(x). Hence R(x) & Q(x). m
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(B) Quantifiers
(i) The Universal Quantifier " v "

One sure way to change predicates into propositions is to
assign specific values to all their variables.

For example, if x represents the number 35, the sentence
“x is divisible by 5” is a true proposition.

Another way to obtain propositions from predicates is to
add quantifiers. Quantifiers are words that refer to
quantities such as “some” or “all” and tell for how many
elements a given predicate is true.

The symbol V is called the universal quantifier.
Depending on the context, it is read as “for every,” “for

29 ¢¢

each,” “for any,” “given any,” or “for all.”

For example, another way to express the sentence
“Every human being is mortal”

or
“All human beings are mortal”

IS to write

“Y human beings x, x is mortal”,

which you would read as
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“For every human being X, X is mortal.”
If you let D be the set of all human beings, then you can
symbolize the statement more formally by writing
“Vx € D, x is mortal”.
In sentences containing a mixture of symbols and words,
the v symbol can refer to two or more variables.
For instance, you could symbolize
“For all real numbers xandy, x +y = y + x.”
as
“Vreal numbersxandy, x+y =y +x.”

Definition.

Let P(x) be a predicate and D the domain of x. A
universal quantification of P(x) is a proposition

of the form “Vx € D, P(x).” It is defined to be true if, and
only if, P(x) is true for each individual x in D. It is
defined to be false if, and only if, P(x) is false for at least
one x in D.

The notation VxP(x) is used for the universal
quantification of P(x) when the domain is known.

Here V is called the universal quantifier.
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Example.

Let P(x) be the statement “x +1 > x”. What is the
truth value of the quantification VxP(x), where the
domain consists of all real numbers?

Solution.

Since P(x) is true for all real numbers x, the
quantification VxP(x) is true. m

Example.

Let Q(x) be the statement “x < 2”. What is the truth
value of the quantification VxQ(x), where the domain
consists of all real numbers?

Solution.

Q(x) is not true for every real number X, since, for
instance, Q(3) is false. Thus VxQ (x)is false. m

Note.

When all the elements in the universe of discourse can be
listed, say xi,x,,..,x, it follows that the universal
quantification VxP(x) is the same as the conjunction
P(x ) AP(x) A ...AP(xp).
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Example.

What is the truth value of VxP(x), where P(x) is the
statement "x* < 10" and the universe of discourse
consists of positive integers not exceeding 4?

Solution.

The statement VxP (x) is the same as the conjunction
P(1) AP(2) AP(3) AP(4). Since P(4),which is the
statement"42 < 10", is false, so VxP(x) is false. m

To show that a statement of the form VxP(x) is false,
where P(x) is a propositional function, we need only find
one value of x in the universe of discourse for which
P(x) is false. Such a value of x is called a
counterexample to the statement VxP (x).

Example.

Suppose that P(x) is "x“ > 0". To show the statement
VxP(x) is false where the universe of discourse consists
of all integers, we give a counterexample. We see that
x = 0 is a counterexample since x> = 0 whenx = 00

that x2 is not greater than O whenx = 0. m
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(ii) The Existential Quantifier « 3 »
The symbol 3 denotes “there exists” and is said to be the
existential quantifier. For example, the sentence

“There 1s a student in Math211”
can be written as
“J a person x such that x is a student in Math211”,
or, more formally,
“Jx € P such that x is a student in Math211”,
where P is the set of all people.
The domain of the predicate variable is generally
indicated either between the 3 symbol and the variable
name or immediately following the variable name, and
the words such that are inserted just before the predicate.
Some other expressions that can be used in place of there
exists are there is a, we can find a, there is at least
one, for some, and for at least one.
In a sentence such as
“Jintegersmand nsuchthatm+n=m-n,”

the 3 symbol is understood to refer to both m and n.
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In more formal versions of symbolic logic, the words
such that are not written out (although they are
understood) and a separate 3 symbol is used for each
variable: “Im € Z (An € Z(m+n= m-n)).”
Definition.
Let P(x) be a predicate and D the domain of x. An
existential statement is a statement of the form

“Jx € D such that P(x).”
It is defined to be true if, and only if, P(x) is true for at
least one x in D. It is false if, and only if, P(x) is false for
all x in D.
We use the notation 3IxP(x) for the existential
quantification of P (x).
Here 3 is called the existential quantifier.

A domain must always be specified when a statement
AxP(x) is used. Furthermore, the meaning of JIxP(x)
changes when the domain changes. Without specifying
the domain, the statement 3xP(x) has no meaning. The
existential quantification 3xP(x) is read as:

"There is an x such that P(x)","There is at least one x
such that P(x)" or "For some x P(x)".

-169 -



Example.

Let P(x) denote the statement “x > 3”. What is the truth
value of the quantification 3xP(x), where the domain
consists of all real numbers?

Solution.

Because “x > 3”is sometimes true - for instance, when
x = 4, the existential quantification 3xP(x) of P(x) is
frue.m

Example.

Let Q(x) denote the statement "x = x + 1". What is
the truth value of the quantification 3xP(x), where the
domain consists of all real numbers?

Solution.

Because Q(x) is false for every real number X, the
existential quantification of Q(x) which is IxP(x) is
false.m

When all elements in the domain can be listed say

X1, X5, ..., X, the existential quantification 3xP(x) is the

same as the disjunction P(x;) VP(x3) V ..V P(xy)
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because this disjunction is true if and only if at least
P(xy),P(x;), ..., P(x;) is true.

Example.

What is the truth value of 3xP(x), where P(x) is the
statement "x< > 10" and the domain consists of the
positive integers not exceeding 4?

Solution.

As the domain is {1, 2, 3,4}, the proposition IxP(x) is
the disjunction P(1) v P(2) v P(3) vV P(4).

Because P(4), which is the statement "42 > 10", is true,

it follows that 3xP (x) is true.m
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eTranslating from Formal to Informal Language
Example.

Rewrite the following formal statements in a variety of
equivalent but more informal ways. Do not use the
symbol Vv or 3.

(@) Vx € R, x? > 0;

(b) Vx € R, x? # —1;

(c) 3m € Z such that m? = m.

Solution.

(a) Every real number has a nonnegative square.

Or: All real numbers have nonnegative squares.

Or: Any real number has a nonnegative square.

Or: The square of each real number is nonnegative.

(b) All real numbers have squares that do not equal —1.
Or: No real numbers have squares equal to —1.

(The words none are or no ... are equivalent to the words
all are not.)

(c) There is a positive integer whose square is equal to
itself.

Or: We can find at least one positive integer equal to its

own square.
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Or: Some positive integer equals its own square.

Or: Some positive integers equal their own squares. =
Another way to restate universal and existential
statements informally is to place the quantification at the
end of the sentence. For instance, instead of saying “For
any real number X, x? is nonnegative,” you could say “x?
IS nonnegative for any real number x.”” In such a case the
quantifier is said to “trail” the rest of the sentence.
eTrailing Quantifiers

Example.

Rewrite the following statements so that the quantifier
trails the rest of the sentence.

(a) For any integer n, 2n is even.

(b) There exists at least one real number x such that x? <
0.

Solution.

(@) 2n is even for any integer n.
(b) x? < 0 for some real number x.

Or: x2 < 0 for at least one real number x. =
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eTranslating from Informal to Formal Language
Example.

Rewrite each of the following statements formally. Use
quantifiers and variables.

(a) All triangles have three sides.

(b) No dogs have wings.

(c) Some programs are structured.

Solution.

(a) V triangle t, t has three sides.

Or: vVt € T, t has three sides (where T is the set of all
triangles).

(b) V dog d, d does not have wings.

Or: vd € D, d does not have wings (where D is the set of
all dogs).

(c) 3 a program p such that p is structured.

Or: Ip € P such that p is structured (where P is the set of

all programs). =
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eUniversal Conditional Statements
A reasonable argument can be made that the most
important form of statement in mathematics is the
universal conditional statement:

Vvx, iIf P(x) then Q(x).
Familiarity with statements of this form is essential if you
are to learn to speak mathematics.
e\Writing Universal Conditional Statements Informally

Example.

Rewrite the following statement informally, without
quantifiers or variables.

Vx € R, if x > 2, then x? > 4.

Solution.

If a real number is greater than 2, then its square is
greater than 4.

Or: Whenever a real number is greater than 2, its square
IS greater than 4.

Or: The square of any real number greater than 2 is
greater than 4.

Or: The squares of all real numbers greater than 2 are

greater than 4. m
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Example.

Rewrite each of the following statements in the form

(a) If a real number is an integer, then it is a rational
number.

(b) All bytes have eight bits.

(c) No fire trucks are green.

Solution.

(a) V real number X, if x is an integer, then x is a rational
number.

Or.vx e R, if x € Z then x € Q.

(b) Vx, if x is a byte, then x has eight bits.

(c) Vx, if x is a fire truck, then x is not green. m

-176 -



eEquivalent Forms of Universal and Existential
Statements
Observe that the two statements
“¥ real number x, if x is an integer then x is rational”
and
“V integer X, X is rational”
mean the same thing because the set of integers is a
subset of the set of real numbers. Both have informal
translations
“All integers are rational.”
In fact, a statement of the form
Vx € U, if P(x) then Q(x)
can always be rewritten in the form
Vx € D, Q(x)
by narrowing U to be the subset D consisting of all values
of the variable x that make P (x) true. Conversely, a
statement of the form
Vx € D, Q(x)
can be rewritten a

Vx, if xisin D then Q(x)
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Example.

Rewrite the following statement in the two forms

“Va,if....... then.......... ”
and
1 VAR Xyeaaannnn. ”

“All squares are rectangles” .

Solution.

“Vx, if x is a square then x is a rectangle”.
and

“V squarex, X is a rectangle”. m
Similarly, a statement of the form

“Jx such that P(x) and Q(x)”
can be rewritten as

“Jx € D such that Q(x),”

where D is the set of all x for which P(x) is true.
Example.
A prime number is an integer greater than 1 whose only
positive integer factors are itself and 1.
Consider the statement
“There is an integer that is both prime and even.”
Let P(n) be “nis prime” and E'(n) be “n is even.”
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Use the notation P(n) and E (n) to rewrite this statement
in the following two forms:

a. dn such that ... ... ... )

Solution.

(@) 3n such that P(n) A E(n).

(b) Two answers:

3 a prime number n such that E(n).

3 an even number n such that P(n). m

Example.

What do the following statements mean, where the
domain in each case consists of the real numbers?
(1) Vx < 0(x% > 0);

(2) Yy #0(y° # 0);

(3)and 3z > 0(z2 = 2).

Solution.

(1) The statement Vx < 0(x? > 0) states that for every
real number x with x < 0, x? > 0. That is, it states
"The square of a negative real number is positive".

This statement is the same as Vx(x < 0 > (x2 > 0)).
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(2) The statement Vy # 0 (y3 # 0), states that for every
real number y with y # 0, we have y3 # 0 that is, it
states
"the cube of every nonzero real number is nonzero."
Note that this statement is equivalent to
Vy(y £ 0 — y3 # 0).
(3) The statement 3z > 0(z? = 2) states that there exists
a real number z with z > 0 such that z2 = 2. That is, it
states
"there is a positive root of 2."

This statement is equivalent to 3z(z > 0 A z? = 2). =
e Precedence of Quantifiers

The quantifiers vV and 3 have higher precedence than
all logical operators from propositional calculus. For
example, VxP(x) Vv Q(x) is the disjunction of VxP(x)
and Q(x). In other words, it means (VxP(x))V Q(x)
rather than Vx(P(x) Vv Q(x)).
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L ogical Equivalence Involving Quantifiers
Definition.

Statements involving predicates and quantifiers are
logically equivalent if and only if they have the same
truth value no matter which predicates are substituted into
these statements. We use the notation S =T to indicate
that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example.

Show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are
logically equivalent, where the same domain is used
throughout.

Solution.

To show that these statements are logically equivalent,
we must show that they always take the same truth value,
no matter what predicate P and Q are, and no matter
which domain of discourse is used.

Suppose we have particular predicates P and Q, with a
common domain. We can show that Vx(P(x) A Q(x))

and VxP(x) A VxQ(x) are logically equivalent by doing
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two things. First, we show that if Vx(P(x) A Q(x)) is
true, then VxP(x) A VxQ(x) is true.

Second, we show that if VxP(x) A VxQ(x) is true, then
Vx(P(x) A Q(x)) is true.

So, suppose that Vx(P(x) A Q(x)) is true. This means
that if a is in the domain, then P(a) A Q(a) is true. Hence
P(a) is true and Q(a). Because P(a) is true and Q(a) for
every element in the domain, we can conclude that
VxP(x) and VxQ(x) are both true. This means that
VxP(x) AVxQ(x) is true.

Next, suppose that VxP(x) A VxQ(x) is true. It
follows that VxP(x) is true and VxQ (x) is true. Hence if
a is in the domain, then P(a) is true and Q(a) is true. It
follows that for all a, P(a) A Q(a) is true. It follows that
Vx(P(x) A Q(x)) is true.

Therefore Vx(P(x) A Q(x)) = VxP(x) A VxQ(x). m

Exercise.

Prove that Elx(p(x) Y, Q(x)) = Jxp(x) vV IxQ(x),

where the same domain is used throughout.
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e Negating Quantifier Expressions
We will often want to consider the negation of a
quantified expression. For instance, consider the negation
of the statement

“Every student in your class has taken a course in
calculus”
This statement is a universal quantification, namely
VxP(x), where P(x) is the statement

“X has taken a course in calculus”
and the domain consists of the students in your class. The
negation of this statement is
“It 1s not the case that every student in your class has
taken a course in calculus™.
This is equivalent to
“There is a student in your class who has not taken a
course in calculus”.
And this is simply the existential quantification of the
negation of the original propositional function, namely,
dx—P(x). This example illustrates the following
equivalence
—VxP(x) = Ax-P(x).
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Example.
Prove that:

—VxP(x) = Ix—P(x).
Where the same domain is used throughout.
Proof.
To show that —VxP(x) and 3Ix-P(x) are logically
equivalent no matter what the propositional function
P(x) is and what the domain is.
First note that —=VxP(x) is true if and only if VxP(x) is
false.
Next, note that VxP(x) is false if and only if there is an
element x in the domain for which P(x) is false.
This holds if and only if there is an element x in the
domain for which =P (x) is true.
Finally, note that there is an element x in the domain for
which =P (x) istrue if and only if 3x—=P(x) is true.
It follows that —=VxP(x) and Ix—P(x) are logically

equivalent. m
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Suppose we wish to negate an existential quantification.
For instance, consider the statement
“There is a student in this class who has taken a course in
calculus™.
This is the existential quantification 3xQ (x) where Q(x)
is the statement
“X has taken a course in calculus™.
The negation of this statement is
“It 1s not the case that there is a student in this class who
has taken calculus”

which is just the universal quantification of the negation
of the original propositional function, or, Vx—Q (x).
This example illustrates the equivalence:

—3xQ(x) = Vx—-Q(x).
Exercise.
Prove that:

—3xQ(x) = Vx—-Q(x),

where the same domain is used throughout.
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Example.

What is the negation of the following statements

(@) Vx(x? > x);

(b) Ax(x? = 2).

Solution.

(@) The negation of Vx(x?>x) is the statement
—Vx(x? > x), which is equivalent to 3x—(x? > x).

This can be rewritten as 3x(x? < x).

(b) The negation of 3Jx(x?=12) is the statement
—3x(x? = 2), which is equivalent to Vx—(x? = 2).

This can be rewritten as Vx(x? # 2).

The truth values of the statements in (1) and (2) depend

on the domain of discourse. m
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% Now, we give some examples to show how to translate
sentences into logical expressions.

Example.

Express the statement
“Every student in this class has studied calculus”
using predicates and quantifiers.

Solution.

First, we rewrite the statement so that we can clearly
identify the appropriate quantifiers to use. Doing so, we
obtain:
“For every student in this class, that student has studied
calculus™.
Next, we introduce a variable x so that our statement
becomes
“for every student X in this class, X has studied calculus”.
Continuing, we introduce the predicate C(x), which is the
statement
“X has studied calculus”.
Consequently, if the domain of discourse for x consists of
the students in the class, we can translate our statement as
VxC(x). m
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Example.
Express the statement
“Some student in this class has visited Cairo”,
and
“Every student in this class has visited either Cairo or
Alexandria”.
Solution.
The statement “Some student in this class has visited
Cairo” means that “There is a student in this class with
the property that the student has visited Cairo™.
We can introduce a variable x, so that our statement
becomes “There is a student x in this class having the
property x has visited Cairo”. We introduce the predicate
M (x), which is the statement “X has visited Cairo”. If the
domain of discourse of x consists of the students in this
class, we can translate this first statement as 3xM (x).
Similarly, the second statement can be expressed as
Vx(C(x) vM(x)), where the domain of discourse of x
consists of all students in this class, M(x) be the
statement “X visited Cairo” and C(x) be the statement “x

visited Alexandria”. m
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Example.

Write formal negations for the following statements:
(@) V primes p, p is odd;

(b) 3 a triangle T such that the sum of the angles of T
equals 200°.

Solution.

(a) By applying the rule for the negation of a Vv statement,
you can see that the answer is 3 a prime p such that p is
not odd.

(b) By applying the rule for the negation of a 3 statement,
you can see that the answer is V triangles T, the sum of
the angles of T does not equal 200°. =

Example.

Rewrite the following statements formally. Then write
formal and informal negations.

(a) No politicians are honest;

(b) The number 1357 is not divisible by any integer

between 1 and 37.
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Solution

(a) Formal version: V politicians x, X is not honest.
Formal negation: 3 a politician x such that x is honest.
Informal negation: Some politicians are honest.

(b) This statement has a trailing quantifier.

Written formally it becomes:

Y integer n between 1 and 37, 1357 is not divisible by n.
Its negation is therefore

3 an integer n between 1 and 37 such that 1357 is
divisible by n.

An informal version of the negation is

The number 1,357 is divisible by some integer between 1
and 37. m

Example.

Write informal negations for the following statements:
a. All computer programs are finite.
b. Some computer hackers are over 40.

Solution.

a. What exactly would it mean for this statement to be
false? The statement asserts that all computer programs

satisfy a certain property. So for it to be false, there
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would have to be at least one computer program that does
not satisfy the property. Thus the answer is

There is a computer program that is not finite.

Or: Some computer programs are infinite.

b. This statement is equivalent to saying that there is at
least one computer hacker with a certain property. So for
it to be false, not a single computer hacker can have that
property. Thus the negation is

No computer hackers are over 40.

Or: All computer hackers are 40 or under. =
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eNegations of Universal Conditional Statements
Negations of universal conditional statements are of
special importance in mathematics. The form of such
negations can be derived from facts that have already
been established. By definition of the negation of a for all
statement, =Vx(P(x) = Q(x)) = Ix=(P(x) = Q(x));
But the negation of an if-then statement is logically
equivalent to an and statement. More precisely,

—(P(x) = Q(x)) = P(x) A =Q(x).
Therefore, =Vx(P(x) = Q(x)) = Ix(P(x) A =Q(x)).
Example.
Write a formal negation for statement (a) and an informal
negation for statement (b).
a. vV person p, if p is blond then p has blue eyes.
b. If a computer program has more than 100,000 lines,
then it contains a bug.
Solution.
a. 3 a person p such that p is blond and p does not have
blue eyes.
b. There is at least one computer program that has more
than 100,000 lines and does not contain a bug.m
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Variants of Universal Conditional Statements
Recall that a conditional statement has a contrapositive, a
converse, and an inverse. The definitions of these terms

can be extended to universal conditional statements.

Consider a statement of the form Vx € D, if P(x) then Q(x).

1. Its contrapositive is the statement Vx € D, if ~Q(x) then ~P(x).
2. Its converse is the statement Vx € D, if Q(x) then P(x).
3. Its inverse is the statement Vx € D, if ~P(x) then ~Q(x).

Example.
Write a formal and an informal contrapositive, converse,
and inverse for the following statement:
If a real number is greater than 2, then its square is
greater than 4.
Solution.
The formal version of this statement is:

Vx € R(x > 2 - x2 > 4).
Contrapositive: Vx € R(x%? < 4 - x < 2).
Or: If the square of a real number is less than or equal to

4, then the number is less than or equal to 2.
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Converse: Vx € R(x? > 4 - x > 2).

Or: If the square of a real number is greater than 4, then
the number is greater than 2.

Inverse: Vx € R(x < 2 - x2 < 4)..

Or: If a real number is less than or equal to 2, then the
square of the number is less than or equal to 4.

Note that in solving this example, we have used the
equivalence of “x * a” and “x < a” for all real numbers
xand a. m

Exercise.

(a) Prove that a universal conditional statement is
logically equivalent to its contrapositive.

(b) Prove that a universal conditional statement is not
logically equivalent to its converse.

(c) Prove that a universal conditional statement is not
logically equivalent to its inverse.

Note that answering of both (b) and (c) is by giving

counterexamples.
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eNecessary and Sufficient Conditions, Only If
The definitions of necessary, sufficient, and only if can
also be extended to apply to universal conditional

statements.

e “Vx, r(x) is a sufficient condition for s(x)” means “Vx, if r(x) then s(x).”

e “Vx, r(x) is a necessary condition for s(x)” means “Vx, if ~r(x) then ~s(x)” or,
equivalently, “Vx, if s(x) then r(x).”

e “Vx, r(x) only if s(x)” means “Vx, if ~s(x) then ~r(x)” or, equivalently, “Vx, if r(x)
then s(x).”

Example.

Rewrite each of the following as a universal conditional
statement, quantified either explicitly or implicitly. Do
not use the word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.
b. Being at least 35 years old is a necessary condition for
being president of the Egypt.

Solution.

a. A formal version of the statement is:

Vx, if x is a square, then x is a rectangle.

Or, with implicit universal quantification:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as
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V person X, if X is younger than 35, then x

cannot be president of the Egypt.

Or, by the equivalence between a statement and its
contrapositive:

V person X, if x is president of the United States,
then x is at least 35 years old. =

Example.

Rewrite the following as a universal conditional
statement:

A product of two numbers is 0 only if one of the numbers
iIs 0.

Solution.

Using informal language, you could write the answer as
If it is not the case that one of two numbers is O, then the
product of the numbers is not 0. In other words, If neither
of two numbers is 0, then the product of the numbers is
not 0. Or, by the equivalence between a statement and its
contrapositive. If a product of two numbers is 0, then one

of the numbers is 0. =
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» Nested Quantifiers
In this section, we will study nested quantifiers, which
are quantifiers that occur within the scope of other
quantifiers, such as in the statement
Vx3y(x +y = 0).
Nested quantifiers commonly occur in mathematics and
computer science.
Example.
Assume that the domain for the variables x and y consists
of all real numbers. The statement
VxVy(x +y =y + x)
says that x + y = y + x for all real numbers x and y.
This is the commutative law for addition of real numbers.
Likewise, the statement Vx3y(x + y = 0) says that for
every real number x there is a real number y such that
x + y = 0. This states that every real number has an
additive inverse. The statement
VxVyvzlx+ (y+z)=(x+y) + z]

Is the associative law for addition of real numbers. m
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Example.
Translate into English (Informal Language) the
statement

VxVy(x > 0)A(y <0) — (xy <0),
where domain for both variables consists of all real
numbers.

Solution.

This statement says that for every real number x and for
every real number vy, if x >0 and y < 0, then xy < 0.
That is, this statement says that for real numbers x and vy,
if X is positive and y is negative, then x y is negative. This
can be stated more succinctly as

“The product of a positive real number and a negative
real number is a negative real number”. m

Example.

The reciprocal of a real number a is a real number b such
that ab = 1. The following two statements are true.
Rewrite them formally using quantifiers and variables.

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.
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Solution.

a. V nonzero real number u, 3 a real number v such that
uv = 1.
Equivalently,

Vudv(uv = 1),
where domain for both variables consists of all real
numbers.
b. 3 a real number ¢ such that V real number d, cd # 1.
Equivalently,

Auvv(uv # 1),
where domain for both variables consists of all real
numbers. =
Example.
Consider the statement

“There 1s a smallest positive integer.”

Write this statement formally using both symbols 3 and
V.

Solution.

To say that there is a smallest positive integer means that
there is a positive integer m with the property that no

matter what positive integer n a person might pick, m
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will be less than or equal to n:
3 a positive integer m such that V positive integer n, m <
n.
Equivalently,
Imvn(m < n), where m,n € Z*.
Note that this statement is true because 1 is a positive

integer that is less than or equal to every positive integer.

positive integers

-5 -4 3 -2 -l 0 | 2 3 4 5
L] L] L] L] L] L L] L] L] L] L]
|
Example.

Consider the statement

“There is no smallest positive real number.”
Write this statement formally using both symbols 3 and
V.

Solution.

V positive real number x, 3 positive real number y, such
that y < x.
Equivalently,

vx3y(y < x), where x,y € R*.

Note that this statement is true.
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Imagine the positive real numbers on the real number
line. These numbers correspond to all the points to the
right of 0. Observe that no matter how small a real
number x is, the number x/2 will be both positive and

less than x.

- =2 —1 0O x 1
'l 'l

T I

Y.

b= +

|

e The Order of Quantifiers

Many mathematical statements involve multiple
quantifications of propositional functions involving more
than one variable. It is important to note that the order of
the quantifiers is important, unless all the quantifiers are
universal quantifiers or all are existential quantifiers.

Example.

Consider the following two statements:

V person X, 3 a person y such that x loves y.

3 a person y such that v person x, x loves y.
Note that except for the order of the quantifiers, these
statements are identical. However, the first means that

given any person, it is possible to find someone whom
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that person loves, whereas the second means that there is
one amazing individual who is loved by all people.
(Reread the statements carefully to verify these
interpretations!) The two sentences illustrate an
extremely important property about statements with two
different quantifiers. =
Example.
Consider the commutative property of addition of real
numbers, for example:
v real number x and V real numbery, x +y = y + x.
VxVy (x+y = y+x).
This means the same as
Vv real numberyand vV real numberx, x +y = y + x.
VxVy(x+y=y+x). =
Example.
Translate the statement
vx(C() vaAy(CY) AF(x,y)))
into English, where C(x) is “X has a computer”, F(x, y)
is “x and y are friends” and the domain for both x and y

consists of all students in your faculty.
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Solution.

The statement says that for every student x in your faculty
X has a computer or there is a student y such that y has a
computer and x and y are friends. In other words, every
student in your faculty has a computer or has a friend
who has a computer.m

Example.

Express the statement “If a person is female and is a
parent, then this person is someone’s mother” as a logical
expression involving predicates, quantifiers with a
domain consisting of all people.

Solution.

The statement “If a person is female and is a parent, then
this person is someone’s mother” can be expressed as
“For every person X, if person x is female and person X is
a parent, then there exists a person y such that person x is
the mother of person y”. We introduce the predicates
F(x) to represent “X is female” P(x) to represent “X iS a
parent” and M (x,y) to represent “X is the mother of y”.

The original statement can be represent by
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Vx(F(x) AP(x) — IyM(x, y))
We can move 3y all the way to the left, because y does
not appear inF(x)AP(x), to obtain an equivalent
expression Vx3y(F(x) AP(x) — M(x,y)).m
Example.

Express the statement “Everyone has exactly one best
friend” as a logical expression involving predicates,
quantifiers with a universe of discourse consisting of all
people and logical connectives.

Solution.

The given statement can be expressed as “For every
person X, person X has exactly one best friend”.
Introducing the universal quantifier, we see that this
statement is the same as “Vx(person x has exactly one
best friend)” where the universe of discourse consists of
all people. To say that x has exactly one best friend
means that there is a person y who is the best friend of x,
and furthermore, that for every person z, if person z is not
person vy, then z is not the best friends of x. When we

introduce the predicate B(x,y) to be the statement “y is
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the best friend of x” the statement X has exactly best

friend can be represented as

Jy ((B(x, y) A Vz((z +vy) — —B(x, z)))

Consequently, our original statement can be expressed as

Vx3y (B(x, y) A Vz((z + y) — —B(x, z))). u
Example.

Let P(x,y) be the statement “x + y = y + x”. What is
the truth value of the quantifications VxVyP (x, y) and
VyVxP(x,y), where the domain for all variables consists
of all real numbers?

Solution.

The quantification VxVyP (x, y) denotes the proposition
“for all real numbers x and for all real numbersy, x +

y =y +x". Since P(x,y) is true for all real numbers x
and y, the proposition VxVyP(x,y) is true. Note that
VyVxP(x,y) says "For all real numbersy, for all real
numbers X, x + y = y + x”. This has the same meaning
as the statement as “For all real numbers x and for all

real numbers y,x +y =y + x”. Thatis, VxVyP(x,y)
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and VyVxP(x,y) have the same meaning, and both are
true. m

Example.

Let Q(x,y) denote “x +y = 0”.What are the truth value
of the quantifications 3yvxQ (x,y) and Vx3yQ(x, y),
where the domain for all variables consists of all real
numbers?

Solution.

The quantification 3yvxQ(x,y) denotes the proposition
“there is a real number y such that for every real number
x,Q(x,y)”. No matter what value of y is chosen, there is
only one value of x for which x + y = 0. Since there is
no real number y such that x + y = 0 for all real
numbers X, the statement 3yvxQ (x, y) is false.

The quantification Vx3yQ(x,y) denotes the proposition
“for every real number x there is a real number y such
that x + y = 0, namely y = — x. Hence the statement
Vx3yQ(x,y) istrue. m

Note. The above example illustrates that the statements
JyvxQ(x,y) and Vx3yQ(x,y) are not logically

equivalent.
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eNegating Nested Quantifiers

Statements involving nested quantifiers can be negated by
successively applying the rules for negating statements
involving a single quantifier.

Example.

Write a negation for each of the following statements,

and determine which is true, the given statement or its
negation.

(a) For every square x, there is a circle y such that x and y
have the same color.

(b) There is a triangle x such that for every square y, x is
to the right of .

Solution.

(a) First version of negation:

3 a square x such that , — (3 a circle y such that x and y
have the same color).

Final version of negation:

3 a square x such that Vv circle y, x and y do not have
the same color.

(b) First version of negation:
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V triangle x, = (V square y, x is to the right of y).
Final version of negation:
V triangle x, 3 a square y such that x is not to the right
ofy. m
Example.
Express the negation of the statement Vx3y(xy = 1) so
that no negation precedes a quantifier.
Solution.
—Vx3y(xy = 1) = 3x-(Fy(xy = 1))
= JxVy-(xy =1) = 3xVy(xy #1). m
The following table summarizes the meanings of the

different possible quantifications involving two variables.

Statement When True? When False?
VxVyP(x,y) | P(x,y) is true for every | There is a pair x, y for
VyVxP(x,y) |pairx,y which P(x,y) is false

For every x there is a y | There is an x such that
Vx3yP(x,y) | forwhich P(x,y)istrue| P(x,y) is false for
everyy.

There is an x for which | For every x there isa 'y
AxVyP(x,y) | P(x,y) is true for every | for which P(x,y) is
y. false.

Ax3yP(x,y) | There is a pair x,y for| P(x,y) is false for
dy3xP(x,y) |which P(x,y) is true. every pair x, y.
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»Solved problems
1. Determine whether the following proposition are true
or false:
(@ Vx e D(2* <x!),D ={1,2,3}; (false :x = 1)
(b) Ixe D(2* <x!),D ={1,2,3,4,5}; (true : x = 1)
(c)vxe D(2* <x!),D = {4,5,6}; (true: )

(d) Vxep(x>§),u=ue* (False : x > =)
(e)EIxED(x>i),D=]R%(true:x=2)

)VvxeD(x?#x+2),D=Q (false:x =2)
(9) 3Ix e D(x?=2), D =Q (false: x = +v2)

(h) Vx € D(x? + X + 41 is prime) (false :x = 41)

K)IxeD(x2+x+1=0),D =R (false: x = =3
2

)
2. Prove that:

(a)—l(Ele(x)) = Vx(—|P(x)),
—(VxP(x)) = 3x-P(x)
(b) =(VxP(x) — Q(x)) = Ix(P(x) A =Q(x)),
—(3x(P(x) AQ(x))) = Vx(P(x) — —Q(x))
Solution.
(b) =[Vx(P(x) — Q(x))] = =Vx(=P(x) v Q(x))
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= 3x—(=P(x) vV Q(x)) = 3x(——P(x) A =Q(x))
= 3x(P(x) A —=Q(x)) .m
3. Negate the following statements:

(a) There is no one in the island;

(b) Every real number x satisfies x? = 1;

(c) Students who likes Mathematics likes physics, too;

(d) All student and staff came to the meeting.
Solution.
(@) Let M(x) is "x isone", I(x) is "x is in the island" so ,
the given statement is V(M (x) — =I(x)).
Therefore
Vx(M(x) — —I(x)) = Vx(=M(x) v =1 (x))

= Vx—|(M(x) A I(x))
= —.EIx(M(x) A I(x))

Then, the negation of the given statement is
EIx(M(x) A I(x)) ,
or "There is someone in the island".
(b) The given statement is Vx(R(x) — x2 = 1), where
R(x): is x real.
So, its negation is
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—Vx(R(x) = x?>=1) = -Vx(=R(x)vx?=1)
= 3Ix(R(x) Ax? = 1).

Therefore, the negation of our statement is

"There exists a real number x such that x? # 1"

(c) "Students who likes Math. likes Phys., too " is

vx(M(x) — P(x)), where x is student, M (x): likes
Math., P(x): likes phys. Therefore
—Nx(M(x) — P(x)) = Elx(M(x) A —|P(x))
or
"Some students like Mathematics but not like Physics”
(d) S(x) : x is student; T(x) : x is a teacher
M (x) : x came to the meeting
The given statement is
Vx[(S(x) — M(x)) A (T(x) — M(x))] :
Therefore
—Nx[(S(x) — M(x)) A (T(x) — M(x))]
= Elx—l[(S(x) — M(x)) A (T(x) — M(x))]
= Elx—l[(—|S(x) Y, M(x)) A (—lT(x) Y, M(x))]
= x[=(=S(x) VM) ) V(=T (x) VM(x)) ]
= EIx[(S(x) A —|M(x)) V (T(x) A —.M(x))]
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= Jx ((S(x) VT(x)) A —|M(x))
Or,
"Some students or some staffs do not come to the
meeting"”. m
4. Translate each of these statements into logical
expressions using predicates, quantifiers and logical
connectives.
(a) Every real number is complete square.
(b) There is a real number between each pair of distinct
real numbers.
(c) There is a multiple integer for the number 5 but not a

multiple for 7.

Solution.
(@) (Vx)(3y)(x = y?) . The domain forx, y is R.

(b) (Vx)(Vy) (x *+y— EIZ((x <zZANz<y)V

(y<zAz< x)))

(c) IxAy(x =5y)AVz(x + 72) ),

where the domain of x,y,z IS Z. m

5. Translate the following statements into ordinary
language, where the domain for x, y is R.
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(@) @) (Vy)(y < x);
(b) (V) @Ey)(x < ).
Solution.
(a)There is a real number greater than all real.
(b) For each real number, there is another real number
greater than it.
6. Express the following statement using logical
operators, predicate and quantifiers.
(a) "For every real € > 0, We can find integer k such
that : if n > k, then a,, lies between L + € and L — E.
(b) Negate the statement in (a).
Solution.
VE(E>0- (Elk)(‘v’n)(n >k
> (L—€<ay)A(a, <L+¥8)))
The domain of € is R and the domain of k, nis Z.
The negation:
—VE(E>0- Ak)(Vn)(n >k
- (L—-€<ay)A(a, <L+E)))
= aVE(=(E>0)V(@AK)(Vn)(n >k
s (L-—€E<ay)AN(a, <L+ £)))
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=3E(E>0AN-Ek)(Vn)(n >k

> (L-€E<a)AN(a, <L+ £)))
=3E(E>0N(VE)(@AN)-(n >k

s> (L-€<ay)N(a, <L+ £)))
=3E(E>0A(VK)(An)(n

>kAN(L—-—€E=a,)V(a, =L+ £)))
There is € > 0 such that for every integer k there exist
n > kwitheither L—e>a,0ra, 2L+ . m
6. Determine whether the following proposition are true

or false:
@) Q(x,y) = (vx)@y)(x < y),Dy =Dy = R.
(b) P(x,y) = (v)(v))(x <y — =(x <)),
D,=D,=R

) R(x,y) = @x)(@Y)(x +5=y?), D, =Dy, =R.
(@) Z(x,y) = @)@y)(x? = 2y?), D, = Dy =1L
Solution.

(@)True

(b) False because 2 < 3 — —(2 < 3) is false .

(c) True because R(4,3) is true.

(d) False because v/2 is irrational. m
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7. Negate the following statements

(@) All numbers are even

(b) For every integer x , either there exists integer

ysuchthatx + y2 =x? orx =0

8. Let T(x), C(x), and S(x) mean “X is a triangle,” “X is a
circle,” and “Xx is a square”; let B(x), G(x), and Y(x)
mean “X is blue,” “X is gray,” and “X is yellow”; let
RO(x,y), AB(x,y), and SC(x,y) mean “Xx Is to the right
of y,” “x is above y,” and “x has the same color as y”’; and
use the notation x = y to denote the predicate “X is
equal to y.” Let the common domain D of all variables be
the set of all the objects in the Tarski world. Use formal
logical notation to write each of the following statements,
and write a formal negation for each statement.
(a) For every circle x, x is above f.
(b) There is a square x such that x is yellow.
(c) For every circle x, there is a square y such that x and y
have the same color.
(d) There is a square x such that for every triangle y, x is

to the right of y.
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Solution.
(a) Statement: Vx(C(x) = AB(x, f))
Negation:—(Vx (C(x) = AB(x, f)))
= 3Jx—(C(x) = AB(x, f))
by the law for negating a Vv statement
= 3x(C(x) A —=AB(x, f))
by the law of negating an if-then statement
(b) Statement: 3x(S(x) A Y(x))
Negation:—=(3x(S(x) AY(x)))
= Vx—(S(x) AY(x))
by the law for negating a 3 statement
= Vx(=S(x) VY (x))
by De Morgan’s law
(c) Statement: Vx(C(x) = Iy (S(y) ASC(x,y)))
Negation: = (Vx(C(x) = Jy(S(y) ASC(x,))))
= 3x=(C(x) » Iy(S) ASC(x,y)))
by the law for negating a Vv statement
=3x(C(x) A =@y ASC(x,¥))))
by the law for negating an if-then statement
= 3x(C(x) AVy(=(S(Y) ASC(x,¥))))
by the law for negating a 3 statement
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= 3JAx(C(x) A Vy(=S(y) vV aSC(x,y)))
by De Morgan’s law
(d) Statement: Ix(S(x) AVy(T(y) = RO(x,y)))
Negation: = (3x(S(x) AVy(T(y) = RO(x,y))))
=Vx=(S(x) AVy(T(x) = RO(x,y)))
by the law for negating a 3 statement
= Vx(=S(x) vV ~(Vy(T(y) = RO(x,¥))))
by De Morgan’s law
= Vx(=S(x) vV 3y~(T(y) — RO(x,¥))))
by the law for negating a vV statement
=Vx(=S(x) v 3y(T(y) A= RO(x,y))))
by the law for negating an if-then statement. m

Exercise Set (2.2)

1- Let P(x) denote the statement “x < 4”.
What are the truth values?
(a) P(0); (b) P(4); (c) P(6).
2- Let P(x) be the statement “x spends more than five
hours every week day in class”, where the universe of

discourse for x consists of all students.
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Express each of these quantifications in ordinary
language?
AxP(x); VxP(x); Ax—P(x); Vx—=P(x).

3- Translate these statements into ordinary language,
where C(x) is “X is a comedian” and F (x) is “X is funny”
and the universe of discourse consists of all people.

@)Vvx(C(x) = F(x));

(b)vx(C(x) A F(x));

(€)3x(C(x) = F(x));

(d)3Ax(C(x) A F(x)).
4- Let Q(x) be the statement “x + 1 > 2x”. If the
universe of discourse consists of all integers, what are
these truths?

(@) Q(0); (b) Q(—=1); (c) Q(1); (d) FxQ(x).
(€) VxQ(x); (f) Ix—-0Q(x); (9) VX-Q(x).

5- Suppose that the universe of discourse of the
propositional function P(x) consists of the integers 1, 2,
3, 4 and 5. Express these statements without using
quantifiers, instead using only negation, disjunction and
conjunction.

(@) 3xP(x); (b) VxP(x); (c) =3xP(x);
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(d) =VxP(x); (e) Vx((x # 3) = P(x)) Vv Ax—=P(x).
6- Translate in two ways each of these statements into
logical expressions using predicates, quantifiers and
logical connectives. First, let the universe of discourse
consist of the student in your class and second, let it
consist of all people.
(a) Someone in your class can speak English;
(b) Everyone in your class is friendly;
(c) There is a person in your class who was not born
in Assiut.
7- Translate the following statements into logical
expressions using  predicates, quantifiers and logical
connectives.
(a) No one is perfect;
(b) Not everyone is perfect;
(c) All your friends are perfect;
(d) One of your friends is perfect.
8- Express each of the following statements using logical
operators, predicate and quantifiers:
(a) Some propositions are tautologies.

(b) The negation of a contradiction is a tautology.
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(c) The disjunction of two contingencies can be a
tautology.
(d) The conjunction of two tautologies is a
tautology.
9- Express each of these statements using quantifiers.
Then form the negation of the statement, so that no
negation is to before a quantifier. Next, express the
negation in ordinary language (Do not simply use the
words “It is not being case that”).
(a) Some old dogs can learn new tricks.
(b) No rabbit knows calculus.
(c) Every bird can fly.
(d) There is no dog that can talk.
(e) There is no one in this class who knows French
and Russian.
10- Translate these statements into ordinary language,
where the universe of discourse for each variable consists
of all real numbers.
(@) vx3y(x <y);
(b) VxVy(x = 0Ay =0 - xy = 0);
(c) VxVyVz(xy = z).
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11- Let Q(x,y) be the statement “x has sent an e-mail
message to y, where the universe of discourse for both x
and y consists of all students in your class. Express each

of these quantification in English.
(a) Ix3yQ(x, y);
(b) IxvyQ(x, ).

12- Let Q(x,y) be the statement “x + y = x- y". If
the universe of discourse for both variables consists of all
integers, what are the truth values of each of the
following?
(8) Q(1,1); (b) Q(2,0); (c) Y¥Q(L,¥);
(d) 3xQ(x,2); (e) IxIyQ(x,y).
13- Determine the truth value of each of these statements
if the universe of discourse of each variable consists of all
real numbers.
@ vxIy(x® =y);
(b)  vxIy(x = y?);
() 3Ixvy(xy =0);
(d) IxAy(x+y +y+ x);
€ Vx(x#0-(x+y=1).
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2.3 Rules of inference
o Arguments and Validity

Proofs in mathematics are valid arguments.

An argument is a sequence of statements that end with a
conclusion.

% Many claims come to us as the conclusion of
arguments. By "conclusion," we mean the claim that the
argument is meant to defend.

% We will understand an argument as a finite list of logic
forms (compound proposition), one of which is the
conclusion, and the others are offered as reasons to
believe the conclusion is true. We will call these other

logic forms "premises.” presented as follows:

The logic forms above the bar are called premises while
B is called the conclusion. (The symbol .. is read

"therefore")
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% We need to determine what makes an argument valid.
Look at some examples.
(a) Premise 1: If Nixon was President, then Nixon
was Commander in Chief.
Premise 2: Nixon was President.
Conclusion: Nixon was Commander in Chief.
(b) Premise 1: If Lincoln was an organism from deep
in the sea, then Lincoln had three eyes.
Premise 2: Lincoln was an organism from deep in
the sea.
Conclusion: Lincoln had three eyes.
(c) Premise 1: If Lincoln was President, then Lincoln
had at least one portrait made of him.
Premise 2: Lincoln had at least one portrait made of
him.
Conclusion: Lincoln was President.
% What is remarkable about the first argument is that if
the premises are true it seems the conclusion must be
true. That is an excellent standard to have for arguments,
since it describes a clear relation between premises and a

conclusion.
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A valid argument
Definition.

A valid argument is an argument in which if the premises
are true then the conclusion must be true.

% Note that the second argument is absurd. Both premises
and the conclusion are false. Does that mean it is a bad
argument.?

Well, we could define a bad argument to be one where all
the logic forms are false, but this would confuse the
structure of the argument with the truth value of the logic
forms that compose it. Our interest, right now, is
argumentation itself. In that case, we must recognize that
the second argument is valid. If the premises were true,
the conclusion would have to be true. Valid arguments
can have false conclusions if some of their premises are
false.

% It is useful, therefore, to distinguish valid arguments
with true premises from valid arguments with some false
premises. We will call arguments like the first argument

above "sound."
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A sound argument
Definition.

A sound argument is an argument which is valid and
which has true premises. An argument that is not sound is called unsound.
# Note that the third argument, even though each logic
form in it is true, is invalid. It is not the case that if one
has a portrait one was President. But that is the reasoning
that underlies the leap from premise 2 to the conclusion.
Be aware that invalid arguments can contain all true
statements. They are invalid because other arguments of
the exact same form could have true premises and a false
conclusion.

e Propositional Logic and Connectives

% Logic is a formal method which provides a way to
rigorously test arguments for validity. We will look at
one part of logic -- propositional logic -- in order to
illustrate and clarify the nature of validity and good
reasoning in arguments.

% Propositional logic is formulated out of propositions
and "connectives." Connectives are ways of putting

propositions together to make new propositions.
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% We will represent propositions with letters p, g, r, ...

% Thus, the 3 arguments above could be represented:

(@) Premise 1: If p, then g.

Premise 2: p.

Conclusion: g.
(b) Premise 1: If r, then s.

Premise 2:r.

Conclusion: s.

(c) Premise 1: If t, then v.

Premise 2: v.

Conclusion: t.

Assuming that we interpret our letters to be standing for

the propositions:

o

o

o

o

o

o

p: Nixon was President

q: Nixon was Commander in Chief.

r: Lincoln was an organism from deep in the sea.
s: Lincoln had three eyes.

t: Lincoln was President.

v: Lincoln had at least one portrait made of him.

These arguments use the connective "if ... then ....".
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To further abbreviate our logic, we will replace these
English words with a single arrow: —.

Thus, instead of "If p, then g" we will write "p = q".
Our first argument would then look like:

Premise 1. p = q.

Premise 2: p.

Conclusion: q.

eMethods to Test Validity of an Argument

First Method to prove validity

Definition.

A valid argument is a finite set of propositions

P1, P2, -, Pr (Premises), together with a proposition c,
the conclusion, such that the propositional form

(p1 A po A ... Ap,) — ciS atautology.

We say c follows logically from, or is a logical
consequence of the premises.

We write py, py, ..., pr F c. The symbol I is called the

turnstile.
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Example.

Determine whether the following argument is valid or
invalid.

Premises 1: "if you have a current password, then you can
log onto the network".

Premises 2: "you have a current password".

Therefore

Conclusion: "you can log onto the network".

Solution.

Let p represent: "you have a current password"
and
q represent: "you can log onto the network™

Then the argument has the form
pP—4q
p
" q
When p and q are proposition variables, the statement
[(p - q) Ap] = qis atautology.
In this case we say that this argument is valid.m
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Example.

Let p; = “John graduates”

p, = “Mary graduates”

p; = “John gets a job”

ps = “Mary gets a job”

ps = “Mary earns money”

(i) Consider the following argument:

“If John graduates then he gets a job™.

“John graduates”.

“Therefore John gets a job”.

To see the “form” of this argument we symbolize it as
P1 = P3,P1 F D3

Now, the student can prove that ((p; = p3) A p1) = p3

is a tautology. So, the given argument is valid.

Note Another “instance” of this argument follows if we

set p; = “2 < 17and p3 = “3 < 27,

The argument then reads:

“If2 < 1then3 < 2%,

“2 < 17

“Therefore, 3 <2”.
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This is still valid though some of the propositions, i.e.
2 < 1 forinstance, are false.
(i1) Consider the following argument:
“If Mary graduates then she gets a job”.
“Mary does not get a job”.
“Therefore Mary does not graduate™.
Symbolized, this becomes
P2 = Par (2 ps) F (4p2).
Since ((p1 = pa) A (=pa)) = (=py) is a tautology,
then the given argument is valid.
(iii) Consider the following argument:
“Either Mary or John graduate”.
“John does not graduate”.
“Therefore Mary graduates™.
Symbolized, this becomes p, V py, (= p1) F p,.
Since [(p, Vp1) A (= p1)] = p, is atautology, then the
given argument is valid.
(iv) Consider the following argument:
“If Mary graduates then she gets a job”.
“If Mary gets a job then she earns money”.

“Therefore if Mary graduates then she earns money”.
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Symbolized, this becomes
P2 2 Pa,Ps 2 Ps b P2 = Ps.
Now, [(pz = pa) A (P4 = ps)] = (P2 > ps)isa
tautology. Then the given argument is valid.m
We can sum up the above by saying the following are all
valid:
Mp->aqptag;
(i)p=q,(=q) - (=p);
(ii)pVvg,(=q) Fp;
(iVip—>q,q—->1rF p-or.
Example.

Showthatp - q,pVv q + (= p) VvV (= q) is invalid.

p q pr>q pvq wo9ApPVe -~pvV-q P-Q
p Q

11 1 1 1 0 0

1 0 0 1 0 1 1

01 1 1 1 1 1

00 1 0 0 1 1

We do not have a tautology in the last column so the

argument is invalid. m
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Second Method to prove validity

Note If an argument is valid then (p; A p, A ...AD,) = C
IS a tautology, and so it is always true. So we need to
prove that it is never false. It can only be only false if c is
false and p; A p, A ... Ap, is true, ie. all py, Dy, ..., pr
are true. So, we never want to see a row in the truth table
where all the premises are true and the conclusion false.
This observation gives a second way of checking that an
argument is valid or not.

To check that an argument is valid or not we do the
following steps.

1. Identify the premises and conclusion of the argument.
2. Construct a truth table showing the truth values of all
the premises and conclusion.

3. Find the rows (called critical rows) in which all the
premises are true.

4. In each critical row, determine whether the conclusion
of the argument is also true.

(a) If in each critical row the conclusion is also true, then

the argument form is valid.
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(b) If there is at least one critical row in which conclusion
is false, the argument form is fallacy (invalid).

Example.

Determine whether the following argument is valid or

invalid.

P—q

_)
p
oo q

Solution.

The truth table for the premises and conclusion is:

pP—q

o| O | R, T

q -
1 1
0 0
1 1
0 1

The first line is the only critical line, where the premises
is true. We see that the conclusion is also true. Then the

given argument is valid. m
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Example.
Isp—->q,pVvVqtF (=p)V(=q)isvalid?
Solution.

We look at the truth table:

P|q|pP—>q|pPVY (pﬁq);\(qu) ﬂpéﬂq P-Q
1(1] 1 1 1 0 0
110/ O 1 0 1 1
011 1 1 1 1 1
0,0/ 1 0 0 1 1
In the first line the conclusion is false, but all premises

are true. Hence the argument is invalid.

This method requires fewer columns than in the first
method. m

Is there an “instance” of the above argument which is
“obviously” invalid?

Try looking in the “World of Mathematics”, for instance,
choosingp =“3 > 2”andgq = “2 > 1”.

Then the argument becomes:

If3 > 2then2 > 1,

Either3 > 2o0r2 > 1,

Therefore, either 3 < 2o0r2 < 1.
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Both premises are true but the conclusion is false. On the
basis that we never want a false conclusion to follow
from true premises, this argument is invalid.

But be careful! Consider another instance.

Soletp = “Assiutisacity” and g = “Suhag is a city”.
Then the argument becomes:

“If Assiut is a city then Suhag is a city”.

“Either Suhag or Assiut is a city”.

“Therefore, either Suhag is not a city or Assiut is not a
city”.

If | tell you that Suhag is a city but Assiut is not a city
then you can check that all the propositions in this
argument are true. But the argument is still invalid. It is a
case of the conclusion, though true, not following

logically from the true premises.
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Example.
Isp - (s> (=r)),p > r,pF =sisvalid?
Solution.

We look at the truth table:

p r s|ar|s>-=r | p>(->-r) p-or p|-s
1/1/1 O 0 0 1 11 0
110 0 1 1 1 1] 1
1101 1 1 1 0 11 0
10 0] 1 1 1 0 1 1
01/1 0 0 1 1 0 0
0/1 0 0 1 1 1 0] 1
0,01 1 1 1 1 0 O
0/]0 0 1 1 1 1 0] 1

We look at each row in turn. We look to see if on any row
we have a case of all the premises being true with the
conclusion false. For instance in the first row we see that
premises are 0, 1, 1 and the conclusion 0. This is
allowable. By checking each row we see that each row is
allowable, that is, we never have a case of all premises
true with the conclusion false.

Hence the argument is valid. =
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Example.

Determine if the next arguments is valid or invalid.
Dp-qp->rr-p->(QAT),
@Qp—->qr—-s-qV-as,rvagkpe r.

Solution.

We use the critical lines where in (2) we need to construct

2% =16 lines.

(1) We look at the truth table:

Pl Aa ]| rjgAar|p=>q]| p=>r | p—=>(QAT)
1] 1] 1 1 1 1 1
1] 110 0 1 0 0
110 | 1 0 0 1 0
11010 0 0 0 0
0] 111 1 1 1 1
0110 0 1 1 1
01011 0 1 1 1
0,010 0 1 1 1

Here the critical lines are (1), (5), (6), (7), and (8). The
conclusion is true in all of these lines. So, the argument is

valid.

(2) (Exercise for the student).
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Note | have given here two methods for using a truth
table to check whether p,, p,, ...,p, F c is valid or not.
Do not mix up these methods!

In the first method use a truth table to work out the truth
values of (p; A p, A...Ap,) = c, and hope that it is
always true, i.e. a tautology.

In the second method construct a table containing a
column for each of the p,, p,, ... up to p, along with c
and hope that there is no row with all the p; true and ¢
false.

The second method of proving validity needs a smaller
number of columns than the first, but if the number of
basic propositions p, g, r, etc. is large then the tables in
both methods need a large number of rows. Thus the
tables get cumbersome in both methods and an alternative
method is necessary (Rules of inference of propositional
logic and quantifiers).

If an argument is invalid there is sometimes a quick

method of showing this.
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Example.

Showthat (p V q) — s,q —» s F sisinvalid.
Solution.

We do this by trying to make the conclusion false and the
premises all true.

The conclusion if false if we choose s to be false. Then

q — s can be true only if g is false.

Finally, for (p vV q) — sto be true we requirep v g to
be false, and so p must be false.

Hence if all of p, g and s are false (i.e. the bottom row of
the truth table), we see that all the premises are true but
the conclusion is false. Hence the argument is invalid. =
Note.

To determine whether the argument which contains n
variables is valid or invalid we need 2™ lines. It is
difficult to use truth table for large n. So, we use the
definition of the valid argument. We find a critical line
with false conclusion. If not we have a valid argument.

Example.

Determine if the next arguments is valid or invalid.
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@p—=>qq->@->r)prp->(AT);
b)p—>qr->-pr-qraq.
Solution.
(a) Exercise.
(b) Starting with the conclusion and assume g is 0. The
first premise p — q is 1 when p is 0. So, the third premise
r — g is 1 whenris 0. This implies that the second
premise r — —p is 1. Therefore the given argument is
invalid.

We have obtained the following critical line:

p g rMp=>q r—>-p | r—=>q

0 0 0 1 1 1 0
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e Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument
form is valid. We do this by showing that whenever the
premises are true, the conclusion must also be true.
However, this can be a tedious approach. For example,
when an argument form involves 10 different
propositional variables, to use a truth table to show this
argument form is valid requires 21° = 1024 different
rows. Fortunately, we do not have to resort to truth tables.
Instead, we can first establish the validity of some
relatively simple argument forms, called rules of
inference. These rules of inference can be used as
building blocks to construct more complicated valid
argument forms. We will now introduce the most
important rules of inference in propositional logic.

The tautology (p A (p = q)) — q is the basis of the rule
of inference called modus ponens (Law of Detachment).
This Latin term means “Method of affirming” (since the
conclusion is an affirmation). This tautology leads to the
following valid argument form, which we have already

seen in our initial discussion about arguments:
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p
P—4q
. q
In particular, modus ponens tells us that if a conditional
statement and the hypothesis of this conditional statement
are both true, then the conclusion must also be true.
Example.

Suppose that the conditional statement “"if n > 3, then
n? > 9" is true , consequently if n > 3, then by modus
ponens n? > 9.m

Example.

Suppose that the conditional statement "If it snows today,
then we will go skiing™ and its hypothesis, "It is snowing
today," are true. Then, by modus ponens, it follows that
the conclusion of the conditional statement, "We will go

skiing" is true. m

As we mentioned, a valid argument can lead to an
incorrect conclusion if one or more of its premises is

false. We illustrate this again in the following example.
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Example.

Determine whether the argument given here is valid and
determine whether its conclusion must be true because of

the validity of the argument.

"If V2 > 3 then(vZ)~ > (3)2 . We know that v2 > g

Consequently, (\/E)z =2> (3)2 =

SNJ R

Solution.

Let p be the proposition "v2 > % and g the proposition

2
"2 > (g) ". The premises of the argument are p — g and

p, and q is the conclusion. This argument is valid because

it Is constructed by using modus ponens, a valid argument
form. However, one of its premises 2 >% is false.

Consequently, we cannot conclude that the conclusion is

true. Furthermore, note that the conclusion of this

. 9
argument is false, because 2 < -,
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The following table lists some important rules of inference

Rule of inference Tautology Name
p p-opVg Addition
~pVvVq
PAq PAQ—D Simplification
o p
p .
0 PAG=PAG Conjunction
S pAQq
p_P)q AP~ q)—q Modus
ponens
p:‘lq (mgA(@->q) - -p Modus
tollens
—p
Z : :‘I (p->A(@->1)->(-T1) Hypothetical
syllogism
p 7T
pVq (pv@) A=p) > q Disjunction
~P syllogism
P Vvq (pv@)A(=pvr)) > (qVT) Resolution
pvr

L qVrT
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Exercise

Which rule of inference is used in each argument below?
© “Alice is a Math major”.
Therefore, “Alice is either a Math major or a CSI
major”’.
© “Jerry is a Math major and a CSI major”.
Therefore, “Jerry is a Math major”.
© “If it is rainy, then the pool will be closed”. “It is
rainy”.
Therefore, “the pool is closed”.
© “If it snows today, the university will close”. “The
university is not closed today”.
Therefore, “it did not snow today”.
© “If I go swimming, then | will stay in the sun too
long”.
“If | stay in the sun too long, then | will sunburn”,
Therefore, “if | go swimming, then | will sunburn”.
© “l go swimming or eat an ice cream”. “l did not go
swimming”.”

Therefore, “I eat an ice cream”.
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Example.

State which rule of inference is the basis of the following
argument

“It 1s below freezing now™.

Therefore, “it is either below freezing or raining now”.
Solution.

Let p be the proposition “It is below freezing now” and
let g be the proposition “It is raining now”. Then this

argument is of the form
p

~pVq
This argument uses the addition rule. m
Example.
State which rule of inference is used in the argument:
“If it rains today, then we will not have a barbecue today.
“If we do not have a barbecue today, then we will have a
barbecue tomorrow.”
Therefore, “if it rains today, then we will have a barbecue

tomorrow.”
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Solution.

Let p be the proposition “It is raining today”, let g be the
proposition “we will not have a barbecue today” and let r
be the proposition “we will have a barbecue tomorrow”.
Then this argument is of the form:

pP—q
q—T

P OoT
Hence, this argument is a hypothetical syllogism. m

Example.

State which rule of inference is the basis of the following
argument:

“It 1s below freezing and raining now”.

Therefore, “It is below freezing now.”

Solution.

Let p be the proposition “It is below freezing now,” and
let g be the proposition “It is raining now.” This argument
is of the form

pAq

This argument uses the simplification rule. m
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Example.

State which rule of inference is the basis of the following
argument:

“If Zeus is human, then Zeus is mortal.”

“Zeus is not mortal.”

Therefore, “Zeus is not human.”

Solution.

Let p be the proposition “Zeus is human,” and let g be the
proposition “Zeus is mortal.” This argument is of the

form

P—q
q

oo —|p
The fact that this argument is valid is called Modus

Tollens which means (Method of denying) since the

conclusion is denial. m
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e Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference
are often needed to show that an argument is valid.

Example.

Show that the hypotheses:

» It is not sunny this afternoon and it is colder than
yesterday.

» We will go swimming only if it is sunny.

» If we do not go swimming, then we will take a canoe
trip.

» If we take a canoe trip, then we will be home by
sunset.

Lead to the conclusion:

» We will be home by sunset.

Solution.

Main steps:

1. Translate the statements into proposional logic.

2. Write a formal proof, a sequence of steps that state
hypotheses or apply inference rules to previous steps.

Assume the following propositions:
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p: it is sunny this afternoon

q: it is colder than yesterday

r: we will go swimming

s: we will take a canoe trip

t: we will be home by sunset

Then the hypothesesare =p Aq,r — p,—r — s,

s — t, and the conclusion is simply t.

We construct an argument to show that desired

conclusion as follows:

Step Reason

(1) -—pAq | Hypothesis

2 - Simplification using step (I).

(3) r — p | Hypothesis

4 -—r Modus tollens using (2) and (3)
(5) —r — s | Hypothesis

(6) s Modus ponens using (4) and (5)
(7) s—t Hypothesis

8) t Modus ponens using (6) and (7)
Conclusion
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Example.

Using rules of valid inference to solve the problem:

(a) If my glasses are on the kitchen table, then | saw them
at breakfast.

(b) I was reading the newspaper in the living room or |
was reading in the kitchen.

(c) If I was reading the newspaper in the living room.
then my glasses are on the coffee table.

(d) 1 did not see my glasses at breakfast.

(e) If I was reading my book in bed, then my glasses are
on the bed table.

(f) If I was reading the newspaper in the kitchen, then my
glasses are on the kitchen table.

Where are the glasses?

Solution.

p : my glasses are on the kitchen table.
q : | saw them at breakfast.
r : 1 was reading the newspaper in the living room.

s . | was reading the newspaper in the kitchen.

—+

. my glasses are on the coffee table.

C

. | was reading my book in bed.
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v : my glasses are on the bed table.

Then the given statements are:

@p—-q;(0)rvs;(c)r >t

(d) =g; (&) u—-v;(f)s—>np.

We construct an argument to show that desired

conclusion as follows:

Step Reason

Dp—q Hypothesis (a)

(2) 1q Hypothesis (d)

(3) =~ —p Modus tollens using (1) and (2)

ds—-p Hypothesis (f)

(5) Conclusion (3)

(6) - =s Modus tollens using (4) and (5)

(NHrvs Hypothesis (b)

8) ~r disjunctive syllogism using (6)
and (7)

Qr-t Hypothesis (c)

(10) t Modus Ponens using (8) and (10)

Hence t is true and the glasses are on the coffee table.m
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eResolution and Automated Theorem Proving

We can build programs that automate the task of

reasoning and proving theorems.

Many of these programs make use of a rule of inference

known as a . This rule of inference is based on
the tautology ((p V@) A(=p V1)) = (g V).

The final disjunction in the resolution rule, gvr, is
called the

If we express the hypotheses and the conclusion as
clauses (possible by CNF, a conjunction of clauses), we
can use resolution as the only inference rule to build
proofs!

This is used in programming languages like Prolog.

It can be used in automated theorem proving systems.
Example.

Use resolution to show that the hypothesis:

"Ahmed is skiing or it is not snowing"

and

"It is snowing or Ali is playing hockey"

imply that "Ahmed is skiing or Ali is playing hockey".
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Solution.

p: it is snowing

q: Ahmed is skiing
r: Ali is playing ho

ckey

We can represent the hypothesisas -=pvVgandpVvr,

respectively. Using resolution, the proposition g vV r

"Ahmed is skiing or Ali is playing hockey" follows.

*Proofs that use exclusively resolution as inference rule

Step 1: Convert hypotheses and conclusion into clauses:

Original hypothesis | equivalent CNF | Hypothesis as list of clauses
(pAg) VT (pvr)A(gVvr) | (pVvr), (gVr)

T — s (=1 V s) (=1 Vs)

Conclusion equivalent CNF | Conclusion as list of clauses
pVs (pVs) (pVs)

Step 2: Write a proof based on resolution:

Step Re

ason|

1. pVvr hypothesis
2. =1V s | hypothesis
3.pVs resolution of 1 and 2
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Example.

Show that the hypotheses:

@ —s /\ c translates to clauses: —s, ¢
@ w — s translates to clause: (—w V s)

@ —w — t translates to clause: (w

V)

@ t — h translates to clause: (=t h)
lead to the conclusion:

e /i (it is already a trivial clause)

Note that the fact that p and —p Vv q implies g (disjunctive syllogism) is a

special case of resolution, since p v 0 and —p V q give us 0 V g which is

equivalent to g.

Proof.

Resolution-based proof:

Step Reason

1. —s hypothesis

2. —w Vs | hypothesis

3. —w resolution of 1 and 2

4. wVt hypothesis

ho t resolution of 3 and 4

6. =tV h | hypothesis

7. h resolution of 5 and 6 .
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eFallacies
Fallacy = misconception resulting from incorrect
argument.

» Fallacy of affirming the conclusion
Based on

(=N qg)=>p

which is NOT A TAUTOLOGY.
Example.
If prof gives chocolate, then you answer the question.
You answer the question. We conclude the prof gave
chocolate.m
» Fallacy of denying the hypothesis
Based on

((p = q) A —p) = —q
which is NOT A TAUTOLOGY.
Example.
If prof gives chocolate, then you answer the question.
Prof doesn't give chocolate. Therefore, you don't answer

the question. =
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e Rules of Inferences for Quantified Statements

We have discussed rules of inference for propositions.
Now, we will describe some important rules of inference
for statements involving quantifiers. These rules of
inference are used extensively in mathematics arguments,
often without being explicitly mentioned.

% Universal instantiation is the rule of inference used to
conclude that P(c) is true, where c is a particular member
of the domain, given the premise VxP(x). Universal
instantiation is used when we conclude from the
statement “All women are wise” that “Huda 1s wise”,
where Hodi is a member of the universe of discourse of
all women.

% Universal generalization is the rule of inference that
states that VxP(x) is true, given the premise that P(c) is
true for all element ¢ in the domain. Universal
generalization is used when we show that VxP(x) is true
by taking an arbitrary element ¢ from the domain and
showing that P(c) is true. The element c that we select
must be arbitrary, and not a specific, element of the

domain. That is, when we assert from VxP(x) the
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existence of an element ¢ in the domain, we have no
control over ¢ and cannot make any other assumptions
about ¢ other than it comes from the domain. Universal
generalization is used implicitly in many proofs in
mathematics and is seldom mentioned explicitly.
However, the error of adding unwarranted assumptions
about the arbitrary element c¢ when universal
generalization is used is all too common in incorrect
reasoning.

«Existential instantiation is the rule that allows us to
conclude that there is an element c in the domain for
which P(c) is true if we know that 3xP(x) is true.

We cannot select an arbitrary value of ¢ here, but rather it
must be a ¢ for which P(c) is true. Usually we have no
knowledge of what c is, only that it exists. Because it
exists, we may give it a name (c) and continue our
argument.

»Existential generalization is the rule of inference that
Is used to conclude that 3xP(x) is true when a particular

element ¢ with P(c) true is known. That is, if we know
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one element c in the domain for which P(c) is true, then

we know that 3xP (x) is true.

We summarize these rules of inference for statement.

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name

YxPlx)
. Pilc)

Universal instantiation

Pic) for an arbitrary ¢

) Universal generalization
. WxPix)

dx Pix)

Existential instantiation
. P(¢) for some element ¢

P{c) for some element ¢
. dx Pix)

Existential generalization

We will illustrate how some of these rules of inference
for quantified statements are used in the following
examples.

Example.

State which rule of inference is applied in the following
argument.

Let c be any student.

“Student c has a personal computer”,

Therefore, “all student has a personal computer”.
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Solution.

Determine individual propositional function
P(x): x has a personal computer.

Domain: all students.

The argument using P(x):

P(c) for an arbitrary ¢
S Pix)
Domain: all students

Universal generalization

(c is an arbitrary element of the domain.)
Example.

Show if Vx (P(x) A Q(x)) is true then VxP(x) A VxQ(x)
Is true. (using direct technique)

Solution.

Assume Vx (P(x) A Q(x)) Is true.

If a is in the domain then P(a) A Q(a) is true by
universal instantiation.

So, P(a) is true and Q(a) is true.

Element a can be any element in the domain.

So, VxP(x) is true and VxP(x) is true by universal
generalization.

Thus, VxP(x) AVxQ(x) istrue. m
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Example.

State which rule of inference is applied in the argument.
There is a person in the store.

Therefore, some person c is in the store.

Solution.

Determine individual propositional function

P(x): x is in the store.

Domain: all people

The argument using P(x):

dx Pix)
.. P(c) for some element ¢

Existential instantiation
(c is some element of the domain.)
Example.
State which rule of inference is applied in the argument.
His dog is playing in the park.
Therefore, there is a dog playing in the park.
Solution.
Determine individual propositional function
P(x): x is playing in the park.
c: his dog
Domain: all dogs
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The argument using P(x).

P(c) for some element ¢

) Existential generalization
Jodx P(x)

.1
Example.
Show if 3x (P(x) A Q(x)) is true then AxP(x) A IxQ (x)
Is true. (using direct technique)
Solution.
Assume Jx (P(x) A Q(x)) is true.
Let a be some element of the domain, that P(a) A Q(a) is
true by existential instantiation.
So, P(a) is true and Q(a) is true.
So, AxP(x) is true and IxP(x) is true by Existential
generalization.
Thus, 3xP(x) A 3xQ(x) istrue. m
Example.
Show that the premises “Everyone in this discrete
mathematics class has taken a course in computer
science” and “Aly 1s a student in this class” imply the

conclusion “Aly has taken a course in computer science”.
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Solution.

D(x) : x is in the discrete math class"

C(x) : x has taken a course in computer science"

The argument;
Vx(D(x) - C(x))
D(Aly)

. C(Aly)

Then the premises are Vx(D(x) — C(x)) and D(Aly)

The conclusion is C(Aly)

The following steps can be used to establish the

conclusion from the premises.

Step

Reason

1. Vx(D(x) - C(x))

Premise

2. D(Aly) - C(Aly)

Universal instantiation by 1

3. D(Aly)

Premise

4. C(Aly)

Modus ponens from 2 and 3
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Example.

Show that the premises:

“A student 1n this class has not read the book™ and

“Everyone in this class passed the first exam.”

imply the conclusion:

“Someone who passed the first exam has not read the
book™.

Solution.

C(x) : x isinthis class

B(x) : x has read the book

P(x) : x passed the first exam.
The premises:
EIx(C(x) A —|B(x)).
And
Vx(C(x) - p(x)).
The conclusion:
Elx(p(x) A —|B(x)).
The following steps can be used to establish the

conclusion from the premises.
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Step

Reason

(1) Elx(C(x) A —.B(x))

Premise

(2) C(a) A—=B(a)

Existential instantiation from (1)

(3) C(a)

Simplification form (2)

(4) Vx(C(x) = P(x))

Premise

(5) C(a) = P(a)

Universal instantiation from (4)

(6) P(a) Modus ponens from (3)and (5)

(7) ~B(a) Simplification of (2)

(8) P(a) A ~B(a) Conjunction from (6) and (7)

(9) 3x(P(x) A =B(x)) | Existential generalization from (8)
. u
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eCombining Rules of Inference for Propositions and
Quantified Statements

These inference rules are frequently used and combine
propositions and quantified statements:

eUniversal Modus Ponens

Vz(P(z) — Q(z))

P(a), where a is a particular element in the domain

Q(a)

Universal modus ponens is commonly used in
mathematical arguments. This is illustrated by the
following example.

Example.

Assume that “For all positive integers n, if n is greater
than 4, then n? is less than 2™ is true.

Use universal modus ponens to show that 100% < 2199,
Solution.

Let P(n) denote “n > 4” and Q(n) denote “n* < 2™.”
The statement “For all positive integers n, if n is greater

than 4, then n? is less than 2™ can be represented by
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vn(P (n) —» Q(n)), where the domain consists of all
positive integers.

We are assuming that vn(P (n) — Q(n)) is true. Note
that P(100) is true because 100 > 4. It follows by
universal modus ponens that

Q(100) is true, namely that 100% < 2190 u

eUniversal Modus Tollens

Another useful combination of a rule of inference from

propositional logic and a rule of inference for quantified
statements is universal modus tollens. Universal modus
tollens combines universal instantiation and modus

tollens and can be expressed in the following way:
Vo (P(z) — Q(x))

—Q(a), where a is a particular element in the domain

The verification of universal modus tollens is left as
exercise.

Exercise.

Justify the rule of universal modus tollens by showing
that the premises Vx(P (x) — Q(x)) and =Q(a) for a

particular element a in the domain, imply =P (a).
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Exercise Set (2.3)

1. Find the argument form for the following argument
and determine whether it is valid. Can we conclude that
the conclusion is true if the premises are true?

(a) If Socrates is human, then Socrates is mortal.

Socrates is human.

.. Socrates is mortal.
(b) If George does not have eight legs, then he is not
an insect.

George is an insect.

.. George has eight legs.
2. What rule of inference is used in each of these
arguments?
(a) Ahmad is a mathematics major. Therefore, Ahmad
IS either a mathematics major or a computer science
major.
(b) Aly is a mathematics major and a computer
science major. Therefore, Aly is a mathematics major.
(c) If it is rainy, then the pool will be closed. It is

rainy. Therefore, the pool is closed.
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(d) If it snows today, the university will close. The
university is not closed today. Therefore, it does not
snow today.
3. Use rules of inference to show that the hypothesis
"Randy works hard" "If Randy works hard, then he is a
dull boy", and "If Randy is a dull boy, then he will not get
the job" imply the conclusion "Randy will not get the
job™.
4. What rules of inference are used in this argument?
"No man is an island", "Aly is an island".
Therefore, "Aly is not a man".
5. Show that the argument form with premises
(pAt) > (rvs),q—= (uAt),u—p,and =s
and conclusion g — r is valid by using rules of inference.
6. For each of these arguments, explain which rules of
inference are used for each step.
(@) "Sami, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to write
programs in JAVA can get a high-paying job.
Therefore, someone in this class can get a high-paying
job™"
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(b) "Somebody in this class enjoys whale watching.
Every person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution”.

7. Determine whether the following argument is valid or

invalid.
(a) (b) (c)
p—-o>qVvr P—4q p—-(q-o71)
P = q q->@-r) r— s
r — S P u—-S
e - —— - pAQ
p— S r -~
u
(d) () ()
pP—q pP—q -p—->(pVr)
-p >T —qVs
r-s qes _'qs_;((;gﬁs)
47 q— (pV-s) e
q q

P<q
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CHAPTER (111)

METHODS OF PROOF

3.1 Introduction
e Some Terminology

An axiom is a statement that is given to be true.

A rule of inference is a logical rule that is used to deduce
one statement from others.

A theorem is a proposition that can be proved using
definitions, axioms, other theorems, and rules of
inference. Less important theorems sometimes are called
propositions. (Theorems can also be referred to as facts
or results). A theorem may be the universal
quantification of a conditional statement with one or
more premises and a conclusion. However, it may be
some other type of logical statements. We demonstrate
that a theorem is true with a proof.

A lemma is a pre-theorem or a result which is needed to
prove a theorem.

A corollary is a post-theorem or a result which follows

from a theorem (or lemma or another corollary).
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A definition is not theorem.

Example of definition: A number n is a perfect square

if n = k? for some integer k.

Definitions are automatically “if and only if” even

though they do not say so.

A proof is a valid argument that establishes the truth of a
theorem. The statements used in a proof can include
axioms, premises, if any, of the theorem and previously
proven theorems.

A conjecture is a statement that is being proposed to be a
true statement, usually on the basis of some partial
evidence. When a proof of a conjecture is found, the
conjecture becomes a theorem.

3.2 Methods of Proving Theorems

To prove a theorem of the form vx(P(x) —» Q(x)), our
goal is to show that P(a) — Q(a) is true, where a is an
arbitrary element of the domain, and then apply universal
generalization. In this proof, we need to show that a
conditional statement is true. Because of this we now
focus on methods that show that conditional statements

are true.
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& Direct Proofs

A direct proof shows that a conditional statement p — q
Is true by showing that if p is true, then g must also be
true, so that the combination p true and g false never
occurs. In a direct proof, we assume that p is true and use
axioms, definitions, and previously proven theorems
together with rules of inference, to show that q must also
be true.

Example.

Direct proof can be used to establish that the sum of two

even integers is always even:

(1) x and y are even integers (Hypothesis)
(2) x = 2a, y = 2b for integers a and b (Definition)
3 x +y =2a+ 2b = 2(a+ b) (Algebra)
(4) x + yiseven integers (Definition).m
Example.

Between every two distinct rationals, there is a rational.

Proof.

Letr,s e Qand r < s.Lett

(r + s)/2.
Thent € Q. We must showthatr < t < s.
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Given: r < s.

Addr: 2r < r + s.

Divideby 2: r < (r + s5)/2 = t.
Given: r <s.Adds: r + s < 2s.
Divideby 2: t = (r + 5)/2 < s.
Therefore r < t < s.m

Example.

The difference of any odd integer and any even integer is odd.

Proof:

1. Suppose a is any odd integer and b is any even integer. [We must show that a — b
is odd.]

2. By definition of odd, @ = 2r + 1 for some integer r, and b = 2s for some integer s.
3. Then a—b=Q2r+1)—2s by substitution

4 =2r—2s+1 by combining like terms

5. =2r—s)+1 by factoring out 2.

6. Let t=r—s.

7. Then tis an integer because it is a difference of integers.

8. So, by substitution, a —b = 2t + 1, where f is an integer.

9. Hence a — b is odd [as was to be shown].

Example.

Give a direct proof of the theorem "If n is an odd integer,
then n? is odd".

Proof.

(1) n is an odd integer (Hypothesis)
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(2) There exists k € Z suchthatn = 2k + 1

(Definition)
B)n? =Rk +1)?>=4k*+4k+1
=22k%*+2k) +1 (Algebra)
(4) n? is an odd integer (Definition)

Consequently, we have proved that if n is an odd integer,

then n? isan odd. =

Example.

Prove that the statement ““The sum of two irrationals is
irrational” 1s false.

Proof.

Counterexample:

Let o be irrational. Then — ¢ is irrational. « + (-a) =
0, which is rational.m

Exercise.

Give a direct prove " If a number is divisible by 6, then it

is also divisible by 3",

Definition.

Let n be a positive integer. The n triangle number T,, is

the number n(n + 1)/2.
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Definition.

Let n be a positive integer. The nth perfect square S,, is
the number n2.

Example.

Give a direct proof to the following statement:

“The sum of two consecutive triangle numbers is a
perfect square.”

Proof.

Let n be a positive integer.

T, + Thy:s =nn+ 1)/2+ n+ D(n+ 2)/2
=m?>+n+n*+3n+ 2)/2
(2n% + 4n + 2)/2
(n + 1)
= Sn+1-
Therefore, T,, + T4 = Sp4q foralln>1.m
Theorem.

If x,y € R, then x? + y? > 2xy.
Incorrect proof:

x? +vy?% > 2xy, x* +y*—2xy = 0.

(x — y)? = 0, which is known to be true.

What is wrong?m
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Definition.

Let x be a real number.

(a) The floor of x denoted | x|, is the integer n such that

n < x <n+ 1. Ifxis an integer, then | x| = x. If x is not
an integer, then | x| is the first integer such that | x| < x.
(b) The ceiling of x denoted [x], is the integer n such that
n-1 < x < n.Ifxisaninteger, then [x] = x.

If X IS not an integer, then [x] is the first integer such that
[x] > x. <

Theorem.

Let x and y be real numbers. Then
LxJ+LyJSx+y<Lx+yJ+1.

Direct Proof.
(1% inequality): By definition, [ x| < x andlyl < y.

Therefore, [x] + |y] < x + y.
(2 inequality): By definition, x + v < Lx + yJ + 1.«
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e Proof by Contraposition (indirect proof)
Direct proofs begin with the premises, continue with a
sequence of deductions, and end with the conclusion.
However, we will see that attempts at direct proofs often
reach dead ends. We need other methods of proving
theorems of the form Vx(P(x) —» Q(x)). Proofs of
theorems of this type that are not direct proofs, are called
indirect proofs. An extremely useful type of indirect
proof is known as proof by contraposition. Proofs by
contraposition make use of the fact that the statement
p — q IS equivalent to its contrapositive, =q — —p. This
means that the conditional statement p — g can be
proved by showing that its contrapositive, =g — —p, is
true.
Example.
Prove that if n is an integer and 3n + 2 is odd, then n is
odd.
Proof.
We first attempt a direct proof.
(1) 3n + 2 is odd (Hypothesis)
(2)3n+2=2k+1fork € Z (Definition)
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3)3n+1=2k (Algebra)
We see that 3n + 1 = 2k but there does not seen to be
any direct way to conclude that n is odd.
Because our attempt at a direct proof failed, we next try a
proof by contraposition.
The contrapositive of "If 3n + 2 is odd, then n is odd" is

"If n is even, then 3n + 2 is even".

(1) niseven (Hypothesis)
(2) n=2k,ke’Z (Definition)
(3) 3In+2 =6k + 2 (Algebra)

From (3), 3n+ 2 = 6k + 2 is even. Then the given
statement is true. =

Example.

Prove thatif n = ab,a,b € Z*,thena <+vnorb <+n
Proof.

Because there is no obvious way of showing that a < v/n

or b < +/n directly from the equation n = ab, where a
and b are positive integers, we attempt a proof by

contraposition.

(1) a>+nand b >+n (Hypothesis)

- 280 -



(2)ab >VvnVvn=n (Algebra)
(3)ab #n (Algebra)

Therefore the negation of the conclusion implies that the
hypothesis is false. Then the original conditional
statement is true. =

e Proof by Contradiction

Because the statement A —r is a contradiction whenever
r is a proposition, we can prove that p is true if we can
show that =p — (r A =) is true for some proposition r.
Proofs of this type are called proofs by contradiction.
Because a proof by contradiction does not prove a result
directly, it is another type of indirect proof.

Example.

Prove that v2 is irrational by giving a proof by
contradiction.

Solution.

(1) Suppose that v/2 is rational. (Hypothesis)
(2) V2= % ,a €Z,b€Z and gcd(a,b) = 1.

(Definition and hypothesis)
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(3) 2== (Algebra)

b2
(4) a? = 2b? (Algebra)
(5) a?iseven (Definition)
(6) aiseven (Algebra)

(7) a=2c,ceZ (Definition)
(8) b? = 2c? from (7) and (4)
(9 b iseven (Algebra)
(10) gcd(a,b) # 1 (a contradiction)

Hence our hypothesis that v2 is rational is false and
hence V2 is irrational. <«
e Proofs of Equivalent
To prove a theorem that is a biconditional statement, that
Is a statement of the form p < g, we show that p = q
and g — p are both true. The validity of this approach is
based on the tautology:

o=@ A @q->p)
Example.
Prove the theorem "If n is a positive integer, then n is

odd if and only if n? is odd".
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Solution.

This theorem has the form "p if and only g", where p is
"n is odd" and g is " n? is odd. To prove this theorem, we
need to show that p — g and g — p are both true.
Because we have shown before that both p - g and g -
p are true, we have shown that the theorem is true. <
Sometimes a theorem states that several propositions are
equivalent. Such a theorem states that

propositionsp,, p,, ..., P, are equivalent. This can be
written as p; & p, ©...< p,which states that all n
propositions have the same truth values and

consequently, that for all i and jwith 1 < i < nandl <

J < n,p;andp;are equivalent. One way to prove these

mutually equivalent is to use the tautology

[p1 <. pal
< [(p1 = p2) A2 = p3) Ao A (Pn = P1)]
This shows that if the implications
P17 P2,P2 2 P3)-+Pn 2 P1
can be shown to be true, then the proposition

P1,P2,--., Ppare all equivalent.
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Example.

Show that these statements are equivalent:
p1. n Isaneven integer.

p,. n— 1isan odd integer.

ps: m?  isaneven integer.

Solution.

We use a direct proof to show p; = p,. Suppose that n is
even. Thenn = 2 k for some integer k. Consequently,
n-1=2k-1= 2(k-1) + 1. This means that
n- 1 isoddsince itis of the form 2m + 1, wherem
Is the integer k — 1.
We also use a direct proof to show p, — ps.
Now, suppose that n — 1 is odd.
Thenwe have n-1 = 2 k + 1 for some integer k.
Hence
n=2k+ 2

Therefore

n? = 2k + 2)? = 4k* + 8k + 4 = 2(2k? + 4k + 2).

This means that n? is even.

- 284 -



To prove p; — p;, we use an indirect proof. That is, we
prove that if n is not even, then n? is not even. This is the
same as proving that if n is odd, then n? is odd, which we
leave it as exercise. =

e Disproving Universal Statements

Construct an instance for which the statement VxP(x) is
false. Also called Proof by Counterexample.

Example.

Disprove the statement: If a function is continuous at a
point, then it is differentiable at that point.

(Dis)proof:

Let f(x) = |x]| and consider the point x = 0.

f(x) is continuous at 0. f(x) is not differentiable at 0. «
Example.

Show that the statement “Every positive integer is the
sum of the squares of three integers” is false.

Solution.

To look for a counterexample, we try to write successive
positive integers as a sum of three squares. We find that
1=02+0%+1% ,2=0°+1%2+1% ,3=1*4+1%*+
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12 ,4=0%4+0%+2% ,5=0%4+1%2+2% ,6=1%+
12 + 22 but we cannot find a way to write 7 as the sum of
three squares. It follows that 7 is a counterexample. =

e Proof By Cases

A proof by cases must cover all possible cases that arise
in a theorem.

Example.

Prove that if n is an integer then n? > n.

Solution.

We can prove that n? > n for every integer by
considering three cases,

Case (i).n = 0, because 0% = 0, we see that 02 > 0.
It follows that n? > n is true in this case.

Case (ii). n = 1, when we multiply both sides of the
inequality n > 1 by the positive integer n, we obtain
n-n = n- 1. This implies that n? > n for n >1.

Case (iii). n < —1. Thus, n? > 0. It follows that n? > n.
Because the inequality n* = n holds in all three cases,

we can conclude that if n is an integer, thenn? >n. m
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Example.

Use a proof by cases to show that |xy| = |x]||y|, where x
and y are real numbers.

Solution.

We have four cases

Case (i).

We have xy > 0whenx =0 andy > 0, so that

Ixyl = xy = |xllyl .

Case (ii).

Note thatif x = 0 and y < 0,thenxy < 0 so that
lxyl = —xy = x(=y) = |x|lyl.

Case (iii).

Note that if x < 0 and y > 0, then xy < 0 so that

lxyl = —xy = (=x)y = |x||yl.

Case (iv).

Note thatwhenx < Oandy < 0, it followsthatxy >
0. Hence |xy| = xy = (=x)(—y) = [x]|y].

This completes the proof. =
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e Existence Proofs

Proofs of existential statements 3xP(x) are also called
existence proofs. Two types of existence proofs

(a) Constructive: Construct the object (Prove that it has
the necessary properties).

(b) Non-constructive: Argue indirectly that the object
must exist.

Example.

Between any two distinct irrationals there is a rational
and an irrational.

Constructive Proof.

Let o and $ be irrational numbers with a < .
Then 8 —a > 0.

Choose an integer n such that n(g - «) > 1.

1
Then ~< p-a.

Letm = [ng]- 1.

Thenm <nf <m+ 1.

Orm/n < fandnf -1 < m.

Thena < f-1/n = (nf-1)/n < m/n.
Therefore, « < m/n < B.
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Choose an integer k such that k(8 - m/n) > V2.
Divide by k: 8- m/n > V2/k.

Then 8 > m/n + V2/k.

Therefore, « < m/n < m/n +V2/k < B.m
Example.

The equation x? - 7y? = 1 has a solution in positive
integers.

Constructive proof.

Letx =8andy =3.Then 82-7 X 32 = 64-63 = 1.m
Example.

There exists x € R such that x°> - 3x + 1.
Non-constructive proof.

Let f(x) = x>- 3x + 1.

f(1) =-1 < 0and f(2) = 27 > 0.

f(x) i1s a continuous function. By the Intermediate Value
Theorem, there exists x € [1,2] suchthat f(x) = 0.
Example.

Show that there exist irrational numbers a and b such that

aP is rational.
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Solution.

We know that 2 is irrational. Consider the number

V27

Case 1.

If it is rational, we have two irrational numbers a and b,
namely a = V2 and b = V2.

Case 2.

V2" s irrational, then we can let a = V2 “and b =

\2
VZsoab =27 =27 ot =2

This proof is an example of a non-constructive existence
proof because we have not found irrational numbers a

and b such that a? is rational. Rather, we have shown that

either the pair a = v/2 and b = v/2 or the pair a = vz”
and b = /2 have desired property, but we do not know

which of these two pairs works. =
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Exercises Set (3)

1. Use the direct proof to prove that
@ (vOW(Vz)x+z=y+z->x=y).
(b) if x, y are two rational numbers, then x + y is rational.
(c) if for a,b,c € Z, a\b and a\c, then a\(bx + cy), where
X,y € Z.
(d) if a\b and b\c, then a\c fora,b,c € Z.
2. Let x be a positive real number. Then x is irrational iff the two
sequences |1 + xJ, [ 2+ 2x],[3 4 3x], ...
and
[1 + 1/x)l2 + 2/x)13 + 3/x] ...
together contain every positive integer exactly once.
3. Let x andy be real numbers.
(a) Prove that[x +y |- 1< x+y <[x]|+[yl.
(b) Is—[—xJ=[x]true for all real numbers x?
(c) Is x— 1 <[ x]J < x true for all real numbers x?
(d) 1sL2x] + L2y) =x] + Lyl + Lx + y].
4. Use proof by contraposition to prove that
(a) if n € Z with n? is odd, then n is odd.
(b) if there is no integer between 0 and 1 , then there is no
integer between nand n + 1.
(c) for x € Z, if 3|x?, then 3|x.
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5. Use the proof by contradiction to show that at least
four of any 22 days must fall on the same day of the
week.
6. Give a proof by contradiction of the theorem "If 3n +
2 is odd, then n is odd".
7- Prove that the square of an even number is an even
number using

(a) adirect proof.

(b) An indirect proof.

(c) a proof by contradiction.
8- Prove that if x and y are real numbers, then

max(x,y) + min (x,y) = x + Y.

9- Prove that the sum of two rational numbers is rational.
10- Show that these three statements are equivalent,
where a and b are real numbers:

(@) a < b;

a+b,
2 1

) a <

() == < b.
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11- Show that if a, b and c are real numbers anda # 0,
then there is a unique solution of the equation a x +
b = c.
12- Prove the triangle inequality, which states that if x
and y are real numbers, then|x| + |y| = |x + y|.
13. Show that there is a positive integer that can be
written as the sum of cubes of positive integers in two
different ways (give constructive proof).
14. Show that the equation x2 — 67y?> = 1 has a solution
in positive integers. (Give constructive proof).
15. Disprove the conjecture (Fermat): All integers of the
form 22" 4+ 1 for n > 1 are primes. (Give
counterexample n = 5).
16- Determine whether these are valid arguments.
(a) “If x2is irrational, then x is irrational. Therefore, if
X is irrational, it follows that x? is irrational”.
(b) “If x? is irrational, then x is irrational. The number
x = m? is irrational. Therefore, the number x = & is

irrational”.
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Chapter (1V)

Mathematical Induction

4.1 The Basic Principle

The basic principle of mathematical induction is as
follows. To prove that a statement holds for all positive
integers n, we first verify that it holds for n = 1, and then
we prove that if it holds for a certain natural number k, it
also holds for k + 1.

To visualize the idea of mathematical induction, imagine
an infinite collection of dominoes positioned one behind
the other in such a way that if any given domino falls
backward, it makes the one behind it fall backward also.
Then imagine that the first domino falls backward. What

happens? A They all fall down!

1

If the kth domino falls backward, it pushes the (k + 1)st domino backward also.
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Theorem 1.

(Principle of Mathematical Induction)

Let S(n) denote a statement involving a variable n.
Suppose

(1) S(1) is true ;

(2) if S(k) is true for some positive k, then S(k + 1)
is also true.

Then S(n) is true for all positive integers n.

Example.

Prove 1+3+5+ -+ (2n—1)=n? for all natural
numbers n.

Solution.

We shall prove the statement using mathematical
induction. Clearly, the statement holds when n = 1 since
1 = 12, Suppose the statement holds for some positive
integer k.

Thatis, 1+ 3+ 5+ -+ (2k — 1) = k2.

Consider the case n = k + 1. By the above assumption
(which we shall call the induction hypothesis), we have
1+345+-4+[2k+1)—1]

- 296 -



=[14+3+5+--4+QRk—-1]+ QR2k+1)
=k?+QR2k+1) =(k+1)?
That is the statement holds for n = k + 1 provided that it
holds for n = k. By the principle of mathematical
induction, we conclude that 14+3+54--+
(2n — 1) = n? for all natural numbers n. m
The principle of mathematical induction can be used to
prove a wide range of statements involving variables that
take discrete values. Some typical examples are shown
below.
Example.
Prove that 23™ — 1 is divisible by 11 for all positive
integers n.
Solution.
Clearly 23'—1 =122 is divisible by 11. Suppose
11|23* for some positive integer k.
For the case n = k + 1, we have
23k+t1 1 =23.23k-1=11.2.23k+ (23k - 1)
which is also divisible by 11. It follows that 23™ — 1 is

divisible by 11 for all positive integersn. =
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Example.
Let x > —1 be a real number.
Prove that (1 + x)™ = 1 + nx for all natural numbers n.

Solution.

The inequality holds for n = 1 since (1 + x)! = 1 + 1x.

Let (1 + x)* > 1 + kx for some positive integer k. For

the casen = k + 1,

1+ =10 +0*A+x)=> 1+ kx)(1+x)
=1+ (k+Dx+kx? =21+ (k+ Dx.

Hence, if the inequality holds for the case n =k, it also

holds for the case n = k + 1. It follows that (1 + x)™ >

1 + nx for all natural numbers n. m

4.2 Variations of the Basic principle

There are many variations to the principle of

mathematical induction.

Theorem 2. (Principle of Mathematical Induction, Variation 1)

Let S(n) denote a statement involving a variable n.

Suppose

(1) S(ky) is true for some positive integer k, ;

(2) if S(k) is true for some positive integer k > k,, then
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S(k + 1) is also true.
Then S(n) is true for all positive integers n > k,.

In some cases a statement involving a variable n holds
when n is 'Large enough', but does not hold when, say,
n = 1. In this case Theorem 1 does not apply, but the
above variation allows us to prove the statement.
Example.

Prove that 2™ > n? for all natural numbers n > 5.
Solution.
First, we check that 2°=32>25=052 so the
inequality holds for n = 5.
Suppose 2% > k? for some integer k > 5.
Then 2k+1 = 2.2% > 2k? > (k + 1)2.
The last inequality holds since 2k? — (k + 1)? =
(k — 1)?> — 2 > 0 whenever k > 5.
Hence, if the inequality holds for n = k, it also holds for
n =k + 1. By Theorem 2, 2™ > n? for all natural
numbersn = 5. =

Sometimes a sequence may be defined recursively, and

a term may depend on some previous terms. In particular,
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it may depend on more than one previous terms. In this
case Theorem 1 does not apply because assuming S(k)
holds for a single k is not sufficient. We need the
following.

Theorem 3. (Principle of Mathematical Induction, Variation 2)

Let S(n) denote a statement involving a variable n.
Suppose

(1) S(1) and S(2) are true;

(2) if S(k) and S(k+ 1) are true for some positive
integer k, then S(k + 2) is also true.

Then S(n) is true for all positive integers n.

Of course there is no need to restrict ourselves only to '
two levels'. Moreover, in the spirit of Theorem 2, there is
no need to start fromn = 1. We leave the formulation as
an exercise.

Example.

Let {a,} be a sequence of natural numbers such that a; =
5a,=13 and a,;, = 5a,,; —6a, for all natural
numbers n. Prove that a, = 2"+ 3™ for all natural

numbers n.
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Solution.
We have that a; =5 =2+ 3% and a, = 13 = 22 + 32,
Suppose aj, = 2%+ 3% and agy, = 2K + 381 for
some natural number k.
Then
Ag+z = DAgt1 — 6ax

= 5(2k+1 4 3k+1) — g(2k + 3K)

= 4.2 4+ 9.3k = 2k+2 4 3k+2
Hence, if the formula holds forn =k and n =k + 1, it
also holds for n = k + 2. By Theorem 3 we have a,, =
2™+3™ for some natural number n. =
Sometimes to prove a statement we need to consider the
odd cases and even cases separately. To combine them
nicely into one single case, we need the following.
Theorem 4. (Principle of Mathematical Induction, Variation 3)
Let S(n) denote a statement involving a variable n.
Suppose
(1) S(1) and S(2) are true;
(2) if S(k) is true for some positive integer k, then

S(k + 2) is also true.
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Then S(n) is true for all positive integers n.
Although Theorem 2 and Theorem 3 look similar, their
nature is quite different. Again there is no need to restrict
ourselves to considering only two initial cases, but we do
not bother to go into the details.
Example.
Prove that for all natural numbers n, there exist distinct
integers x, y, z for which
x% +y?% + z%2 = 14",

Solution. For n =1 and n = 2, such integers exist as
1% 4+ 2% 4+ 3% = 14 and 4% + 6 + 12% = 142,
Suppose for n = k (where k is positive integer), such
integers exist, i.e. x2 + y# + zZ = 14* for some distinct
Integers xo, yo, Zo.
Then for n = k + 2, such integers also exist because

(14x.)% + (14y5)? + (142.)? = 14%%2,
By Theorem 4, the result follows. m
In Theorem 2, we remarked that sometimes assumption
of S(k) for a single k may not be sufficient, so we may
need to assume the statement holds for two values (and

accordingly we need to verify two initial cases).
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We also remarked that there is no need to restrict
ourselves to only two values; we could generalize to any
finite number of cases.

The following variation gives a further generalization of
this, assuming all cases from 1 to k.

Theorem 5.

(Principle of Mathematical Induction, Variation 4)

Let S(n) denote a statement involving a

variable n. Suppose

(1) S(1) is true;

(2) if for some positive integer k,

5(1),5(2),...,S(k) are all true, then S(k + 1) is

also true.

Then S(n) is true for all positive integers n.

Example.

Let a4, a,,... be a sequence of real numbers satisfying
aiyj <a;+ajforall i,j=1,2,..

Prove that
a; as an
Gyt+t—+5++—=2a
15273 n n
for each positive integer n.
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Solution.

Clearly, the inequality holds for n = 1.

Suppose the inequality holds for n = 1,2, ..., k for some
positive integer k.

Then by adding the inequalities

a; = aq

We get

ka1+(k—1)—+ +?2a1+a2+...+ak

[ e.,

(k+1)(a1+7+ - k)>2(a1+a2+ o+ ay)

= (a; +axg) + (ap + ax_1) + -+ (ax + ay)

It follows that
(k+1) (@y + 2+ + %+ %) > (k4 Daggys.

Hence
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ak+1

aq + 24+t = Apy1s

e., the inequality holds for n = k + 1.
By Theorem 6, the result follows. m

Finally, we introduce a special variation, commonly
known as backward induction.

Theorem 6. (Backward Induction)

Let S(n) denote a statement involving a variable n.
Suppose

(1) S(n) is true for infinitely many natural numbers n ;
(2) if S(k) is true for some positive integer k > 1, then
S(k — 1) is also true.

Then S(n) is true for all positive integers n.

The most typical example backward induction is used is
perhaps in the proof of the AM-GM inequality, as shown
in the example below.

Example. (AM-GM Inequality)

Prove that for positive integers a4, a,, ..., a,,

a1+a2+”'+an
> "a,a, ...a,.

n
In other words, the arithmetic mean (AM) is always

greater than or equal to the geometric mean (GM).
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Solution.
. + .
From (v/a; —+va;)? = 0, we obtain % >+Ja,a,,i,e.

the inequality holds for n = 2. Suppose the inequality
holds when n = k for some positive integer k. Consider
the case n = 2k. Using the case n = 2 and the induction

hypothesis, we have

a;t+as+---+azg _ l (a1+a2 as+ay + . + azk_1+a2k)
2k k 2 2 2

> va1a2+\/a3a4+~-+\/a2k_1a2k
_ k

k
= \/Va1a2- \/a3a4 \/aZk—laZR

> ajay ...ay
[, e. the inequality also holds for n = 2k. By Theorem 1,
the inequality holds for all positive powers of 2. In other
words, condition (1) in Theorem 6 is satisfied. Again, we
suppose the inequality holds when n = k for some

positive integer k, i.e.,

a1+a2 +"'+ak
k > “laja, ...a.
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a1+a2+---+ak_1
k-1

Applying the substitution a; = and

simplifying (the details of which are left as an exercise),

a1+a2 +"'+ak_1 >

we get —

k_Val + az + + ak_]_
I, e. the inequality also holds when n = k — 1. By
Theorem 6, the inequality is proved. m

% 4.3 Miscellaneous Examples

Most of the examples we have seen deal with
algebraic (in) equalities and problems in number theory.
One should not be misled to think that these are the only
areas in which the method of mathematical induction
applies. In fact, the method is powerful that it is useful in
almost every branch of mathematics. In this section we
shall see some miscellaneous examples.

Example.

Prove that

_ _ _ ~(n+1)86 no 6
sin@ + sin 20 + --- 4+ sin n@ = sin > sm7csc§

for all positive integers n.

Solution.

When n = 1, the right hand side is:
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.9.9 o ng
sinfsin - csc— = sinf.

So the formula holds for n = 1.

Suppose the formula holds forn =k, i. e.

(k+1)6 ko 0
SIN—CSC—

. i 2 . — o
sin@ +sin 20 + --- + sin k@ = sin > > >

Consider the case n = k + 1.
By the induction hypothesis,
sinf + sin 20 + -+ + sin k6 + sin(k + 1)6

(k+1)6 ke 6
=sin—, sin— csc5+51n(k+ 1)6

k+1)6 . k6 0 . (k+1)6 k+1)6
(kt1) sm7csc5+25m( ) cos( 2)

= sin
= sin———csc—|sin— + 2sin—cos
2 2 2 2 2

. (k+1)6 61 . k6 )
=sm( )csc5[51n7+sm(

an (¢ 200

C(k+1o 6 [ ko 6 (k + 1)9]

~+
2 2

0 (k+1)9) n

= sin———csc—|sin— + sin———— —sin—
2 2 2 2 2

. k+1)+1]60 . (k+1)60 0
=31n[( )+1] sm( 2) CSCE

(k+1)6 9[ k6  (k+2)6 kﬂ

By the principle of mathematical induction, the formula

holds for all positive integers n. m
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Example.

Prove that (3 ++v5)" + (3 —+/5) is an even integer for
all natural numbers n.
Solution.
Write f(n) = a™ + ™ where a =3 ++/5 and g = 3 —
V5.
It is straightforward to check that f(1) =6 and f(2) =
28 are even integers. Suppose f(k) and f(k + 1) are
both even integers for some positive integer k. Consider
the case n = k + 2. Note that « and S are roots of the
equation x?> — 6x + 4 = 0.
So a? = 6a — 4 and B? = 68 — 4, and thus
Flk +2) = a*? + pl+?

= ak(6a — 4) + p*(6p — 4)

= 6(a**t + 1) — 4(ak + gF)

= 6f(k +1) = 4f (k)
It follows that f (k + 2) must also be an even integer.
By mathematical induction, we conclude that f(n) is an

even integer for all natural numbers n. m
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Example.

Prove that, given two or more squares, one can always
cut them (using only compasses, straight edge and
scissors) and reform them into a large square.

Solution. In the case of two squares, we resort to the

following diagram:

We leave it to the reader to work how the dotted lines are
to be drawn and to verify that such constructions are
indeed possible using compasses and straight edge.

Suppose the statement is true in the case of k squares.
Then, in the case of k + 1 squares, we can cut k of the
squares to form a large square, according to the induction
hypothesis. This leaves only two squares, but we have
shown that two squares can be cut to form one large
square. By the principle of mathematical induction, the

statement is proved. m
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Example.

In a party there are 2n participants, where n is a natural
number. Some participants shake hands with other
participants. It is known that there do not exist three
participants who have shaken hands with each other.
Prove that the total number of handshakes is not more
than n? .

Solution.

When n = 1, the number of handshakes is at most 1 =
12.

Suppose that with 2k people, the total number of
handshakes is at most k2 under the given condition.
Consider thecasen = k + 1,i.e. 2k + 2 people.

Pick two people who have shaken hands with each other
(if no such people exist, then the total number of
handshake would be zero), say A and B. Under the
induction hypothesis, there are at most k2 handshakes
among the other 2k people.

Now by the given condition, none of these 2k people
have shaken hands with both A and B. So these 2k people

have at most 2k handshakes with A and B.
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Taking the handshake between A and B into account, the
total number of handshakes is at most k? + 2k + 1 =
(k + 1)2. By the principle of mathematical induction, the
result follows. m

4.4 Higher Dimensional Induction
Theorem 7. (Two- Dimensional Induction, Version 1)

Let S(m,n) denote a statement involving two variables
m and n. Suppose

(1) S(1,1) is true;

(2) if S(k,1) is true for some positive integer k, then
S(k +1,1) is also true.

(3) if S(h, k) holds for some positive integer h and k,
then S(h, k + 1) is also true.

Then S(m, n) is true for all positive integers m, n.
Theorem 7 can be easily understood. The first two
conditions together imply (by Theorem 1) that S(m, 1) is
true for all positive integers m. Thus, fixing m, this
together with condition (3) imply (by Theorem 1 again)

that S(m, n) holds for all positive integers n. As a result,
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S(m,n) holds for all positive integers m and n, as we
desire.

Example.

Let f be a function of two variables, with f(1,1) = 2,

fm+1,n) = f(m,n) + 2(m + n)
{f(m,n+ D=f(mn)+2(m+n-1)

For all natural numbers m and n. Prove that
fmn)=m+n)>—(m+n)—2n+2
For all positive integers m and n.
Solution.
We first check that f(1,1) =2=(1+1)?-(1+1) -
2(1)+2. Suppose f(k,1))=(k+1>—-(k+1)-—
2(1) + 2 = k? + k for some positive integers k. Then
fk+1,1)=f(k,1)+2(k+1)
=k?+k)+ @2k +2)
=[tk+D+1?-[(k+1)+1] —2(1) + 2.
Thus conditions (1) and (2) in Theorem 7 are satisfied.
Suppose f(h,k)=(h+k)> —(h+k)—2k+2 for
some positive integers h and k. Then
f(hk+1)=f(hk)+2h+k—1)
=th+k)Z?—-(h+k)—2k+2+2(h+k)-2

- 313 -



=(th+k+1D*—-(h+k+1)—-2(k+1)+2
Thus condition (3) in Theorem 7 is also satisfied.
It follows that f(m,n) = (m+n)2 — (m+n) —2n + 2
for all positive integersm and n. =
Theorem 7 is essentially applying Theorem 1 twice. The
following alternative version of the principle of two-
dimensional induction in some sense reduces a two-
dimensional problem into one dimension.

Theorem 8. (Two- Dimensional Induction, Version 2)

Let S(m,n) denote a statement involving two
variables m and n. Suppose

(1) S(1,1) is true;

(2) if for some positive integer k > 1, S(m,n) is

true whenever m +n =k, then S(m,n) is true
whenever m +n = k + 1.

Then S(m, n) is true for all positive integers

m,n.

Example.

For natural numbers p and g, the Ramsey number R(p, q)
Is defined as smallest integer n so that among any n

people, there exist p of them who know each other, or
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there exist g of them who don't know each other. (We
assume that if A knows B, then B knows A, and vice
versa.) Itis knownthat R(p,1) = R(1,q) =1
and Rp+1,9g+1)<R(p,q+1)+R(p+1,q)
For all natural numbers p and g. Deduce for all natural
numbers p, q that
R(p,q) < Cgflq_z.

Solution.
First, we check that R(1,1) = 1 = Ci*1 72
Assume that the desired inequality holds for all p, g with
p + q = k, where k is a positive integer.
Now consider R(p,q) with+qg =k + 1.
If either p = 1 or g = 1, the desired inequality follows
immediately.
If not, then notingthat (p —1)+qg=p+(q—1) =k,
the inductive hypothesis gives
Rp,q) <R(p—-1,9)+R(p,q—-1)

< CPHITS 4 RIS = P
In other words, the desired inequality holds whenever

p +q =k + 1. By Theorem 8 the result follows.m
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Exercise Set (4)

1- Prove by mathematical induction that the following statements

hold for all positive integers n.

(8) 12422+ +n% =n(n+ D (2n+ 1);

n(n+1)(n+2)(3n+1) .
12 ’

(b) 12x2+4+22%x3+-4+n*(n+1)=
(c) 4007™ — 1 is divisible by 2003;
(d) 2002™*2 + 2003%™*1 is divisible by 4005;

(e) n? >n+1;

1

1,1 n
e e H > =
(f)2+3+ tm 23

Q) I1x14+2%x2l4+-+nxnl=mn+1D!-1;

h) cos@ +cos26 + ...+ cosn@ =sinwcosﬂcscg— 1.
2 2 2

2- To apply the principle of mathematical induction we need to
verify two conditions, namely, the statement holds for n = 1, and
that if statement holds for n = k it also holds for n = k + 1. Can
you think of a (wrong) statement in which the second condition is
satisfied but the first one is not? That is, can you construct a
statement S(n) such that if S(k) true, then S(k + 1) must be true,
yet S(1) is not true?

3- Prove that for all natural numbers n,
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144+ ts<2--,
What is the significance of the above result on the convergence of
the series Y. n=2?
4- The Lucas sequence 1, 3, 4, 7, 11, 18, 29,....is defined by
a,=1 a,=3, a,=a,1+a,, forn=>3.
Prove that a,, < (1.75)™ for all positive integers n.
5- From a pack of 52 playing cards one extracts the 26 red cards
and pairs them up randomly. The back sides of each pair of cards
are then glued together, resulting in 13 cards with both sides
being 'the front'. Prove that it is always possible to flip the cards
so that the 13 sides facing upward are 4, 2,3, ...10,/, Q, K.
6- The Fibonacci sequence is defined as x, = 0,x; =1 and
Xn42 = Xn41 + xp, for all non-negative integers n. Prove that
(@) Xy, = Xpy1Xm—r + X Xp—r—q TOr all integers m > 1 and
0<r<m-1;

(b) x4 divides x4 for all positive integers d and k.
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CHAPTER (V)

ELEMENTARY NUMBER THEORY
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Chapter (V)
Elementary Number Theory

5.1 The Ring of Integers
Elementary number theory is largely about the ring of
integers, denoted by the symbol Z. The integers are an
example of an algebraic structure called an integral
domain. This means that Z satisfies the following
axioms:
(a) Z has operations '+' (addition) and "' (multiplication).
It is closed under these operations, in that if m,n € Z,
thenm+neZandm-n € Z.
(b) Addition is associative: If m,n,p € Z, then
m+n+p)=(m+n)+p
(c) There is an additive identity 0 € Z: For all n € Z,
n+0=nand0+n=n.
(d) Every element has an additive inverse: If n € Z,
there is an element —n € Zsuch that
n+(—n)=0and (—n) +n = 0.
(e) Addition is commutative: If m,n € Z, then

m+n=n-+m.
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(F) Multiplication is associative:
Ifm,n,p €Z, thenm-(n-p) =(m-n)-p.
(g) There is an multiplicative identityl € Z:
Foraln€eZn-1=nand1-n =n.
(h) Multiplication is commutative:
Ifm,n € Zthenm-n=n-m.
(i) The Distributive Laws hold:
Ifm,np€Zthen m-n+p)=m-n+m-pand
(m+n)-p=m-p+n-p.
(j) There are no zero divisors:
Ifm,n € Zand m-n = 0, then eitherm =0 orn = 0.
Remarks.
(a) As usual, we'll often abbreviate m - n to mn.
(b) The last axiom is equivalent to the Cancellation
Property: Ifa,b,c € Z,a + 0,and ab = ac, then b = c.
Example.
If n € Z, prove that 0 - n = 0.
Solution.
0-n = (04 0)-n (Additive identity)
= 0-n+ 0-n (Distributive Law)
Adding - (0 - n) to both sides, we get
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—-0n)+0-n=—0n)+0-n+0-n)
By associativity for addition,

—(0-n)+0-n=(—0-n)+0-n)+0-n.
Then using the fact that - (0 - n) and 0 - n are additive

inverses, we get

0=0+0-n.
Finally, O is the additive identity, so
0 =0-n<d

Example.
Ifn € Z, prove that-n = (—1) - n.
Solution.
In other words, the equation says that the additive inverse
of n (namely —n) is equal to (—1) - n.
What is the additive inverse of n?
It is the number which gives 0 when added to n.
Therefore, we should add (—1) - n and see if | get O:
(1) -n+n=(-1) n+1-n(Multiplicative identity)
=(—1+1)-n (Distributive Law)
= 0 - n (Additive inverse)
= (0. (Preceding result)
This proves that —n = (—1) - n. «
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e The integers are ordered --- there is a notion of greater
than (or less than). Specifically, for m,n € Z,m > n is
defined to mean that m — n is a positive integer --- and
element of the set {1, 2,3,...}.

Of course, m < n is defined to mean n > m.

m = n and n < m have the obvious meanings.

(K) The positive integers are closed under addition and
multiplication.

There are two order axioms:

eTrichotomy:

If n € Z, eithern > 0,n < 0, orn = 0.

Example.

Prove that if m > 0,n < 0, then mn < 0.

Solution.

Sincen < 0, 0 —n = —n is a positive integer.

m > 0 means m = m — 0 is a positive integer, so by
closure m - (—n) is a positive integer. By a property of
integers (which you should try proving from the axioms),
m-(—n) = —(m-n). Thus, —(m - n) is a positive
integer. So 0 — mn = —(mn) is a positive integer, which
means that mn < 0. <
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e The Well-Ordering Property of the integers sounds
simple: Every nonempty subset of the positive integers
has a smallest element. Your long experience with the
integers makes this principle sound obvious. In fact, it is
one of the deeper axioms for Z; for example, it can be
used to prove the principle of mathematical induction,
which we have discussed.

Example.

Prove that 3/2 is irrational number.

Solution.

The proof will use the Well-Ordering Property.

We'll give a proof by contradiction. Suppose that ¥/2 is a

rational number. In that case, we can writed/2 = % ,

where a and b are positive integers. Now

V2== so b¥Y2=aand2b®=d’

(To complete the proof, we are going to use some
divisibility properties of the integers that we haven't
proven yet. They're easy to understand and pretty

plausible, so this shouldn't be a problem.)
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The last equation shows that 2 divides a3. This is only
possible if 2 divides a, so a = 2c, for some positive
integer c. Plugging this into 2b3 = a3, we get

2b3 = 8c3,0r b3 = 4c3.
Since 2 divides 4¢3, it follows that 2 divides b3. As
before, this is only possible if 2 divides b, so b = 2d for
some positive integer d. Plugging this into b3 = 4¢3.
We get 8d3 = 4¢3, or 2d3 = ¢3.
This equation has the same form as the equation 253 =
a3, so it's clear that we can continue this procedure
indefinitely to get e such that ¢ = 2e, f such that d = 2f,
and so on.
However, since a = 2c, it follows that a > c; since ¢ =
2e, we have ¢ > e, so0 a > ¢ > e. Thus, the numbers
a,c,e,...comprise a set of positive integers with no
smallest element, since a given number in the list is
always smaller than the one before it. This contradicts

Well-Ordering. Therefore, my assumption that V2 is a

rational number is wrong, and hence /2 is irrational. <«
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e Finally, we want to mention a function that comes up
often in number theory.

Definition.

If x is a real number, then [x] denotes the greatest
integer function of x (Is it the floor of x?). It is the
largest integer less than or equal to x.

Lemma.

If x is a real number, then [x] + 1 > x > [x].

Proof.

By definition, x > [x]. To show that [x] + 1 > x, we'll
give a proof by contradiction. Suppose on the contrary
that [x] + 1 < x . Then [x] + 1 is an integer less than or
equal to x, which contradicts the fact that [x] is the
largest integer less than or equal to x. This contradiction
implies that [x] + 1 > x . «

Lemma.
If x,y € Rand X= y, then [x] > [y].
Proof.

Suppose x = y. We want to show that [x] = [y].
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Assume on the contrary that [y] > [x]. Since [x] is the

it greatest integer which is less than or equal to x, and

since [y] is an integer which is greater than [x], it follows

that [y] can't be less than or equal to x. Thus, [y] > x.

But x > y. So [y] > y, which is a contradiction.

Therefore, [x] > [y]. <€

Example.

Find [3.2], [117] and [—1.2].

Solution.

[3.2] = 3,[117] = 117,and [-1.2] = —2.

(Notice that [—1.2] is not equal to -1). <

Example.

Let x be a real number and let n be an integer. Prove that
[x + n] = [x] +n.

Solution.

First, x > [x] ,s0 x + n = [x] + n.

Now, [x] + n is an integer less than or equal to x + n, so

it must be less than or equal to the greatest integer less

than or equal to x + n--- which is [x + n]:

[x +n] = [x] +n.
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Next, x + n =[x +n]. Thenx > [x + n] —n and
[x + n] —n is an integer less than or equal to x.
Therefore, it must be less than or equal to the greatest
integer less than or equal to x --- which is[x]:

[x] =[x + n] —n.
Adding n to both sides gives

[x] + n =[x + n].
Since [x + n] = [x] +nand [x] +n = [x + n], it

follows that [x] + n = [x + n]. <
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5.2 Prime Numbers

eEvery integer greater than 1 is divisible by at least two
integers, because a positive integer is divisible by 1 and
by itself. Positive integers that have exactly two different
positive integer factors are called primes.

e Euclid showed that there are infinitely many primes.
e The Prime Number Theorem says that the number of
primes less than or equal to a real number x is
approximately —.

e The prime numbers are the "building blocks" of the
integers. We'll make this more precise later when we
discuss the Fundamental Theorem of Arithmetic.
Definition.

A prime number is an integer p > 1 whose only
positive divisors are 1 and p. An integer greater than 1
which is not prime is composite.

Remark.

The integer n is composite if and only if there exists an

integer a suchthata |[nand1 < a < n.
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Example.
The integer 7 is prime because its only positive factors
are 1 and 7, whereas the integer 9 is composite because it
is divisible by 3. «
Lemma.
Every integer greater than 1 is divisible by at least one
prime.
Proof.
We'll prove the result by induction. To begin with, the
result is true forn = 2, since 2 is prime.
Take n > 2, and assume the result is true for all integers
greater than 1 but less than n. We want to show that the
result holds for n. If n is prime, it's divisible by a prime --
- namely itself! So suppose n is composite. Then n has a
positive factor a other than 1 and n. Suppose n = ab.
Ifa > n,thensince b >1, Wegetn = ab > n.1 =
n, which is a contradiction. Thus, a < n, and since
a # n, we have in fact a < n. Since a # 1, we get

1 <a<n

By the induction hypothesis, a has a prime factor p.
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But p|a and a|n implies p|n, so n has a prime factor as
well. This shows that the result is true for all n > 1 by
induction. <

Theorem. (Euclid)

There are infinitely many prime numbers.

Proof.

Suppose on the contrary that there are only finitely many
primes py, P2, .., Pn.

Look at (p; "py - ...” Pp) + 1.

This number is not divisible by any of the primes
P1,P2, -, Pn, beCause it leaves a remainder of 1 when
divided by any of them. But the previous lemma says that
every number greater than 1 is divisible by a prime. This
contradiction implies that there can't be finitely many
primes --- that is, there are infinitely many. <«

If you are trying to factor a number n, you do not need to

try dividing by all the numbers from 1 to n: It's enough to

go up to v/n. This is the idea of the next lemma.
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Lemma.

Every composite number has a proper factor less than or
equal to its square root.

Proof.
Suppose n is composite. We can write n = ab, where

1<ab< nlIfbotha b >+Vn, thenn =vVnVn <
a.b =n.

This contradiction shows that at least one of a, b must be
less than or equal to vn.

From the above theorem, it follows that an integer is
prime if it is not divisible by any prime less than or equal
to its square root. This leads to the brute-force algorithm
known as

To use trial division we divide n by all primes not

exceeding vn and conclude that n is prime if it is not
divisible by any of these primes.

In fact, you can adapt the preceding proof to show that a
composite number must have a prime factor less than or

equal to its square root.
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For an arbitrary number that is several hundred digits in

length, it may be impossible with current technology to

determine whether the number is prime. In fact, many
depend on the difficulty of

factoring large numbers.

Example.

Show that 101 is prime.

Solution.

The only primes not exceeding v/101 are 2, 3, 5, and 7.
Because 101 is not divisible by 2, 3, 5, or 7 (the quotient
of 101 and each of these integers is not an integer), it
follows that 101 is prime.

Example.

Show that 127 is prime.

Solution.

To see whether 127 is prime, | only need to see if it has a
prime factor< V127 ~ 11.27. You can do the arithmetic
to verify that 127 isn't divisible by 2, 3, 5, 7, or 11.

Hence, it must be prime,
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Because every integer has a prime factorization, it would
be useful to have a procedure for finding this prime
factorization. Consider the problem of finding the prime
factorization of n. Begin by dividing n by successive
primes, starting with the smallest prime, 2. If n has a

prime factor, then by the above theorem a prime factor p
not exceeding v/n will be found. So, if no prime factor

not exceeding +/n is found, then n is prime. Otherwise, if
a prime factor p is found, continue by factoring n/p.
Note that n/p has no prime factors less than p. Again, if
n/p has no prime factor greater than or equal to p and not
exceeding its square root, then it is prime. Otherwise, if it
has a prime factor g, continue by factoring n/(pq). This
procedure is continued until the factorization has been
reduced to a prime. This procedure is illustrated in the
following example.

Example.

Find the prime factorization of 7007,

Solution.

To find the prime factorization of 7007, first perform
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divisions of 7007 by successive primes, beginning with
2. None of the primes 2, 3, and 5 divides 7007. However,
7 divides 7007, with 7007/7 = 1001. Next, divide
1001 Dby successive primes, beginning with 7.
It is immediately seen that 7 also divides 1001, because
1001/7 = 143. Continue by dividing 143 by successive
primes, beginning with 7. Although 7 does not divide
143, 11 does divide 143, and 143/11 = 13. Because 13
Is prime, the procedure is completed. It follows that
7007 =7-1001=7-7-143=7-7-11-13.
Consequently, the prime factorization of 7007
is7-7-11-13=7?-11-13. =

Example. (The Sieve of Eratosthenes)

Note that composite integers not exceeding 100 must
have a prime factor not exceeding 10. Because the only
primes less than 10 are 2, 3, 5, and 7, the primes not
exceeding 100 are these four primes and those positive
integers greater than 1 and not exceeding 100 that are
divisible by none of 2, 3, 5, or 7.

The sieve of Eratosthenes is used to find all primes not

exceeding a specified positive integer. For instance, the
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following procedure is used to find the primes not
exceeding 100. We begin with the list of all integers
between 1 and 100. To begin the sieving process, the
integers that are divisible by 2, other than 2, are deleted.
Because 3 is the first integer greater than 2 that is left, all
those integers divisible by 3, other than 3, are deleted.
Because 5 is the next integer left after 3, those integers
divisible by 5, other than 5, are deleted. The next integer
left is 7, so those integers divisible by 7, other than 7, are
deleted. Because all composite integers not exceeding
100 are divisible by 2, 3, 5, or 7, all remaining integers
except 1 are prime. In the table, the panels display those
integers deleted at each stage, where each integer
divisible by 2, other than 2, is underlined in the first
panel, each integer divisible by 3, other than 3, is
underlined in the second panel, each integer divisible by
5, other than 5, is underlined in the third panel, and each
integer divisible by 7, other than 7, is underlined in the
fourth panel. The integers not underlined are the primes

not exceeding 100. We conclude that the primes less than
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100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47,53, 59, 61, 67, 71,73, 79, 83, 89, and 97.

Integers divisible by 2 other than 2

receive an underline.

1 2 3 4 5 6 7 8§ 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 18 79 80
81 82 83 84 85 8 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Integers divisible by 3 other than 3

receive an underline.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
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Integers divisible by 5 other than 5

receive an underline.

12 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
3132 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 10
71 72 73 74 715 76 77 18 19 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Integers divisible by 7 other than 7 receive
an underline; integers in color are prime.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 51 58 59 60
61 62 63 64 65 66 67 68 69 710
71 72 73 74 75 16 11 18 79 80
81 82 83 84 85 86 87 88 89 90
91l 92 93 94 95 96 97 98 99 100

Integers in color are prime.m
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| showed above that there are infinitely many primes.
How are they distributed? That is, are they evenly
distributed, or do they get "sparser" as you look at bigger
and bigger integers?

e The Prime Number Theorem gives an asymptotic

estimate for (x), the number of primes less than or

equal to x. It says:

lim ”Ef) = 1.

X—00

Inx

The picture below was generated by Mathematica, the

symbolic mathematics program. It shows the graphs of

m(x) and —

zoooé
1500
1 oooé
500

- 2000 4000 6000 8000 10000
The graph of 7(x) is on top and the graph of ﬁ is on the

bottom. On the other hand, there are "lots" of composite

numbers around. For example,
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1001!'+ 2,1001! + 3,1001! + 4,...,1001!+ 1001
is a run of 1000 consecutive composite numbers. You can
use the same method to generate runs of composite
numbers of any length.

Example.

Use the Prime Number Theorem to estimate the number

of primes less than 1000000. By the Prime Number

1000000

Theorem, 7'[(1000000) = 151000000 ~ 72382.

The actual number of primes less than 1000000 is
m(1000000) = 78498.m=

On the other hand, many problems concerning the
distribution of primes are unsolved. For example, there
are primes that come in pairs such as 11 and 13, or 71 and
73. These are called twin primes.

Question: (Twin Prime Conjecture)

Are there infinitely many twin primes?

There are enormously large twin primes known.

The largest known in 2001 were
318032361.2107001 4 1
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They are numbers having 32220 digits! The Twin Prime
Conjecture is still unresolved: A proof was announced in
2004, but a gap was found, and the question remains
open.

5.3 Divisibility

When one integer is divided by a second nonzero integer,
the quotient may or may not be an integer. For example,
12/3 = 4 isan integer, whereas 11/4 = 2.75 is not.
This leads to the following definition.

Definition.

If a and b are integers with a = 0, we say that a divides b
if there is an integer ¢ such that b = ac, or equivalently,
if is an integer. When a divides b we say that a is a factor
or divisor of b, and that b is a multiple of a. The notation
a|b denotes that a divides b. We write a + b when a does
not divide b. m

In the following figure a number line indicates which

integers are divisible by the positive integer d.

- | | | | | >

=3d =24 —d 0 d 2d 3d
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Example.

Determine whether 3|7 and whether 3|12.

Solution.

We see that 3|7, because 7/3 is not an integer. On the
other hand, 3|12 because 12/3 = 4.m

Example.

Let n and d be positive integers. How many positive
integers not exceeding n are divisible by d?

Solution.

The positive integers divisible by d are all the integers of
the form dk, where k is a positive integer. Hence, the
number of positive integers divisible by d that do not
exceed n equals the number of integers k such that

0 <dk <n,orwith 0 <k <n/d. So, there are [n/d]
positive integers not exceeding n that are divisible by d.m

Theorem.
Let a, b, and c be integers, where a # 0. Then

(ifa|banda|c,thena| (b + c);
(i) if a | b, then a | bc for all integers c;
(i) ifa|band b | c,thena | c.
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Proof.

We will give a direct proof of (i).

Suppose that a | b and a | c. Then, there are integers s
andtwithb = asandc = at.Hence,b + ¢ = as +
at = a(s + t). Therefore, a divides b + c. This
establishes part (i) of the theorem.m

Corollary.

If a, b, and c are integers, where a # 0, such that a|b and
alc, then a|mb + nc whenever m and n are integers.
Proof.

We will give a direct proof. By part (ii) of the above
theorem we see that a|mb and a|nc whenever m and n
are integers. By part (i) of the above theorem it follows
that almb + nc.m

Theorem.

Let a, b, c be integers. If a|b and b|a + c, then a|c.

Proof.

Let a, b, and c be integers. Suppose a|b and b|a + c.
There exist integers d and e such that ad = b and

be = a+c.
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Substitute: (ad)e = a + c.

Rearrange: a(de- 1) = c.

Therefore, a | c.m

Definition.

An integer u is a unit if u|1.The only units are 1 and —1.
Theorem.

If uand v are units, then uw is a unit.

Proof.

Let u and v be units. There exist integers r and s such that
ur = land vs = 1. Therefore, (ur)(vs) = 1.
Rearrange: (uv)(rs) = 1. Therefore, uv is a unit. <

Theorem.

Let a and b be integers. If a|b and b|a, % and g are units

Proof.

Let a and b be integers. Suppose a|b and b|a.There exist
integers ¢ and d such that ac = b and bd = a.Therefore,
acd = bd = a.So, cd = 1.Thus, ¢ and d are units. «

Corollary.

If a|b and b|a, thena = b or a =-b.
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5.4 The Division Algorithm
Theorem.

Let n and d be integers, d=0. Then there exist unique
integersgand r suchthatn = qd + rand 0 <r < d.
q is the quotient and r is the remainder.

Example.

What are the quotient and remainder when 101 is divided
by 117

Solution.

We have 101 = 11 - 9 + 2. Hence, the quotient when
101 is divided by 11 is 9, and the remainder is 2. m

Example.

What are the quotient and remainder when —11 is
divided by 3?

Solution.

We have —11 = 3(—4) + 1. Hence, the quotient
when —11 is divided by 3, and the remainder is 1. Note
that the remainder cannot be negative. Consequently, the
remainder is not —2, even though —11 = 3(-3) — 2,

becauser = —2 doesnotsatisfy0 < r < 3. =

- 344 -



#Note that the integer a is divisible by the integer d if
and only if the remainder is zero when a is divided by d.
Example.
Prove that for any integer n, n®—n is a multiple of 6.
Proof.
Dividenby6togetgandr. n=6gq+1r,0<r < 6.
Substitute: n® —n = (6q + r)® — (6q + r).
Expand and rearrange:

n®—n=6(36¢%+ 18qg°r + 3gr> —q) + (r3 —r).
Therefore, 6 | (n®—n) if and only if 6 | (r3—r).
Consider the 6 possible cases:
r-r=0-0=0=6.0.
r-r=1-1=0=6.0.
P-r=22-2=6=6-1.
r-r=33-3=24=64.
.rP—r=4%-4=60=6-10.
Case 6: r=5.r3—r=5%-5=120=6-20.

Casel: r
Case 2:
Case 3:

q
I

Cased: r

,
1
2w N PO

Caseb5: r

In every case, 6 | (r3—r).
Therefore, 6 | (r2 —r) in general.

Therefore, 6 | (n® — n) for all integers n.m
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5.5 Greatest Common Divisors

e The greatest common divisor gcd(m, n) of integer m
and n is the largest integer which divides both m and n.

e The greatest common divisor can be found using the
Euclidean algorithm, which is a process of repeated
division.

e The greatest common divisor gcd(m,n) of mandnis a
linear combination of m and n.

em and n are relatively prime if gcd(m,n) = 1.

Definition.

The greatest common divisor of two integers (not both
zero) is the largest integer which divides both of them.

If a and b are integers (not both 0), the greatest common
divisor of a and b is denoted gcd(a, b).

The greatest common divisor of two integers, not both
zero, exists because the set of common divisors of these
integers is nonempty and finite. One way to find the
greatest common divisor of two integers is to find all the
positive common divisors of both integers and then take

the largest divisor. This is done in the following examples
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Later, a more efficient method of finding greatest
common divisors will be given.

Example.

What is the greatest common divisor of 24 and 367
Solution.

The positive common divisors of 24 and 36 are 1, 2, 3, 4,
6, and 12. Hence, gcd(24,36) = 12. =

Example.

gcd(4,6) = 2,gcd(17,17) = 17,gcd(42,0) = 42,
gcd(12,—-15) = 3. =

Example.

What is the greatest common divisor of 17 and 22?
Solution.

The integers 17 and 22 have no positive common divisors
other than 1, so that gcd(17,22) = 1. =
You were probably able to do the last examples by
factoring the numbers in your head. For instance, to find
gcd(4, 6), you see that 2 is the only integer bigger than 1
which divides both 4 and 6.
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The problem with this approach is that it requires that you
factor the numbers. However, once the numbers get too
large --- currently, "too large" means "on the order of
several hundred digits long" --- this approach to finding
the greatest common divisor won't work. Fortunately, the
Euclidean algorithm computes the greatest common
divisor of two numbers without factoring the numbers. I'll
discuss it after | state and prove some elementary
properties.

Proposition.

Let a and b be integers, not both 0.

(@) gcd(a,b) = 1,

(b) ged(a, b) = ged(|al, |b]),

(c) gcd(a, b) = gcd(a + kb, b) for any integer k.

Proof.

(@) Since 1|a and 1|b, then gcd(a, b) must be at least as
big as 1.

(b) x|a if and only if x|—a; that is, a and —a have the
same factors. But |a| is either a or —a, so a and |a| have

the same factors. Likewise, b and |b| have the same
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factors. Therefore, x is a common factor of a and b if and
only if it's a common factor of |a| and |b]|.

Hence, gcd(a, b) = gcd(lal, |b]).

(c) First, if x is a common factor of a and b, then x|a and
x|b.

Then x|kb, so x|a + kb .

Thus we have that x is a common factor of a + kb and b.
Likewise, if x is a common factor of a + kb and b, then
x|la + kb and x|b .

Hence, x|(a + kb) — kb = a.

Thus, x is a common factor of a and b.

Therefore, these two sets are the same:

{common factors} _ {common factors}
ofaand b ofa+ kband b

Since the two sets are the same, their largest elements are
the same.

The largest element of the first set is gcd(a, b),

while the largest element of the second set is

gcd(a + kb, b).

Therefore, gcd(a, b) = gcd(a + kb, b).m
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Example.
Part (c) of the proposition says that the greatest common
divisor remains unchanged if you add or subtract a
multiple of one of the numbers from the other. You can
often use this to simplify computations of greatest
common divisors. For example,

5cd(998,996) = gcd(998 — 996,996) = gcd(2,996).
Now gcd(2,996)|2, and the only positive integers which
divide 2 are 1 and 2. So gcd(2,996) is either 1 or 2.
But 2 and 996 are obviously both divisible by 2, so
gcd(2,996) = 2 . Therefore, gcd(998,996) = 2.m
Example.
Prove thatif n € Z, then gcd(3n+4,n+ 1) = 1.
Proof.
By part (c) of the above proposition, we get
gcd(3n+4,n+1) = gcd((3n +4)—-3(n+1),n+ 1)

=gcd(1,n+ 1).

Now, gcd(1,n + 1)|1. But the only positive integer
which divides 1 is 1. So, gcd(1,n + 1) = 1.
Therefore, gcd(3n+4,n+1) = 1.m
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#Because it is often important to specify that two integers
have no common positive divisor other than 1, we have
the following definition.

Definition.

a and b are relatively prime if gcd(a,b) = 1.

Example.

49 and 54 are relatively prime, but 25 and 105 are not.m

Proposition.
m n
If d = gcd(m, n), then gcd (E’E) = 1.
Proof.
Let m = da and n = db. Then gcd (%,g) = gcd(a, b).

Let p > 0 and pla, p|b. Then we can find e and f such
that a = pe and b = pf. Thus, m = dpe and n = dpf.
This shows that dp is a common factor of m and n. Since
d is the greatest common factor, then d = dp. Therefore,
1 > p. So, p = 1 (since p was a positive integer).

We've proven that 1 is the only positive common factor of

a and b. Therefore, 1 is the greatest common factor of a

and b: gcd (%,g) =gcd(a,b) = 1. <

- 351 -



5.6 The Euclidean Algorithm.

Before describing the Euclidean algorithm, we will show
how it is used to find gcd(91, 287).
First, divide 287, the larger of the two integers, by 91, the
smaller, to obtain
287 = 91 - 3 + 14.
Any divisor of 91 and 287 must also be a divisor of
287 —91 -3 = 14.
Also, any divisor of 91 and 14 must also be a divisor of
287 = 91 - 3 + 14.
Hence, the greatest common divisor of 91 and 287 is the
same as the greatest common divisor of 91 and 14.
This means that the problem of finding gcd(91, 287) has
been reduced to the problem of finding gcd(91, 14).
Next, divide 91 by 14 to obtain
91=14-6+7.
Because any common divisor of 91 and 14 also divides
91 — 14 - 6 = 7 and any common divisor of 14 and 7
divides 91, it follows that gcd(91, 14) = gcd(14, 7).
Continue by dividing 14 by 7, to obtain 14 = 7 - 2.
Because 7 divides 14, it follows that gcd(14,7) = 7.
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Furthermore, because gcd(287,91) = gcd(91,14) =
gcd(14,7) = 7, the original problem has been solved.

» We now describe how the Euclidean algorithm works
in generality. We will use successive divisions to reduce
the problem of finding the greatest common divisor of
two positive integers to the same problem with smaller
integers, until one of the integers is zero.

#Begin with a pair of nonnegative integers {m, n}, not
both 0. (The absolute value property we stated earlier
shows that there's no harm in assuming the integers are
nonnegative.)

1. If one of the numbers is 0, the other is the greatest
common divisor of the pair. (Stop.)

2. Otherwise, apply the Division Algorithm to write
m=qgn+rwhere 0 <r <n.

3. Replace the pair {m, n} with the pair {n,r}.

4, Goto step 1.

At each step, both elements are > 0, and each pass
through step 3 decreases the second element. Since the

second element always gets smaller, but can't be negative,
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Well-Ordering implies that algorithm must terminate in
an {x, 0} pair (in step 2) after a finite number of steps.

| get the next pair of numbers by subtracting a multiple of
one of the previous numbers from the other. Therefore,
each pair of numbers has the same greatest common
divisor as the previous pair. Considering the whole chain
of pairs, it follows that the original pair of numbers and
the last pair of numbers have the same greatest common
divisor.

The original pair of numbers is {m, n}, and their greatest
common divisor is gcd(m, n).The last pair of numbers is
{x,0} and gcd(x,0) = x.Thus, gcd(m,n) = x---in
words, the greatest common divisor is the last nonzero
remainder.

The Euclidean algorithm is based on the following
result about greatest common divisors and the division
algorithm.

Lemma.

Let a = bg + r, where a, b, q, and r are integers. Then
gcd(a,b) = gcd(b, 7).
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Proof.
If we can show that the common divisors of a and b are
the same as the common divisors of b and r, we will have
shown that gcd(a, b) = gcd(b,r), because both pairs
must have the same greatest common divisor. So suppose
that d divides both a and b. Then it follows that d also
divides a — bg = r. Hence, any common divisor of a and
b is also a common divisor of b and r.
Likewise, suppose that d divides both b and r. Then d
also divides bg + r = a. Hence, any common divisor of
b and r is also a common divisor of a and b.
Consequently, gcd(a,b) = gcd(b,r). <«
Example.
Use the Euclidean algorithm to compute:

gcd(124, 348).
Solution.
Here what the algorithm above says. You start with the
original numbers. Think of them as the first two
"remainders”. At each step, you divide the next-to-the-
last remainder by the last remainder. You stop when you

get a remainder of 0.
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Here are the divisions:

348 = 2124 + 100,
124 =1-100 + 24,
100 = 4 - 24 + 4,
24 =6-4+0.
(Start by dividing the bigger number by the smaller

number, or else you'll just waste a step.)
It's easier to remember this visually by arranging the
computations in a table. Compare the numbers above to

the numbers in the following table:

a | q
348 | -
124 | 2
100 | 1
24 | 4

4 | 6

(The next remainder is 0, so | didn't write it.) The
successive remainders go in the a-column. The
successive quotients go in the g-column. The greatest
common divisor is the last nonzero remainder, so
gcd(348,124) = 4.

Later on, I'll add another column to this table when |

discuss the Extended Euclidean algorithm.m
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Example.

Use the Euclidean algorithm to compute:
gcd(482,288).

Solution.
a q
482
288 | 1
194 | 1
94 2
6 15
4 1
2 2

From the table, we see that gcd(482,288) = 2.m

Example.

Use the Euclidean algorithm to compute:
gcd(414, 662).
Solution.

Successive uses of the division algorithm give:
662 = 414 - 1 + 248
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414 = 248 - 1 + 166

248 = 166 - 1 + 82

166 = 82 -2 + 2

82 = 2 - 41.

Hence, gcd(414,662) = 2, because 2 is the last
nonzero remainder. m
Example.
You can also take the greatest common divisor of more
than two numbers. For instance, gcd(42,105,91) = 7.
To compute the greatest common divisor of more than
two divisors, just compute the greatest common divisor
two numbers at a time. For example, gcd(42, 105) =
21, so0gcd(42,105,91) = gcd((42,105),91) =
gcd(2191) =7.m
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5.7 gcds as Linear Combinations

#The next result is important, and is often
used in proving things about greatest common divisors.
First, I'll recall a definition from linear algebra.
Definition.

If x and y are numbers, a linear combination of x and y
(with integer coefficients) is a number of the form

ax + by, where a and b are integers.

Example.

29 = 2.10 + 1.9 shows that 29 is a linear combination of
10and 9 and 7 = (—2).10 + 3.9 shows that 7 is a linear
combination of 10 and 9 as well.=
Theorem (c).
gcd(m, n) is the smallest positive linear combination of
m and n. In particular, there are integers a and b (not
necessarily unique) such that

gcd(m,n) = am + bn.
Example.
We showed above that gcd(348,124) = 4.

The theorem says that there are integers a and b such that
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4 =a-348+ b - 124.
Infact, 4 = 5348 + (—14) - 124.
This combination is not unique.
For example, 4 = 129 - 348 + (—362) - 124.m
To Find a and b such that 4 is a linear combination of
384 and 124, we use the backward substations as follows:
4 =100—4-24
=100 — 4 - (124 — 1.100)
=—4-124+5-100
=—4-124 +5- (348 — 2-124)
=5-348 + (—14) - 124.

We'll give a few easy corollaries before proving the
theorem.

Corollary.

If d|m and d|n, then d|gcd(m, n).

Proof.

gcd(m,n) = am + bn for some integers a and b.
Therefore, if d|m and d|n, then d|(am + bn) =
gcd(m,n). <
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#This says that the greatest common divisor is not only
"greatest” in terms of size; it's also "greatest™ in the sense
that any other common factor must divide it.

Corollary.

m and n are relatively prime if and only if

am + bn = 1 for some integers a and b.

Proof.

Necessity.

Suppose m and n are relatively prime. Then

gcd(m,n) = 1. By Theorem (c),

gcd(m,n) = am + bn for some integers a and b.
Therefore, am + bn = 1 for some integers a and b.
Sufficiency.

Suppose am + bn = 1 for some integers a and b. This
says that 1 is a positive linear combination of m and n, so
(since 1 is the smallest positive integer) it's the smallest
positive linear combination of m and n. By Theorem (c),
this implies that 1 is the greatest common divisor, and m

and n are relatively prime. <
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Proof of Theorem (c).

We'll use the Euclidean algorithm. At each step in the

Euclidean algorithm, we replace an old pair of numbers

with a new pair of numbers. The proof will go this way.

(a) The first two numbers m and n are linear

combinations of m and n.

(b) At each step, if the old numbers are linear

combinations of m and n, then so are the new numbers.

(c) By (a) and (b), the last two numbers in the algorithm

must be linear combinations of m and n.

(d) The last two numbers in the algorithm are gcd(m, n)

and 0. So, gcd(m, n) is a linear combination of m and n.

Of these four steps, all are clear except the second.

So here is the proof of step (b).

Suppose that my old numbers are {x, y}, and suppose that

they're linear combinations of m and n:
x=am+bnandy = cm+ dn.

To do the Euclidean algorithm we divide x by y:

x=qy+r,where 0 <r <y.
The new numbers are
ry={x—-qy}
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= {cm + dn, (am + bn) — q(cm + dn)}

={em +dn,(a — qgc)m + (b — qd)n}
Each of the new numbers is a linear combination of m
and n. This proves step (b), and the four steps above
show that gcd(m, n) is a linear combination of m and n.
Next, we have to show that it's the smallest positive
linear combination of m and n.
Suppose p is a positive linear combination of m and n:
p = am + bn for some integers a and b.
gcd(m, n)|m and gcd(m, n)|n, so gcd(m, n)|p. Both of
these numbers are positive, so gcd(m,n) < p . Since
gcd(m, n) is smaller than any positive linear combination
of m and n, gcd(m, n) must be the smallest positive
linear combination of m and n. <«
Example.
(42,105) = 21, so the theorem asserts that the set of all
linear combinations of 42 and 105 --- that is, the set of all
numbers of the form 42a 4+ 1055... is

., —42,—-21,0,21,42,63, ...

Notice that the greatest common divisor is the smallest

positive element of this set.m
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5.8 The Fundamental Theorem of Arithmetic

eThe Fundamental Theorem of Arithmetic says that
every integer greater than 1 can be factored uniquely into
a product of primes.

eEuclid’'s lemma says that if a prime divides a product
of two numbers, it must divide at least one of the
numbers.

e The least common multiple Icm[a, b] of nonzero
integers a and b is the smallest positive integer divisible
by both a and b.

Theorem.(Fundamental Theorem of Arithmetic)

Every integer greater than 1 can be written in the form

ny Ny

pps? DL

Where n; > 0 and the p;i's are distinct primes. The
factorization is unique, except possibly for the order of
the factors.
Example.
4312 = 2.2156 = 2-2-1078 = 2-2-2-529

=2-22-7-77 =2-2-2-7-7-11.
Thatis, 4312 =23-7%2-11.m
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We need a couple of lemmas in order to prove the
uniqueness part of the Fundamental Theorem. In fact,
these lemmas are useful in their own right.

Lemma.

If m|pq and gcd(m, p) = 1, then m|q.

Proof.

We write 1 = gcd(m, p) = am + bp for some integers a
and b. Then g = amq + bpaq.

Now, m|amgq and m|bpq (since m|pq).

So m|(amq + bpq) = q. <€

Lemma.

If p is prime and p|a,a, - a, , then p|a; for some i.

For n = 2, the result says that if p is prime and p|ab,
then p|a or p|b. This is often called Euclid's lemma.
Proof.

Do the case n = 2 first. Suppose p|a,a, and suppose p 4
a,. | must show p|a,.Since gcd(p,a,)|p, and p is prime,
we have gcd(p,a,) = 1 or gcd(p,a;) = p. If

gcd(p, a;) = p, then p = gcd(p, a,)|a,, which
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contradicts p + a,. Therefore, gcd(p, a;) = 1. By the
above lemma, p|a,. This establishes the result for n = 2.
Assume n > 2, and assume the result is true when p
divides a product of a;’s with less than n factors.
Suppose that p|a, a, - a,,. Grouping the terms, | have
pl(aia; = an-1)ay
By the case n = 2, either p|a,a, -~ a,,_; or, pla, . If
pla,, I'm done. Otherwise, if p|a;a, -~ a,,_1, thenp
divides one of a4, a,,, a,_1 , by induction. In either
case, I've shown that p divides one of the a;'s, which
completes the induction step and the proof. <
Proof.(Fundamental Theorem of Arithmetic)
First, I'll use induction to show that every integer greater
than 1 can be expressed as a product of primes.
n = 2 is prime, so the result is true for n = 2.
Suppose n > 2, and assume every number less than n can
be factored into a product of primes. If n is prime, I'm
done. Otherwise, n is composite, so | can factornasn =
ab, where 1 < a, b < n. By induction, a and b can be

factored into primes. Then n = ab shows that n can, too.
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Now I'll prove the uniqueness part of the Fundamental

Theorem. Suppose that

my__m; mj _ ng _n, ng
P1 Dy ---pj =419, - qy

Here the p's are distinct primes, the q's are distinct
primes, and all the exponents are greater than or equal to
1.

| want to show that= k , and that each p,* is g,,° for
some b --- that is, p, = q, and m, = n,,.

Look at p;. It divides the left side, so it divides the right
side. By the Euclid's lemma, py|q;" for some i. But q; " is
q; ..-q; (n; times), so again by the Euclid's lemma, p;|q; .
Since p, and qg; are prime, p; = q;.

To avoid a mess, renumber the g's so q; becomes g,and

vice versa. Thus, p; = g;, and the equation reads

my__m; mj _ ng np ng
P1 Dy ---pj =419, - qy

If m, > n,,cancel p.** from both sides, leavin
1 1 12 g

mq—ny mj __  n, ng
pl ann p] - qz ann qk .

This is impossible, since now p; divides the left side, but
not the right.

For the same reason m, < n4is impossible.
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It follows that m; = n,. So | can cancel the p,'s off both

sides, leaving

m

my j _ 2 Ny
e pj - qz nan qk .

P
Keep going. At each stage, | pair up a power of a p with a
power of a g, and the preceding argument shows the
powers are equal. | can't wind up with any primes left
over at the end, or else I'd have a product of primes equal
to 1. So everything must have paired up, and the original
factorizations were the same (except possibly for the
order of the factors). <

Definition.

The least common multiple of nonzero integers a and b
Is the smallest positive integer divisible by both a and b.
The least common multiple of a and b is denoted
lcm[a, b].
For example, Icm[6,4] = 12,lcm[33,15] = 165.
Here's an interesting fact that is easy to derive from the
Fundamental Theorem:

lcm[a, b] - gcd(a, b) = ab.
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Factor a and b in products of primes, but write out all the
powers (e.g. write 22 as 2 - 2 - 2):

a=p;.Dq1qm b=q1qmr Ty

Here the g's are the primes a and b have in common, and

the p's and r's don't overlap.

SO

From the picture, gcd(a, b) = q; ... @,
lem[a, b] = p1 ...01qq - QT - Ty,

ab =p1 ..p191 - qmqs - G Ty
Thus, Icm|[a, b]gcd(a, b) = ab.

Here's how this result looks for 36 and 90:

38

T Q0

5cd(36,90) = 18,
lcm[36,90] = 180 and
36.90 = 32400 = 18- 180.m
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5.9 The Chinese Remainder Theorem

e The Chinese Remainder Theorem gives solutions to
systems of congruences with relatively prime moduli.

e The solution to a system of congruences with relatively
prime moduli may be produced using a formula by
computing modular inverses, or using an iterative
procedure involving successive substitution.

The Chinese Remainder Theorem says that certain
systems of simultaneous congruences with different
moduli have solutions. The idea embodied in the theorem
was apparently known to Chinese mathematicians a long
time ago --- hence the name.

I'll begin by collecting some useful lemmas.

Lemma 1.

Let m and a4, a,,, a,, be positive integers. If m is
relatively prime to each of a,, a,, -, a,, then it is
relatively prime to their product a,a, - a,,.

Proof.

If gcd(m, a,a, -+ a,) # 1, then there is a prime p which

divides both m and a,a, - a,.

- 370 -



Since pla,a, -+ a,,, we have p must divide a; for some i
by Euclid's lemma. Now p divides both m and a;, so
gcd(m, a;) # 1. This contradiction implies that
gcd(m,a;a, - a,) = 1.4

Example.

6 is relatively prime to 25, to 7, and to 11.

25.7.11 = 1925, and ged(6,1925) = 1:

a q
1925 -
6 320
5 1
1 5

.0

| showed earlier that the greatest common divisor
gcd(a, b) of a and b is greatest in the sense that it is
divisible by any common divisor of a and b. The next
result is the analogous statement for least common

multiples.
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Lemma 2.

Let m and a4, a,,, a, be positive integers. If m is a
multiple of each of a4, a,,, a,, then m is a multiple of
lem[aq, ay, -, a, ]
Proof.
By the Division Algorithm, there are unique numbers g
and r such that

m = q -lem[aq, a,, 7, a,] + 1,
Where 0 < r < lcm[aq, ay,, a,].
Now, a; divides both m and Icm[aq, a,,, a,], SO a;
divides r. Since this is true for all i, we have r is a
common multiple of the a; smaller than the least
common multiple Iem[a4, a,, -, a,]. This is only possible
if r=0.Then m=gq-lcmla;,a,,,a,] , i.e. m is a

multiple of lcm[a4, a,,, a,]. <€
Example.

88 is a multiple of 4 and 22. The least common multiple
of 4 and 22 is 44, and 88 is also a multiple of 44.m
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Lemma 3.
Let a,, a,,, a,, be positive integers. If a;, a,,, a,, are
pairwise relatively prime, then

lem[aq, ay, - ay] = a1a, - a,
Proof.
Induction on n. The statement is trivially true for n = 1,
so I'll start with n = 2. The statement for n = 2 follows

from the equation ,Icm|[a, b]gcd(a, b) = ab.

a;a; aa,

Ilcm[aq, a,] = = a,a,.

gcd(ay, az) 1
Now assume n > 2, and assume the result is true for n. |
will prove that it holds for n + 1.

Claim:

Iem[lem(ay, ay,, ay], anyq1] = lemlay, ay,, ap, apiq]
(Some people take this as an iterative definition of
lem[ay, az,~, an, an+1]).

Ilcm[aq, ay, ", a,, ay41] 1S @ multiple of each of a,, a,,
, Ay, SO by Lemma 2 it's a multiple of lecm[a4, a,, -, a,].
It's also a multiple of a,, 4, SO

Iem[lem[ay, az, s, anl, anyqlllemlay, az,, an, apeql-

On the other hand, fori =1, ...,n,

-373 -



aj|lem[ay,, ay,]
and lem[aq,, a,]llcm[lcm[ay,, a,], an4+1]-
Therefore, a;|lcm[lcm[aq, a,,, a,], an+1]-
Obviously,
an1llem(lemlay, az, s, anl, angq]-
Thus, Iem[lcm[aq, a,,, a,], an+1] 1S @ common multiple
of all the aj's. Since Ilcm[ay, a,,, a,,, an+1] 1S the least
common multiple, Lemma 2 implies that
lem[ay, az, ™, ap, Apga]llem[lem[ay, az, =, ay], anqal.
Since | have two positive numbers which divide one
another, they're equal:
lem[lem[ay, az,~, an], ani1] = lemlay, az,, an, an 4]

This proves the claim.
Returning to the proof of the induction step, | have
lem[ay, @z, Gy, Any1] = lem[lem[ay, az, -, an], anq]

= lem[aya; = ap, any4]

= a,a, " ay.
The second equality follows by the induction hypothesis
(the statement for n). The third equality follows from

Lemma 1 and the result forn = 2. <
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Example.
6, 25, and 7 are relatively prime (in pairs). The least
common multiple is

lcm[6,25,7] = 1050 = 6.25.7.m

Lemma 4.

Let m be a positive integer and let a, b, and c be integers.
If ac = bc(mod m) and gcd(c,m) = 1,thena =

b (mod m).

Proof.

Because ac = bc(mod m), m|ac — bc = c(a — b).
Because gcd(c,m) = 1, it follows that m|a — b. We

conclude that a = b(mod m). <«
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The Chinese Remainder Theorem
Theorem. (The Chinese Remainder Theorem)
Suppose m,, m,, ..., m,, are pairwise relatively prime
(that is, gcd(m;, m;) = 1 for i # j). Then the system of
congruences

x = a;(modm,)

X = a,(mod m,)
x = a,(mod my,)
has a unique solution mod mym, ...m,,.
Notation. x; Xy ., X}, v, X
means the product x;x, ..., x;, ..., x,With x; omitted. For
example, x;x, ..., X3, ..., Xg MEANS X1 X7 X3X5Xg.
This is a convenient (and standard) notation for omitting
a single variable term in a product of things.
Proof.
Define p, = my ...my, ...m,,.
That is, py is the product of the m's with m, omitted. By
Lemma 1, gcd(py, my) = 1. Hence, there are integer

numbers sy, t; such that s, p; + t,m;, = 1.
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In terms of congruences, s;p; = 1(mod my,).
Now let x = a;p;51 + a,p5, + -+ + A, PnSH.
If j # k, then my|p; , s0 mod my all the terms but the k"
term die: x = agprSx = ax.1 = a; (mod my,)
This proves that x is a solution to the system of
congruences (and incidentally, gives a formula for x).
Now suppose that x and y are two solutions to the system
of congruences.

x=a,(modm,;) and vy =a;(modm,)

X =a,(modm,) and vy =a,(modm,)

x =a,(modm,) and y=a,(modm,)

Then x = a;, = y (mod my).
Sox —y = 0(mod my) or my|x — y.
Thus, x — y is a multiple of all the m's, so
lcm[my, m,, ..., m,]|x — y.
But the m's are pairwise relatively prime. By Lemma 3,
mym, ..my|x —y, i.e. x = y(mod mym, ...my).
That is, the solution to the congruences is unique
mod mym, ..m,.=m
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Example.
Solve
x = 2(mod 4);
x = 7(mod 9).
Solution.
Since gcd(4,9) = 1, so there is a unique solution
mod 36. Following the construction of x in the proof,
p1=9, 9-1=1(mod4),sotakes; =1
P, =4, 4-7 = 1(mod9),so take s, = 7
X = a1p151 + azpzs; = 18 +196 = 214
= 34(mod 36). =

Example.

Solve
x = 3(mod 4);
x = 1(mod 5);
x = 2(mod 3).

Solution.

The moduli are pairwise relatively prime, so there is a
unique solution mod 60. This time, I'll solve the system

using an iterative method.
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x = 3(mod4), sox =3 + 4s
Butx = 1(mod5), so3 + 4s = 1 (mmod5),
4s = 3 (mod 5), implies 4.4s = 4.3 (mod 5).
Since 4.3 = 32 (mod 5), we have 4.4s = 32 (mod 5)
s = 2(mod5),s = 2 + 5t.
Hence, x = 3+ 4s =3 +4(2 + 5¢t) = 11 + 20¢t.
Finally, x = 2 (mod 3), so
11 + 20t = 2 (mod 3),
20t = =9 = 0 (mod 3),20t = 0 (mod 3),
20t 20.0 (mod 3),t 0 (mod 3),

Hence, t = 3u.

Now put everything back:

x =11+ 20t =11+ 20(3u) = 11 + 60u,0r

x = 11(mod 60).m

Example.

Ahmed keeps balls in his bag. If he divides them into 5
equal groups, 4 are left over. If he divides them into 8
equal groups, 6 are left over. If he divides them into 9
equal groups, 8 are left over. What is the smallest number

of balls that he could have?
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Solution.

Let x be the number of balls. Then

x = 4(mod 5);
x = 6(mod 8);
x = 8(mod 9).

From x = 4(mod 5), | getx = 4 + 5a. Plugging this into
the second congruence, | get
4 4+ 5a = 6(mod 8)
5a = 2(mod 8)
5-5a =5-2(mod 8)
25a = 10(mod 8),

But,

10 = 50(mod 8)
Then,

25a = 50(mod 8)
Or,

a = 2(mod 8)
Hence,a = 2 + 8b. Plugging this intox = 4 + 5a gives
x =4+ 5(2+8b) = 14 + 40b.
Plugging this into the third congruence, | get
14 + 40b = 8(mod 9)
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40b = —6(mod 9)

But,

—6 = 120(mod 9)
So,

40b = 120(mod 9)
Or,

b = 3(mod 9)
Hence, b = 3 + 9c¢. Plugging this into x = 14 + 40b
gives x = 14 + 40(3 + 9¢) = 134 + 360c.
The smallest positive value of x is obtained by setting ¢ =

0, which gives x = 134. =

You can sometimes solve a system even if the moduli
aren't relatively prime; the criteria are similar to those for
solving system of linear Diophantine equations. I'll state
the result, but omit the proof.
Theorem.
Consider the system

X = a;(mod m,)

X = a,(mod m,)
(@) If gcd(my, m,) + a; — a,, there are no solutions.
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(b) If gcd(m,,m,)|a; — a,, there is a unique solution
mod Icm[my, m,].m
Note that if gcd(m,, m,) = 1, case (b) automatically
holds, and lcm[m,, m,] = m;m, --- i.e. | get the Chinese
Remainder Theorem for n = 2.
Example.
Solve x = 5(mod 12); x = 11(mod 18).
Solution.
Since gcd(12,18) = 6|11 — 5, there is a unique solution
mod lecm[12,18] = 36. I'll use the iterative method to
find the solution. x = 5(mod 12),s0x =5 + 12s.
Since x = 11(mod 18),

5+ 12s = 11(mod 18), 12s = 6(mod 18)
Now I use my rule for "dividing" congruencies: 6 divides
both 12 and 6, and gcd(6,18) = 6, so | can divide
through by 6: 2s = 1(mod 3)
Multiply by 2, and convert the congruence to an equation:

s = 2(mod 3),s = 2 + 3t.

Plug back in:
x=54+12(2+ 3t) =29 + 36t,x = 29(mod 36).m
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Exercise Set (5)

(1) Leta,b,c € Z. Prove that:
(@) If a|b and a|c, then a|bx + cy for all x,y € Z.
(b) If alb, then albc.
(c) If alb and b|c, then a|c.
(dIfa>0,b>0andalbthena < b.
(e) If alb, then |al||b].
(f) If a|b and b|a then a = +b.
(2) Let a be positive integer and b integer. Prove that
there exist unique integers r, g such that:
b=qa+r,where 0 <r<a.
(3) Prove that:
If b = qa + r, then gcd(a, b) = gcd(a,r).
(4) Evaluate gcd(6755,1587645) and find x and y such
that gcd(6755,1587645) = 6755x + 1587645y.
(5) Evaluate gcd(123456789,987654321) and find x
and y such that
gcd(123456789,987654321) = 123456789x +
987654321y
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(6) Evaluate gcd(189,283,512) and find x, y and z such
that gcd(189,283,512) =189 x + 283y + 512 z.

(7) Find gcd (360, —2250), Ilcm[360, —2250],
gcd(3799,7337),1em[3799, 7337], Icm[6,10,14],
lem[7,11,13].

(8) Prove that V2,10, log;,2 are irrationals.

(9) Let n < p < 2n. Prove that:

n(2n)—7t(n)< 2
log, n’

nn(Zn)—n(n) < 221and

(10) Let a, b, c € Zand n € Z*. Prove that:

(@) a = a (mod n);

(b) If a = b (mod n), then b = a (mod n);

() If a=b (modn),and b = c (mod n), then

a = ¢ (mod n);

() If a =b (modn),and ¢ =d (mod n), then
a+c=b+d(modn),a—c=b—d(modn),
and ac = bd (mod n).

(e) If a =b (modn) and m|n, then a = b (mod m).

(11) Leta,b,c € Z and n € Z™*. Prove that:

(@) If ac = bc (mod n)and (c,n) = 1, then

a = b (mod n).
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(b) If ac = bc (mod p), then a = b (mod p), where p is
prime and does not divide c.
(12) Find the least positive integer x such that:
3 divides x with remainder 1; 4 divides x with remainder
2; 5 divides x with remainder 3; (hint: Use the Chinese
remainder theorem).
(13) Solve:
a) 19x = 1 (mod 140);
b) 13x = 71 (mod 380).
c) 108x = 171 (mod 529).
(14) Solve the following systems:
a) x = 2 (mod 3),x = 3 (mod 5),x = 2 (mod 7).
b) x =1 (mod 3),x =2 (mod 4),x = 3 (mod 5).
c)x =5 (mod 7),x = 12 (mod 15),
x = 18 (mod 22).
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Chapter (VI)
Counting

The Beginning of Mathematics
6.1 The Basics of Counting

Suppose that a password on a computer system consists
of six, seven, or eight characters. Each of these characters
must be a digit or a letter of the alphabet. Each password
must contain at least one digit. How many such
passwords are there? The techniques needed to answer
this question and a wide variety of other counting
problems will Dbe introduced in this section.
Counting problems arise throughout mathematics and
computer science. For example, we must count the
successful outcomes of experiments and all the possible
outcomes of these experiments to determine probabilities
of discrete events. We need to count the number of
operations used by an algorithm to study its time
complexity. We will introduce the basic techniques of
counting in this section. These methods serve as

the foundation for almost all counting techniques.
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6.2 Basic Counting Principles
1-The Addition rule or Sum rule

(Principle of disjunction counting)

If a task can be done either in one of n; ways or in one of
n, ways, where none of the set of n; ways is the same as
any of the set of n, ways, then there are n, + n, ways to
do the task.
More general:
Let S be a set and |S| denote the number of elements in S.
If S is a union of disjoint non-empty subsets
Ay Ay, . Ay,

then

S| = [A1] + [Az] + -+ + [Ayl.
In the above statement the subsets A; of S are all disjoint

I.e., they have no element in common. If A; and A; are
two subsets of S, then A; N A; = ¢ for i # j and we have

S=A;UA, U ..UA, thatis each element of S is
exactly in one of the subsets A;. In other words, the

subsets A4, A,, ..., A, is a partition of S.
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Example

In a class of 30 students, there are 16 boys and 14 girls
(16 + 14 = 30). Of these, 23 persons wear pants and
only 7 wear skirts (23 + 7 = 30). On the last exam 20
students received a passing grade, while 10 failed
(20+10 =30). m

Example

An electronic book of 472 pages has been stored in
separate files - one file per page - in two folders. One
folder contained 305 files, the other 167 files

(305 + 167 = 472.) m

Example.

There are 40 students in an algebra class and 40 students
in a geometry class. How many different students are in
both classes combined?

This problem is not well formulated and cannot be
answered unless we are told how many students are
taking both algebra and geometry. If there is not student
taking both algebra and geometry, then by the sum rule
the answer is 40 + 40. But let us assume that there are

10 students taking both algebra and geometry. Then
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there are 30 students only in algebra, 30 students only in
geometry, and 10 students in both algebra and geometry.
Therefore, by the sum rule the total number of students is
30+ 30 + 10 = 70. m

Example.

How many ways can we get a sum of 7 or 11 when two
distinguishable dice are rolled?

Solution.

The two dice are distinguishable, therefore the ordered
pairs (a,b) and (b, a) are distinct whena # b , i.e.,
(a,b) # (b,a) for a # b.

The ordered pairs in which the sum is 7 are:
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).

These ordered pairs are distinct.

=~ There are 6 ways to obtain the sum 7.

Similarly, the ordered pairs: (5, 6), (6,5) are all distinct.
=~ The number of ways in which we get a sum 11 with the
two dice is 2.

~ We can get a sum 7 or 11 with two distinguishable dice

in6 + 2 = 8ways.m
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Example.

How many ways can we draw a club or a diamond from a
pack of cards?

Solution.

There are 13 clubs and 13 diamonds in a pack of cards.
The number of ways a club or a diamond may be drawn
13 + 13 = 26. =

Example.

In how ways can be drawn an ace or a king from an
ordinary deck of playing cards?

Solution.

Number of Aces in a pack = 4.

Number of kings in a pack = 4.

Number ways an Ace or a king can be drawn from the
pack=4 + 4 = 8. =

Example.

Suppose that either a member of the mathematics faculty
or a student who is a mathematics major is chosen as a
representative to a university committee. How many

different choices are there for this representative if there
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are 37 members of the mathematics faculty and 83
mathematics majors and no one is both a faculty member
and a student?

Solution.

There are 37 ways to choose a member of the
mathematics faculty and there are 83 ways to choose a
student who is a mathematics major. Choosing a member
of the mathematics faculty is never the same as choosing
a student who is a mathematics major because no one is
both a faculty member and a student. By the sum rule it
follows that there are 37 + 83 = 120 possible ways to
pick this representative. m

Example.

A student can choose a computer project from one of
three lists. The three lists contain 23, 15, and 19 possible
projects, respectively. No project is on more than one list.
How many possible projects are there to choose from?
Solution.

The student can choose a project by selecting a project

from the first list, the second list, or the third list. Because
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no project is on more than one list, by the sum rule there
are 23 + 15 + 19 = 57 ways to choose a project. m
Example.

How many three-digit integers (integers from 100 to 999
inclusive) are divisible by 5?

Solution.

We use the addition rule. Integers that are divisible by 5
end either in 5 or in 0. Thus the set of all three-digit
integers that are divisible by 5 can be split into two
mutually disjoint subsets A, and A, as shown in the

following figure.

Three-Digit Integers That Are Divisible by 5

three-digit integers three-digit integers
that end in 0 that end in 5

A; U A, =the set of all three-digit integers that are
divisible by 5. A; N A, = ¢.
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Now there are as many three-digit integers that end in 0
as there are possible choices for the left-most and middle
digits (because the right-most digit must be a 0). As
illustrated below, there are nine choices for the left-most
digit (the digits 1 through 9) and ten choices
for the middle digit (the digits 0 through 9). Hence
|A;| = 9-10 = 90.
] ] ]

Similar reasoning shows that there are as many three-
digit integers that end in 5 as there are possible choices
for the left-most and middle digits, which are the same as
for the integers that end in 0. Hence,

|4,] =910 = 90.
The number of three-digit integers that are divisible by 5
= |A{| + |[A3] =90+ 90 =180. =
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2-Product Rule (The Multiplication Rule)
The Principle of Sequential Counting

Consider the following example. Suppose a computer
installation has four input/output units (A, B, C, and D)
and three central processing units (X, Y, and Z). Any
input/output unit can be paired with any central
processing unit. How many ways are there to pair an
input/output unit with a central processing unit?

To answer this question, imagine the pairing of the two
types of units as a two-step

operation;

Step 1: Choose the input/output unit.

Step 2: Choose the central processing unit.

The possible outcomes of this operation are illustrated in
the possibility tree of the following figure.

The topmost path from “root” to “leaf” indicates that
input/output unit A is to be paired with central processing
unit X. The next lower branch indicates that input/output
unit A is to be paired with central processing unit Y. And
so forth.

Thus the total number of ways to pair the two types of
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units is the same as the number of branches of the tree,
whichis3+3+3+3=4-3 =12.

Step 1: Choose the Step 2: Choose the
input/output unit.  central processing unit.
X

Y
Z

A

et

N =

Start

N~

The idea behind this example can be used to prove the
following rule.

THE PRODUCT RULE Suppose that a procedure can be
broken down into a sequence of two tasks. If there are n,
ways to do the first task and for each of these ways of
doing the first task, there are n, ways to do the second
task, then there are n4; X n, ways to do the procedure.

In general:
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If an operation consists of k steps and the first step can be
performed in ny ways,
the second step can be performed in n, ways [regardless

of how the first step was performed],

the k" step can be performed in n; ways [regardless of
how the preceding steps were performed], then the entire
operation can be performed in nq X n, X ... X n; ways.
<

Example.

There are two drawers. One contains 12 shirts, the other 7
neckties. There are 84 = 12 X 7 ways to combine a
shirt and a necktie. It is possible to examine the drawers
sequentially: first-second, first-second... It is also possible
to form combinations using two hands: left for a shirt,
right for a necktie. As long as all possible combinations
shirt/necktie have been counted, the exact procedure is of

NO consequence.m
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Example.

A test consists of 6 multiple-choice questions. Each
question has 4 possible answers. There are 4 X 4 X 4 X
4 x4 x4 = 4% ways to answer all 6 questions. m
Example.

There are boxes in a postal office labelled with an
English letter (out of 26 English characters) and a
positive integer not exceeding 80. How many boxes with
different labels are possible?

Solution.

The procedure of labelling boxes consists of two
successive stages. In the first stage we assign 26 different
English letters, and in the second stage we assign 80
natural numbers (the second stage does not depend on the
outcome of the first stage). Thus by the multiplication
rule we have 26 x 80 = 2080 different labels. =

Example.

How many different bit strings are there of length five?
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Solution.

We have here a procedure that assigns two values (i.e.,
zero or one) in five stages. Therefore, by the
multiplication rule we have 2° = 32 different strings. m
Example.

How many possible outcomes are there when we roll a
pair of dice, one red and one green?

Solution.

The red die can land in any one of six ways and for each
of their six ways, the green die can also land in six ways.
The number of possible outcomes when two dice are
rolled= 6 X 6 = 36.m

Example.

In how many different ways one can answer all the
questions of a true-false test consisting of 4 questions?
Solution.

There are two ways of answering each of the 4 questions.
So by product rule the number of ways in which all the 4

questions can be answered=2 X2 X2 X2 =16. =
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Example.

Find the number n of license plates that can be made
where each plate contains two distinct letters followed by
three different digits.

Solution.

First letter can be printed in 26 different ways. Since the
second letter must be different from the first, we have 25
contains for the second letter. Similarly the first digit can
be printed in 10 ways, the second digit in the license plate
can be printed in 9 ways and the third in 8 ways. So, the
number of license plates that can be printed, so that each
plate contains two distinct letters follower by three
different digits 26 X 25 X 10 X 9 X 8 = 4,68,000. =

Example.

How many functions are there from a set with m
elements to a set with n elements?

Solution.

A function corresponds to a choice of one of the n
elements in the codomain for each of the m elements in

the domain. Hence, by the product rule there are
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n-n----- n = n™ functions from a set with m
elements to one with n elements. For example, there are
53 = 125 different functions from a set with three
elements to a set with five elements. =

Example.

A certain personal identification number (PIN) is required
to be a sequence of any four symbols chosen from the 26
uppercase letters in the Roman alphabet and the 10 digits.
a. How many different PINs are possible if repetition of
symbols is allowed?

b. How many different PINs are possible if repetition of
symbols is not allowed?

c. What is the probability that a PIN does not have a
repeated symbol assuming that all PINs are equally
likely?

Solution.

a. Some possible PINs are RCAE, 3387, B92B, and so
forth. You can think of forming a PIN as a 4-step
operation where each step involves placing a symbol into

one of 4 positions, as shown below.
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Pool of available
P _— symbols: A, B, C, D, E, F, G,
\\o\‘* -~ N H I J K L MN,O,P,Q,R,

N eS B - <
o & ] STUVWXYZ -
7Y 7 &7 N 0,1,2,3,456,7.8,9
e 4 &
/ < oy
A -y, &
A 74
¥ 4 4 ¥
I 2 3 4

Step 1: Choose a symbol to place in position 1.

Step 2: Choose a symbol to place in position 2,

Step 3: Choose a symbol to place in position 3.

Step 4: Choose a symbol to place in position 4.

There is a fixed number of ways to perform each step,
namely 36, regardless of how preceding steps were
performed. And so, by the multiplication rule, there are
36-36-36-36 =36= 1,679,616 PINs in all.

b. Again think of forming a PIN as a four-step operation:
Choose the first symbol, then the second, then the third,
and then the fourth. There are 36 ways to choose the first
symbol, 35 ways to choose the second (since the first
symbol cannot be used again), 34 ways to choose the
third (since the first two symbols cannot be reused), and

33 ways to choose the fourth (since the first three
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symbols cannot be reused). Thus, the multiplication rule
can be applied to conclude that there are
36-35-34-33=1,413,720

different PINs with no repeated symbol.

c. By part (b) there are 1,413,720 PINs with no
repeated symbol, and by part (a) there are 1,679,616
PINs in all. So the probability that a PIN chosen at
random contains no repeated symbol is 1,679,616/
1,413,720 = 0.8417. In other words, approximately
84% of PINs have no repeated symbol. =

Let us now consider some more sophisticated counting
problems in which one must use a mixture of the sum and
multiplication rules.

Example.

A valid file name must be six to eight characters long and
each name must have at least one digit. How many file
names can there be?

Solution.

If N is the total number of valid file names and Ng, Ny
and Ng are, respectively, file names of length six, seven,
and eight, then by the sum rule N = Ng + N7 + Ng:
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Let us first estimate Ns. We compute it in an indirect way
using the multiplication rule together with the sum rule.
We first estimate the number of file names of length six
without the constraint that there must be at least one digit.
By the multiplication rule there are (26 + 10)° = 36° file
names. Now the number of file names that consists of
only letters (no digits) is 26°. We must subtract these
since they are not allowed. Therefore (by the sum rule)

Ns = 36° — 26° = 1867866560:

In a similar way, we compute N;= 36" —26"; Ng=36°%—
268. Finally N = Ng + N7 + Ng = 2684483063360.m

3-The Subtraction Rule (Inclusion-Exclusion for Two Sets)

Suppose that a task can be done in one of two ways, but
some of the ways to do it are common to both ways. In
this situation, we cannot use the sum rule to count the
number of ways to do the task. If we add the number of
ways to do the tasks in these two ways, we get an
overcount of the total number of ways to do it, because
the ways to do the task that are common to the two

ways are counted twice. To correctly count the number of

ways to do the two tasks, we must subtract the number of
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ways that are counted twice. This leads us to an important
counting rule.

THE SUBTRACTION RULE If a task can be done in
either n; ways or n, ways, then the number of ways to do
the task is n, + n, minus the number of ways to do the
task that are common to the two different ways. <

The subtraction rule is also known as the principle of
inclusion—exclusion, especially when it is used to count
the number of elements in the union of two sets.

Suppose that A and B are sets. Then, there are |A| ways
to select an element from A and |B| ways to select an
element from B. The number of ways to select an element
from A or from B, that is, the number of ways to select an
element from their union, is the sum of the number of
ways to select an element from A and the number of ways
to select an element from B, minus the number of ways to
select an element that is in both A and B. Because there
are |A U B| ways to select an element in either A or in B,
and |A n B| ways to select an element common to both
sets, we have

JAUB| = |A| + [B] — |[AnB|. (%)
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Here's an argument that may appear more rigorous.
e Since AN Band B — A are disjointas are Aand B — A,
moreover
AUB=AU(B—-A)
and
B=(ANnB)U (B—-A),
it follows from (*) that

JAUB| = |A]l + |B — A|,

JAnB| + [B — A| = [B|,
which, when added, yield (*).
o fANB = ¢,then|AUB| = |A] + |B].
Example.
A computer company receives 350 applications from
computer graduates for a job planning a line of new Web
servers. Suppose that 220 of these applicants majored in
computer science, 147 majored in business, and 51
majored both in computer science and in business. How
many of these applicants majored neither in computer

science nor in business?
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Solution.

To find the number of these applicants who majored
neither in computer science nor in business, we can
subtract the number of students who majored either in
computer science or in business (or both) from the total
number of applicants. Let A be the set of students who
majored in computer science and B the set of students
who majored in business. Then AUB is the set of
students who majored in computer science or business (or
both), and A n B is the set of students who majored both
in computer science and in business. By the subtraction
rule the number of students who majored either in
computer science or in business (or both) equals
|JAUB| = |Al + |B|]— |[ANB]|
=220 + 147 — 51 = 316.

We conclude that 350 — 316 = 34 of the applicants
majored neither in computer science nor in business. =

e The story of course does not end here. What about if
there are three sets: A, B, C? For three sets, the Inclusion-

Exclusion Principle reads
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|AUBU (|

= |[Al+ |B|+ |[C|— |[AnB| — |IBNC(|

— |AnC| + |JAnBNC(|
e In the more general case where there are n different sets
A;, the formula for the Inclusion-Exclusion Principle

becomes:

n
4
i=1

= ) |4 = Z |4; N 4|
1

i= 1<i<jsn

+ Z'i"si<j<k5n|Ai NA4;N Ak|
— e+ (DN A e (**)
e What does (**) say? On the left is number of elements
in the union of n sets. On the right, we first count
elements in each of the sets separately and add the up, as
we already know, if the sets A; are not disjoint, some
elements will have be counted more than once. Those are
the elements that belong to at least two of the sets A;, or
the intersections A; N A;. We wish to consider every such
intersection, but each only once. Since A; N A; = Aj N A;,
to avoid duplications we arbitrarily decide to consider

only pairs (A; N A;) withi < j.
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e When we subtract the sum of the number of elements in
such pairwise intersections, some elements may have
been subtracted more than once. Those are the elements
that belong to at least three of the sets A;. We add the sum
of the elements of intersections of the sets taken three at a
time. (The condition i < j < k assures that every
intersection is counted only once.)
® The process goes on with sums being alternately added
or subtracted until we come to the last term - the
intersection of all sets A;. Whether it's added or
subtracted depends on n: for n = 2 it was subtracted, for
n = 3 added - take a clue from here.
e Sets A; are often taken to be subsets of a larger set X
such that each A; is a collection of elements of X that
share some property P;.
i=1 4

is then the subset of X that consists of all elements of X
having at least one of the properties P;. Its complement

X —Ui-1 4

Is the set of elements that have none of those properties:

X — Ui A = NIty (X — A7) = Nizy A
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from which
IN7=, A7 | = |X| — |[Uj2, 4]

This leads to an additional form of (**)

N1 Ail = 1X] = Xiql Al + Z'i"si<j5n|Ai N Ajl

— Yikicj<ksnldi N A; N Ay

oo (CDM O Al e (%)
The left-hand side in (***) gives the number of elements
of X that have none of the properties P;.
Example.
How many bit strings of length eight either start with a 1
bit or end with the two bits 00?
Solution.
We can construct a bit string of length eight that either
starts with a 1 bit or ends with the two bits 00, by
constructing a bit string of length eight beginning with a
1 bit or by constructing a bit string of length eight that
ends with the two bits 00. We can construct a bit
string of length eight that begins witha 1 in 27 = 128

ways. This follows by the product rule, because the first
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bit can be chosen in only one way and each of the other

seven bits can be chosen in two ways.
1

‘ 27= 128 ways
Similarly, we can construct a bit string of length eight
ending with the two bits 00, in 26 = 64 ways. This
follows by the product rule, because each of the first six
bits can be chosen in two ways and the last two bits can

be chosen in only one way.
0 0

26= 64 ways
Some of the ways to construct a bit string of length eight
starting with a 1 are the same as the ways to construct a
bit string of length eight that ends with the two bits 00.
There are 25 = 32 ways to construct such a string. This
follows by the product rule, because the first
bit can be chosen in only one way, each of the second
through the sixth bits can be chosen in two ways, and the

last two bits can be chosen in one way.
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Consequently, the number of bit strings of length eight
that begin with a 1 or end with a 00, which equals the
number of ways to construct a bit string of length eight
that begins with a 1 or that ends with 00, equals 128 +
64 — 32 = 160. =

Example.

A professor in a discrete mathematics class passes out a
form asking students to check all the mathematics and
computer science courses they have recently taken. He
found that, out of a total of 50 students in the class,
30 took precalculus;

16 took both precalculus and Python;

18 took calculus;

8 took both calculus and Python;

26 took Python;

47 took at least one of the three courses.

9 took both precalculus and calculus;

Note that when we write “30 students took precalculus,”
we mean that the total number of students who took
precalculus is 30, and we allow for the possibility that

some of these students may have taken one or both of the
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other courses. If we want to say that 30 students took
precalculus only (and not either of the other courses), we
will say so explicitly.

a. How many students did not take any of the three
courses?

b. How many students took all three courses?

c. How many students took precalculus and calculus but
not Python? How many students took precalculus but
neither calculus nor Python?

Solution

a. By the difference rule, the number of students who did
not take any of the three courses equals the number in the
class minus the number who took at least one course.
Thus the number of students who did not take any of the
three courses is 50 — 47 = 3.

b. Let

P = the set of students who took precalculus.

C = the set of students who took calculus.

Y = the set of students who took Python.

Then, by the inclusion/exclusion rule,
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[PUCUY]

= |P|+|C|+|Y|=|PNC|—=|PNnY]|

—|CNnY|+|PNnCNY]|

Substituting known values, we get

47=30+18+26—-9—-16—8+|PnCNY].

Solving for

IPNCNY|=6.

Hence there are six students who took all three courses.
In general, if you know any seven of the eight terms in
the inclusion/exclusion formula for three sets, you can
solve for the eighth term.

c. To answer the questions of part (c), look at the diagram

in the following figure.

IPNCNY]

The number of
students who
took all three
courses

The number of

students who ——

took both
precalculus and
calculus

but not Python

.__,::?_;::,_
[10 )
X2
7
", o
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Since [P n C NnY| = 6, put the number 6 inside the
innermost region. Then work outward to find the numbers
of students represented by the other regions of the
diagram.

For example, since nine students took both precalculus
and calculus and six took all three courses, 9 — 6 = 3
students took precalculus and calculus but not Python.
Similarly, since 16 students took precalculus and Python
and six took all three courses, 16 — 6 = 10 students took
precalculus and Python but not calculus. Now the total
number of students who took precalculus is 30. Of these
30, three also took calculus but not Python, ten took
Python but not calculus, and six took both calculus and
Python. That leaves 11 students who took precalculus but
neither of the other two courses. A similar analysis can be
used to fill in the numbers for the other regions of the
diagram. m

4-Tree diagrams

Tree is a structure that consists of a root, branches and

leaves. Can be useful to represent a counting problem and
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record the choices we made for alternatives. The count
appears on the leaf nodes. We will study trees later.
Example.

What is the number of bit strings of length 4 that do not
have two consecutive ones.

Solution.

The tree diagram in the given

figure displays all bit strings

of length four without two

consecutive 1s. We see that

there are eight bit strings of 4th bil

length four without two

consecutive 1s. m
Example.

Suppose that “I Love El-Ahly” T-shirts come in five
different sizes: S, M, L, XL, and XXL. Further suppose
that each size comes in four colors, white, red, green, and
black, except for XL, which comes only in red, green,
and black, and XXL, which comes only in green and

black. How many different shirts does a souvenir shop
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have to stock to have at least one of each available
size and color of the T-shirt?

Solution.

The tree diagram in the following figure displays all

possible size and color pairs.

W = white, R =red, G = green, B = black

W R G BWURGIEBEWU-ERGU BURGUBG B
It follows that the souvenir shop owner needs to stock 17
different T-shirts. m
5-Pigeonhole Principle
The pigeonhole principle states that if n pigeons fly into
m pigeonholes and n > m, then at least one hole must
contain two or more pigeons. This principle is illustrated
in the following figures. Illustration (a) shows the pigeons
perched next to their holes, and (b) shows the

correspondence from pigeons to pigeonholes.
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(b)

Illustration (b) suggests the following mathematical way
to phrase the principle.

Pigeonhole Principle
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If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one box
containing two or more of the objects.

Corollary

A function from one finite set to a smaller finite set
cannot be one-to-one: There must be at least two
elements in the domain that have the same image in the
co-domain. <

The following examples show how the pigeonhole
principle is used.

Example.

Among any group of 367 people, there must be at least
two with the same birthday, because

there are only 366 possible birthdays. =

Example.

In any group of 27 English words, there must be at least
two that begin with the same letter, because there are 26
letters in the English alphabet. =

Example.

How many students must be in a class to guarantee that at

least two students receive the same score on the final
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exam, if the exam is graded on a scale from 0 to 100
points?

Solution,

There are 101 possible scores on the final. The
pigeonhole principle shows that among any 102 students
there must be at least 2 students with the same score. =

Example.

If 10 pigeons have to fit into 9 pigeonholes, then some
pigeonhole gets more than one pigeon. =

e More generally, if the number of pigeons is greater than
the number of pigeonholes, then some pigeonhole gets
more than one pigeon.

Example.

Consider a chess board with two of the diagonally
opposite corners removed. Is it possible to cover the
board with pieces of domino whose size is exactly two

board squares?
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Solution.

No, it's not possible. Two diagonally opposite squares on
a chess board are of the same color. Therefore, when
these are removed, the number of squares of one color
exceeds by 2 the number of squares of another color.
However, every piece of domino covers exactly two
squares and these are of different colors.

Every placement of domino pieces establishes a one-to-
one correspondence between the set of white squares and
the set of black squares. If the two sets have different
number of elements, then, by the Pigeonhole Principle, no
1-1 correspondence between the two sets is possible. m
6-generalized Pigeonhole Principle

For any function f from a finite set X with n elements to
a finite set Y with m elements and for any positive integer
k, if km < n, then there is some y € Y such that y is the
image of at least k + 1 distinct elements of X.

Theorem. THE GENERALIZED PIGEONHOLE PRINCIPLE

If N objects are placed into k bins then there is at least

one bin containing at least [N /k] objects.
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Example.

Assume 100 people. Can you tell something about the
number of people born in the same month?

Solution

* Yes. There exists a month in which at least [100/12] =
[8.3] = 9 people were born. =

Example.

What is the minimum number of students required in a
discrete mathematics class to be sure that at least six will
receive the same grade, if there are five possible grades,
A B, C,D,and F?

Solution.

The minimum number of students needed to ensure that
at least six students receive the same grade is the smallest
integer N such that [N/5] = 6. The smallest such
integer is N = 5 -5 4+ 1 = 26. If you have only 25
students, it is possible for there to be five who have
received each grade so that no six students have received

the same grade. Thus, 26 is the minimum number of
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students needed to ensure that at least six students will
receive the same grade. m

Example.

a) How many cards must be selected from a standard
deck of 52 cards to guarantee that at least three cards of
the same suit are chosen?
b) How many must be selected to guarantee that at least
three hearts are selected?

Solution.

a) Suppose there are four boxes, one for each suit, and as
cards are selected they are placed in the box reserved for
cards of that suit. Using the generalized pigeonhole
principle,

we see that if N cards are selected, there is at least one
box containing at least N/4 cards. Consequently, we
know that at least three cards of one suit are selected if
[N /4] = 3. The smallest integer N such that [N/4] = 3
ISN = 2 -4 + 1 = 9, s0 nine cards suffice. Note that
if eight cards are selected, it is possible to have two cards
of each suit, so more than eight cards are needed.

Consequently, nine cards must be selected to guarantee
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that at least three cards of one suit are chosen. One good
way to think about this is to note that after the eighth card
IS chosen, there is no way to avoid having a third card of
some suit.

b) We do not use the generalized pigeonhole principle to
answer this question, because we want to make sure that
there are three hearts, not just three cards of one suit.
Note that in the worst case, we can select all the clubs,
diamonds, and spades, 39 cards in all, before we select a
single heart. The next three cards will be all hearts, so we
may need to select 42 cards to get three hearts. m

Example.

Show how the generalized pigeonhole principle implies
that in a group of 85 people, at least 4 must have the same
last initial.

Solution.

In this example the pigeons are the 85 people and the
pigeonholes are the 26 possible last initials of their
names.

Consider the function L from people to initials defined by

the following arrow diagram.
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85 people (pigeons) 26 initials (pigeonholes)

X e LY \

_ L(x;) = the initial of
-2 x;'s last name

LT

‘ _1_35 - ; ..".__‘.. - Z
e yd AN e

Since 3-26 = 78 < 85, the generalized pigeonhole
principle states that some initial must be the image of at
least four (3 + 1) people. Thus at least four people have

the same last initial. m

7-Permutations and Combinations

In computer science one often needs to know in how
many ways one can arrange certain objects (e.g., how
many inputs are there consisting of ten digits?). To
answer these questions, we study here permutations and

combinations — the simplest arrangements of objects.
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Definition.

A permutation of a set of distinct objects is an ordered
arrangements of these objects. An ordered arrangements
of r elements of a set is called an r-permutation.

Example.

Let S = {1, 2,3}. The ordered arrangement (3,1,2) is a
permutation of S. The ordered arrangement (3, 2) is a 2-
permutation of S.m

Example.

In how many ways can we select three students from a
group of five students to stand in line for a picture? In
how many ways can we arrange all five of these students
in a line for a picture?

Solution

First, note that the order in which we select the students
matters. There are five ways to select the first student to
stand at the start of the line. Once this student has been
selected, there are four ways to select the second student
in the line. After the first and second students have been

selected, there are three ways to select the third student in
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the line. By the product rule, there are 5-4-3 =60
ways to select three students from a group of five
students to stand in line for a picture.

To arrange all five students in a line for a picture, we
select the first student in five ways, the second in four
ways, the third in three ways, the fourth in two ways, and
the fifth in one way.

Consequently, thereare 5-4-3 -2 -1 = 120 ways to
arrange all five students in a line for

a picture. m

In how many ways may one count a set of n elements?
Or, which is the same, how many permutations are there
of (a set of ) n elements?

Definition.

The number of permutations of a set of n elements is
denoted and defined by n! (pronounced n factorial.)

The number of r-permutations of a set with n elements is

denoted and defined by
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Theorem.
Forallintegern > 0, n! = n-(n—1).
Thus n! is the number of ways to count a set of n
elements. As we saw, 2! = 2. Obviously, 1! =1, 3! = 6.
Indeed, there are just six ways to count three elements:

1. (1,2,3)
2. (1,3,2)
3.(2,1,3)
4. (2,3,1)
5. (3,1,2)

6. (3,2,1)
How many ways are there to count an empty set, the set
with 0 elements? (Note that {0} contains one element
thus is not empty. The empty set contains no elements at
all - {}.) Since there is nothing to count the question is In
how many ways can one do nothing? A mathematical
answer to this is just one: 0! = 1.
An aside
There is just one way to do nothing so that 0! = 1.
However, the result of this activity is nothing or, in math

parlance, 0. You may enjoy the following question.
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Guess the next number in the following sequence
0,1,2,720!

Answer to the problem

720! = (61! = (3N,

I.e. three followed by three factorials.

2 =2 = (2D},
I.e. two followed by two factorials.
1 = 1!

and finally, 0! = 0 followed by zero factorials - a result
of doing nothing.

The answer then is 4!l The number is quite big (how
big?). So that computing it would take a lot of effort.

Here is another way to do this. Look at the six
permutations of a 3-element set. Let's try mimicking this
for a set of n elements. There are n ways to select the first
element. For each of these, by definition, the remaining
(n—1) elements can be counted in (n—1)! ways.
Therefore, there are n-(n — 1)! ways to count an n-

element set.
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Example.

LetS = {1, 2,3,4,5}. The ordered arrangement
(4,2,1,5,3) isa permutation of S.
(3,1,4) is a 3-permutation of S.m

Example.

Let S={a,b,c}. The 2- permutations of S are the
ordered arrangements a, b; a,c; b,a; b,c; c,a; and c, b.
Consequently, there are six 2-permutations of this set
with three elements. There are always six 2-permutations
of a set with three elements. There are three ways to
choose the first element of the arrangement. There are
two ways to choose the second element of the
arrangement, because it must be different from the first
element. Hence, by the product rule, we see that
P (3,2) = 3 - 2 = 6. the first element. By the product
rule, it follows that P (3,2) = 3 - 2 = 6.m

Example.

How many ways are there to select a first-prize winner, a

second-prize winner, and a third-prize winner from 100
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different people who have entered a contest?

Solution.

Because it matters which person wins which prize, the
number of ways to pick the three prize winners is the
number of ordered selections of three elements from a set
of 100 elements, that is, the number of 3-permutations of
a set of 100 elements. Consequently, the answer is
P (100,3) = 100 - 99 - 98 = 970,200. =

Example.

Suppose that there are eight runners in a race. The winner
receives a gold medal, the second place finisher receives
a silver medal, and the third-place finisher receives a
bronze medal. How many different ways are there to
award these medals, if all possible outcomes of the race
can occur and there are no ties?

Solution.

The number of different ways to award the medals is the
number of 3-permutations of a set with eight elements.
Hence, there are P (8,3) = 8 - 7 - 6 = 336 possible

ways to award the medals. =
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Example.

Suppose that a saleswoman has to visit eight different
cities. She must begin her trip in a specified city, but she
can visit the other seven cities in any order she wishes.
How many possible orders can the saleswoman use when
visiting these cities?

Solution.

The number of possible paths between the cities is the
number of permutations of seven elements, because the
first city is determined, but the remaining seven can be
ordered arbitrarily. Consequently, there are 7! = 5040
ways for the sales woman to choose her tour. If, for
instance, the saleswoman wishes to find the path between
the cities with minimum distance, and she computes the
total distance for each possible path, she must consider a
total of 5040 paths! =

Example.

How many permutations of the letters ABCDEFGH
contain the string ABC ?
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Solution.

Because the letters ABC must occur as a block, we can
find the answer by finding the number of permutations of
six objects, namely, the block ABC and the individual
letters D, E, F, G, and H. Because these six objects can
occur in any order, there are 6! = 720 permutations
of the letters ABCDEFGH in which ABC occurs as a
block. m

eCombinations

e We now turn our attention to counting unordered
selection of objects.

Example.

How many different committees of three students can be
formed from a group of four students?

Solution.

We need only find the number of subsets with three
elements from the set containing the four students. We
see that there are four such subsets, one for each of the
four students, because choosing three students is the same

as choosing one of the four students to leave out of the
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group. This means that there are four ways to choose the
three students for the committee, where the order in
which these students are chosen does not matter. =
Definition.

An r-combination of elements of a set is an unordered
selection of r elements from the set.

Thus, an r-combination is simply a subset of the set with
r elements.

Example.

LetS ={1,2,3,4,5}. Then {1, 3,4} isa 3- combination
of S. (Note that {4, 1, 3} is the same 3-combination as

{1, 3,4}, because the order in which the elements of a set
are listed does not matter.)

Definition.

The number of r-combinations of a set with n elements,
where n is a nonnegative integer and r is an integer with

0 < r < n,equals

n!

(n,r),nCr or (:) =

ri(n-r)!
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Example.

We see that C(4,2) = 6, because the 2-combinations of
{a, b, c,d} are the six subsets {a, b}, {a, c},{a, d}, {b, c},
{b,d}, and {c,d}. =

Example.

How many poker hands of five cards can be dealt from a
standard deck of 52 cards? Also, how many ways are
there to select 47 cards from a standard deck of 52 cards?

Solution.

Because the order in which the five cards are dealt from a
deck of 52 cards does not matter, there are

€(52,5) = 2,598,960

different hands of five cards that can be dealt.
Consequently, there are 2,598,960 different poker hands
of five cards that can be dealt from a standard deck of 52
cards.

Note that there are €(52,47) = 2,598,960 different
ways to select 47 cards from a standard deck of 52 cards.
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Example.

How many ways are there to select five players from a
10-member tennis team to make a trip to a match at
another school?

Solution.

The answer is given by the number of 5-combinations of

a set with 10 elements. The number of such combinations
is C(10,5) = 252. m

Example.

A group of 30 people have been trained as astronauts to
go on the first mission to Mars. How many ways are there
to select a crew of six people to go on this mission
(assuming that all crew members have the same job)?
Solution

The number of ways to select a crew of six from the pool
of 30 people is the number of 6-combinations of a set
with 30 elements, because the order in which these
people are chosen does not matter. The number of such
combinations is €(30,6) = 593,775. =
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Example.
How many bit strings of length n contain exactly r 1s?
Solution,

The positions of r 1s in a bit string of length n form an r-
combination of the set {1,2,3,...,n}. Hence, there are
C (n,r) bit strings of length n that contain exactly r 1s.
Example.

Suppose that there are 9 faculty members in the
mathematics department and 11 in the computer science
department. How many ways are there to select a
committee to develop a discrete mathematics course at a
school if the committee is to consist of three faculty
members from the mathematics department and four from
the computer science department?

Solution.

By the product rule, the answer is the product of the
number of 3-combinations of a set with nine elements and
the number of 4-combinations of a set with 11 elements.
By Theorem 2, the number of ways to select the
committee is €(9,3) - €C(11,4) = 27,720.=
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& Combinatorial Proofs

To remind, C(n, m) is a binomial coefficient

n!

Cn,m) = m! (n — m)!

that appears in the Binomial Theorem which, for an

integer exponent, can be written as

(x+y)"

=C(n,0) x"+ C(n, 1) x™y + C(n, 2) x"2y? + ... + C(n, n) y"
= Yk=0 C(n, k)x" "k yk,

e Combinatorial proof is a perfect way of establishing
certain algebraic identities without resorting to any kind
of algebra. For example, let's consider the simplest
property of the binomial coefficients:

(1) C(n, k) = C(n,n — k).

To prove this identity we do not need the actual algebraic
formula that involves factorials, although this, too, would
be simple enough. All that is needed to prove (1) is the
knowledge of the definition: C(n, k) denotes the number
of ways to select k out n objects without regard for the
order in which they are selected. To prove (1) one needs

to observe that whenever k items are selected, n-k items
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are left over, (un)selected of sorts. So that proving (1)
becomes a word usage matter. (In this example, another
simple proof is by introducing m = n — k, from which
k = n — m so that (1) translates into an equivalent
formC(n,n — m) = C(n,m).). 4

As another example, the identity

2Cnd)+Cn,) + C(n,2)+...+(n,n—
1),+C(n,n) = 2"

which is a consequence of the binomial theorem
(X+y)"=2XC(n, k) x* y"* 0<k<n.

admits a combinatorial interpretation. The left hand side
in (2) represents the number of ways to select a group -
empty or not - of items out of a set of n distinct elements.
The first term gives the number of ways not to make any
selection, which is 1. The second term gives the number
of ways to select one item (which is n), etc. What does
the right hand side represent? Exactly same thing. Indeed,
with every selection of items from a given set we can
associate a function that takes values 0 or 1. A selected
element is assigned value 1, while an unselected element

Is assigned value 0. If for the sake of counting
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convenience, the elements of the set are ordered with
indices 1, ..., n, then every selection from the set is
represented by a string of 0's and 1's; the total number of
such strings is clearly the right hand side in (2): 2". «
Thus a combinatorial proof consists in providing two
answers to the same question. But not to forget, finding
the question to be answered in two ways is conceivably
the most important part of the proof. As a matter of
convention, it is often convenient to think of sets and
their elements as groups of students and of selections of
elements as endowing them with a membership on a
committee. For a third example, consider the popular
identity underlying the Pascal triangle:

) C(nk)=Cn—1,k)+C(n—1,k—1).

By definition, the left hand side is the number of ways to
compose a k-member committee out of a group of n
students. To grasp the significance of the right hand side,
pick arbitrarily one of the students. Then the first term on
the right gives the number of k-member committees that

do not include the student, whereas the second term gives
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the number of committees in which the student is a
member. «

Here is an additional example. Prove that

4 Cnr)C(r,k) = C(n,k)C(n—k,r—k),

where k < r < n. C(n, r) is the number of ways to
form an r-member committee from a group of n students.
C(r, k) is the number of ways to form a k-member
committee out of a group of r students. As r is the same
in both cases, it it sensible to assume that the r students
selected from the initial n are exactly those among whom
we seek a more restrictive r. So we could describe the left
hand side in (4) as the number of ways to choose a k-
member committee from an n-member student body and
a k-member subcommittee out of the selected r. So the
question is in how many ways is it possible to choose a r-
member committee from an n-member student body and
a k-member subcommittee out of the selected r. The left
hand side gives an answer to that question. The right hand
side answers the same question but in a different way.
First we select a k-member subcommittee out of the n-

member student population and later complete it to an r-
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member committee by selecting r-k members out of the
remaining population of n-k students. <

Example.

How many different strings can be made by reordering
the letters of the word TOTTOS?

Solution.

If all letters in the word TOTTOS would be different,
then the answer would be 5! ! but then we would over
count. To avoid it, we observe that there are 6 positions.
The letter T can be placed among these six positions in
C(6, 3) times, while the letter O can be placed in the
remaining positions in C(3, 2) ways; finally S can be put
in C(1, 1) ways. By the multiplication rule we have

C(6, 3) C(3,2) C(1, 1) =60o0rderings.m
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Exercise (6)

1-Cells of a 15x15 square grid have been painted in red,
blue and green. Prove that there are at least two rows of
cells with the same number of squares of at least one of
the colors.

2-Thereare (2n — 1) rooksona (2n — 1) X (2n — 1)
board placed so that none of them threatens another.
Prove that any n X n square contains at least one rook.

3- In every square of a 5 x 5 board there is a flea. At
some point, all the fleas jump to an adjacent square (two
squares are adjacent if they share an edge). Is it possible
that after they settle in the new squares, the configuration
Is exactly as before: one flea per square?

4- 200 points have been chosen on a circle, all with
integer number of degrees. Prove that the points there are
at least one pair of antipodes, i.e., the points 180° apart.
5- If each point of the plane is colored red or blue then
there are two points of the same color at distance 1 from

each other.
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6-The integers 1, 2, ..., 10 are written on a circle, in any
order. Show that there are 3 adjacent numbers whose sum
is 17 or greater.

7-Given a planar set of 25 points such that among any
three of them there exists a pair at the distance less than
1. Prove that there exists a circle of radius 1 that contains
at least 13 of the given points.

8-Prove that among any five points selected inside an
equilateral triangle with side equal to 1, there always
exists a pair at the distance not greater than .5.

O-Let A be any set of 19 distinct integers chosen from the
arithmetic progression 1, 4, 7,..., 100. Prove that there
must be two distinct integers in A whose sum is 104.
10-Prove that in any set of 51 points inside a unit square,
there are always three points that can be covered by a
circle of radius 1/7.

11-Five points are chosen at the nodes of a square lattice
(grid). Why is it certain that at least one mid-point of a
line joining a pair of chosen points, is also a lattice point?
12-Prove that there exist two powers of 3 whose
difference is divisible by 1997.
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13-1f 9 people are seated in a row of 12 chairs, then some
consecutive set of 3 chairs are filled with people.
14-Given any sequence of n integers, positive or
negative, not necessarily all different, some consecutive
subsequence has the property that the sum of the
members of the subsequence is a multiple of n.

15-In every polyhedron there is at least one pair of faces
with the same number of sides.

16-In every polyhedron there is at least one pair of faces
with the same number of sides.

17-Given 12 distinct 2-digit integers. Prove there are
some two whose difference - a 2-digit number - has equal
digits.

18-What is the largest number of cells of a 6x6 board that
could be colored such that no two colored cells touch (not
even at a corner)?

19-17 students talked of 3 topics. There are 3 students
that - between them - talked the same topic.

20-Seven integers under 127 and their Ratios

21-17 rooks are placed on an 8x8 chessboard. Prove that

there are at least 3 rooks that do not threaten each other.
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22-Chinese Remainder Theorem.

Let's mark the centers of all squares of an 8x8 chess
board. Is it possible to cut the board with 13 straight lines
(none passing through a single midpoint) so that every
piece had at most 1 marked point?

23-Each of the given 9 lines cuts a given square into two
quadrilaterals whose areas are in proportion 2:3. Prove
that at least three of these lines pass through the same
point.

24-Suppose each point of the plane is colored red or blue,
Show that some rectangle has its vertices all the same
color.

25-Suppose each point on a circumference of a circle is
colored either red or blue. Prove that, no matter how
colors may be distributed, there exist 3 equally spaced
points of the same color.

26-Suppose f(x) is a polynomial with integral
coefficients. If f(x) = 2 for three different integers a, b,
and c, prove that, for no integer, f(x) can be equal to 3.
27-Prove that there exists a power of three that ends with
001.
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28-Show that if more than half of the subsets of an n-
element set are selected, then some two of the selected
subsets have the property that one is a subset of the other.
29-Let a and b be positive integers, witha < b < 2a.
Then, given more than half of the integers in the set
{1,2,...,a + b}, some two of the given integers differ
by a or by b.

30-Given any 6 points inside a circle of radius 1, some
two of the 6 points are within 1 of each other.

31-Let n be a positive integer greater than 3. Let m be the
largest integer in (n + 2)/2. Then, given more than m of
the integers in the set {1, 2,...,n}, some three of the
integers in the given set have the property that one of the
three is the sum of the other two.

32-1f more than half of the integers from {1, 2, ..., 2n} are
selected, then some two of the selected integers have the
property that one divides the other.

33-1f more than half of the integers from {1, 2,...,2n} are
selected, then some two of the selected integers are

mutually prime.
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34-Given any sequence of mn + 1 real numbers, some
subsequence of (m + 1) numbers is increasing or some
subsequence of (n + 1) numbers is decreasing.

35-Given any 1000 integers, some two of them differ by,
or sum to, a multiple of 1997.

36-Given any 10 4-element subsets of an 11-set, some
two of the subsets intersect in at least two elements.
37-A person takes at least one aspirin a day for 30 days.
If he takes 45 aspirin altogether, in some sequence of
consecutive days he takes exactly 14 aspirin.

38-A theatre club gives 7 plays one season. Five women
in the club are each cast in 3 of the plays. Then some play
has at least 3 women in its cast.

39-At a party of n people, some pair of people are friends
with the same number of people at the party.

40-Given any 6 integers from 1 to 10, some two of them
have an odd sum.

41. How many ways are there to select a first-prize
winner, a second-prize winner, and a third-prize winner

from 100 different people who have entered a contest?
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42. How many permutations of the letters ABCDEFG
contain the string ABC?

43. How many different committees of two students can
be formed from a group of four students?

Answer C (4, 2).

44. In how many ways can we choose a chair and a vice
chair from a group of four students?

How is this example different from the previous one?
45. How many poker hands of five cards can be dealt
from a standard deck of 52 cards? Also, how many ways
are there to select 47 cards from a standard deck of 52
cards?

46. How many bit strings of length n contain exactly r
1s?
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CHAPTER (VII)

BOOLEAN ALGEBRA AND

THEIR APPLICATIONS
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Chapter (VII)
Boolean Algebra and Their Applications

The circuits in computers and other electronic devices
have inputs, each of which is either a 0 or a 1, and
produce outputs that are also Os and 1s. Circuits can be
constructed using any basic element that has two different
states. Such elements include switches that can be in
either the on or the off position and optical devices that
can either be lit or unlit. In 1938 Claude Shannon showed
how the basic rules of logic, first given by George Boole
in 1854 in his book “The Laws of Thought” could be
used to design circuits. These rules form the basis for
Boolean algebra.

7.1 Boolean Algebra
Definition.

The Boolean algebra is a mathematical system

7
.....

onBi.e,b"+""-" are mapsfromB X B = B), "i.i"
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elements in B, satisfies for all a, b, c € B, the following

axioms:

1. There exist at least two elements a, b in B and that

a # b.

2.Vab€eB

(la+beB,(ii)abEB,;

3. Commutative laws: for all a, b € B,
Ma+b=b+a,(i)a-b=>b-a;,

4. Associative laws: for all a, b, c € B,
Ma+b+c)=(@+Db)+c,
(ia-(b-c)=(a-b)-c;

5. Distributive laws: a, b, c € B,

Ma-(b+c)=ab+a-c,

(ia+Mb-c)=(a+Db) (a+c);

6. (i) Existence of zero: There exists of B such that

a+0=aVa € B;

The element O is called the zero element.

(if) Existence of identity (unit): There exists 1 € B such

that

a*1=aVa € B;

The element 1 is called the identity (unit) element.
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7. Existence of complement:

For each a € B,3a’ € B such that
(i a+a =1,(ii))a-a" =0.

Example.

Let B, = {0,1}and +, -, " be defined as follows :

p a|bla+b|a-b

a a
) 1 ]1 1 1
K 110 1 0
0|1 1 0
0|0 0 0

Boolean algebra, where for all A, B € P(X)
A+B=AUB,A-B=ANB, A'=A°0=¢,1=X.n
Example.

Suppose B is the set of all propositions, then (B, +,-
q=pAq,p' =~p,0=F,1=T,forallp,geB,andT

Is the tautology and F is the contradiction. m
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Example.

If B is the set of all positive divisors for 30 , then the

30
x+y=Ilemlx,yl,x.y = gcd(x,y),x" = 7,0 =1,

1=30.m
Example.

Let B be the set of all positive divisors for 8, then (B, +,-

7’
.....

defined in the above example. Because 4 + 4’ =
Icm[4,2] =4+#8=1.m

Example.

Let S be the set of statement formulas involving n
statement variables. The algebraic system

(S, v, A,—, F, T)isaBoolean algebra in

which v, A, = denotes the operations of conjunction,
disjunction and negation, respectively. The element F and
T denotes the formulas which are contradictions and

Tautologies, respectively. m
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Remark.

We use the symbol B instead of the Boolean Algebra

vé
.....

Theorem.

Let B be a Boolean Algebra. Then
(1) There is at most one identity element w. r. t."+", i. e.,

the additive identity O is unique.

(2) There is at most one identity element w. r. t."-", I. e.,

the multiplicative identity 1 is unique.
(3) The complement a’ of a is unique.

Proof.

(1) Let 0’ be another additive identity.

Sincea = a +0',then0 =0+ 0'=0"+0=0".
(2) Let 1’ be another multiplicative identity.
Then1=1-1"=1"-1=1".

(3) Let y € B be another complement of a,
l.e,a+y =1anda-y=0.
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y=y-1 (Identity element)
=vy(a+a') (Complemented)
=ya+ ya’ (Distributive law)
=ay+ya (Commutative law)
=0+ ya (Complemented)
=aa' + ya' (Complemented)
= (a+y)a (Distributive law)
=1-a (Complemented)
=a. (Identity element)

Therefore a’ is the unique complement of a . m
Theorem. Double Complement law
For every element a in a Boolean algebra B, (a')’ = a.
Proof:
Suppose B is a Boolean algebra and a is any element of
B. Then
a+ a' = a’' + a by the complement law for +.

=1 by the complement law for 1. and
a-a’ = a'-a by the complement law for -.

=0 by the complement law for 0.
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Thus a satisfies the two equations with respect to a’ that
are satisfied by the complement of a’. From the fact that
the complement of a is unique,

we conclude that (a’)’ = a. <

Example.

Fill in the blanks in the following proof that for all
elements a in a Boolean algebra B, a + a = a.

Proof.

Suppose B is a Boolean algebra and a is any element of
B. Then

a=a+0 (a)
=a+a-a (b)
=(a+a)-(a+a) (c)
=(a+a)-1 (d)
=a+a (e)

Solution.

(a) because 0 is an identity forl
(b) by the complement law for -

(c) by the distributive law forlover?
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(d) by the complement law forl

(e) because 1 is an identity for? m

Definition.

The Boolean expression in the variables x4, x,, ..., x,, are
defined recursively as 0,1, x4, x5, ..., X5,.

If E and F are Boolean expression , then E',E + F,E.F
are Boolean expression.

Definition.

The dual of a Boolean expression E is denoted by EY and
IS obtained by interchanging Boolean Sum "+" and
Boolean products "."; and interchanging Os and 15
Example.

Find the duals of

(D E=x(y+0);

2QT=xz"+x-0+x"-1;

RF=x""1+ Q"+ 2);

Solution.

WDEY=x+y-1.

QDT =(x+2z) (x+1) - (x' +0).

B Fi=(x+0)- (¢ 2)m
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Theorem. (ldentities (Rules) of Boolean Algebra)

Let B be Boolean algebraand a, b € B. Then
(1) Idempotent rules:
@a+a=a, (b) aa = q;
(2) ldentity rules:
@a+1=1, (b) a0 = 0;
(3) Absorption rules:
(@ a+ab=a, (b) a(a +b) = a;
(4) (@) 0"=1, (b) 1" =0;
(5) De Morgan’s rules:
@ (a+b) =ab", (b)(ab) =a" +b'.
Proof. All the given properties are Boolean expression
and it's dual. So, by the duality principle we only prove
one of these expressions.

(1) (a) See the previous example.

2@ a+1=((@+1)1 |dentity
=(a+1)(a+a") |dentity
=a+ (1la") Distributive
=a+(a'.1) Commutative
=a+a Identity

= 1. Complement
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3)(@) a+ab=al+ab Identity

=a(l+b) Distributive
=a(b+1) Commutative
=al From (2) above
= a. Identity

(4) Since 0 + 1 = 1 and 0.1 = 0, then by uniqueness of

the complemented we obtain 0’ = 1and 1" = 0.

(5) (a+ b)(a'b") = (a’'b")(a + b) Commutative
= (a’'b")a + (a’b")b Distributive
=a(a'b’) + (a’b")b Commutative
= (aa’)b' + a’'(bb") Associative

=0b'+d0 Identity
=040 From (2) above
= 0. Zero

(@a+b)+a'b'=((a+b)+a')((a+b)+b')
=((b+a)+a)((a+b)+1)
=(b+@+a))(a+Bd+D"))
=b+1D@+1)=1-1=1.

By uniqueness of the complement, we have

a'b'=(a+b).<
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Also, we can prove the identities in the above theorem
by the truth table as shown in the following example.
Example.

Show that the distributive law
x(y+2z)=xy+xz
Is valid.
Solution.
The verification of this identity is shown in the following
table, where 1+1=1,1+0=1,04+1=1, 04+0 =
0,and1.1=1,1.0=0,01=0,0.0=0.
The identity holds because the last two columns of the

table agree.

x y z y+z Xy Xz x(y+2) xy+xz

1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

Theorem. [Duality principle]
If T is an identity in a Boolean algebra B, then T¢ is also
an identity in B.
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This result is useful for obtaining new identities.
Example.
By taking duals construct an identity form the following
absorption law:

x(x +y) =x.
Solution.
Taking the duals of both sides of this identity produces
the identity x + xy = x, which is also called an
absorption law. =
Example.
Find the duals of x(y + 0)and x"- 1+ (y' + 2).
Solution: Interchanging - signs and + signs and
interchanging Os and 1s in these expressions
produces their duals. The dualsare x + (y - 1) and
(x" + 0)(y'z), respectively. m
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7.2 Boolean Functions

Definition.

Letn € Z* and B} = {(x1, x5, ..., X,); X; € B,} be the
set of all possible n- tuples of Os and 1s. Then the function
f: B} — B, is said to be Boolean function of degree n
and n variables x4, ..., x,,.

We will use examples to illustrate one important way to
find a Boolean expression that represents a Boolean
function.

Example.

Find Boolean expressions that represent the | tapie 1

functions F(x,y, z) and G(x, y, z), which x|y|z|Fl|G
L1110
1111010
Ljof1]1
L{0Of0O]0
Of111]0
0110} 0
Ofof1r)0
O0f0f10]0

=

are given in the Table 1.

—_

Solution.

= o o

e An expression that has the value 1 when

_

x=z=1andy = 0, and the value 0

= O

otherwise, is needed to represent F.
eSuch an expression can be formed by taking the
Boolean product of x,y’, and z.

e This product, xy'z, has the value 1 if and only if

- 463 -




x =y =z=1,whichholdsifandonlyifx =z=1

and y = 0.

eTo represent G, we need an expression that equals 1

whenx =y=1landz=0,orx=z=0andy = 1.

e\\Ve can form an expression with these values by taking

the Boolean sum of two different Boolean products.

eThe Boolean product xyz' has the value 1 if and only if

x =y = 1and z = 0. Similarly, the product x'yz’ has the

valuelifandonlyifx =z=0andy = 1.

eThe Boolean sum of these two products, xyz' + x'yz’,

represents G, because it has the value 1 if and only if

x=y=1landz=0,orx=z=0andy=1.=

To represent the Boolean function we use the truth table

for it.

Example.

Find the values of the Boolean function represented by
F(x,y) =xy + x'.

Solution.

The values of this function are displayed in the following

table
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X |y | xy | x' |xy+x
1 1 1 0 1
1170] 0 0 0
0 1 0 1 1
o]0, 0 1 1

Example.

Find the values of the Boolean function represented by
F(x,y,z) =xy+ 7.

Solution.

The values of this function are displayed in the following
table

x ¥ z xy z Flx,y,2)=xy+2z

1 1 l 0 l
1 0 l 1 l
0 1 0 0 0
0 0 0 1 l
0 1 1 0 0 0
0 1 0 0 1 I
0 0 1 0 0 0
0 0 0 0 | I

—
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Note that we can represent a Boolean function
graphically by distinguishing the vertices of the n-cube
that correspond to the n-tuples of bits where the function
has value 1.

Example.

110 111

from B3 to B, from the above 100 ‘ L
example can be represented by p ot
distinguishing the vertices that 000 001
correspond to the five 3-tuples (1,1, 1), (1,1, 0),
(1,0,0), (0,1,0), and (0,0,0), where F (x,y,z) = 1,

The function F(x,y,z) = xy + z'

as shown in the given figure. These vertices are displayed
using solid black circles. =

Definition.

Let f, g: B} - B, be Boolean Function then f and g are
equivalent written f = g if and only if they have the
same truth table or we can obtain one of them from the
other.

Example.

Prove that the Boolean functions f(x,y,z) = xy and

g(x,y,z) = xy(xz' + yz) are equivalent.
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Solution.

g(x,y,z) = xy(xz' + yz)
= (xy)(xz") + (xy)(y2)

= (yx)(xz") + x(yy)z

= y(xx)z' + x(yy)z

= yxz' + xyz

= (xy)z' + (xy)z

=xy(z' + 2)

=xy-1=xy.
We leave the student to prove it using truth table. =
Definition.
Letf and g be two Boolean functions in n variables. We
define the Boolean sum f + g, Boolean product f - g
and f' as follows:
(f+9)xy e xn) = X1 e, X)) + (X1, o) X)),
(f - P Cer e X)) = f 01, e, X)) 9 (X1, e, X)),
Oy, e, xp) = [f(x1, e x0)]

Remark.

’
.....

algebra where n € Z*, E, is the set of all Boolean

function, 0(xy, ..., x,) = 0and 1(xq, ..., x,) = 1
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Definition.

Let f (x4, ..., x,,) be a Boolean function.

(@) Forevery 1 <i<mn, x;or x; iscalled literal.
(b) The product y,y, ...y, ¥; =x; ory; =x;" for

every 1 < i < niscalled minterm.

Hence, a minterm is a product of n literals, with one
literal for each variable. A minterm has the value 1 for
one and only one combination of values of its variables.
More precisely, the minterm y,y, ...y, is 1 if and only if
each y; is 1 and this occurs if and only if x; = 1 when
y; = x; and x; = 0 when y; = x;’.

Example.

Find a minterm that equals 1 if x; = x3 =0 and x, =
x4 = x5 =1 and equals 0 otherwise.

Solution.

The minterm x;'x,x3'x,x< has the correct set of values.
Definition.

If f is written as the sum of minterm , then f is in the
Complete Sum of Products (CSP ) or Sum — of —

Products Expansion.
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We can put any function in CSP as follows:

(1) Find the truth table of f.

(2) Determine the rows that have the value 1.

(3) Find the minterm y,y, ....y,, for each row in step
(2), where y; = x; if x; = 1 and y; = x;’ if the value of
x; 15 0.

(4) CSP of f isthe sum of the minterms obtained in (3).
Definition.

Using the duality principle we can obtain the Complete
Product of Sums (CPS) or Product — of — Sums
Expansion of a Boolean function as follows:

1. Find the truth table of f.

2. Determine the rows that have the value 0.

3. Find the maxterm y; + y, + --- + y,, for each row in
2,wherey; =x; if x; =0andy; =x;" if x; = 1.

4. CPS of f is the product of maxterms obtained in 3.
Example.

Find CSP(F) and CPS(F),where F(x,y,z) = (x + y)z'.
Solution.

We can construct the CSP(F) and CPS(F) by determining
the truth table:
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X|ylzlx+y|Z | F=((x+y)z | minterm | maxterm
1l1]1] 1 1o 0 X4y +7
11110 1 1 1 xyz'
1]0|1 1 0 0 xX+y+7
1{o]ol 1 |1 1 xy'7
ol1]1l 1 Jo 0 x+y +7
ol1]o| 1 |1 1 x'yz'
0j/0J1] 0 o 0 xt+ty+z
0jlojo|] o0 |1 0 Xty+z

From the above table we have that the minterms of F are
xyz',xy'z" and x'yz'. Therefore
CSP(F) = xyz' + xy'z' + x'yz'.

Also, from the above table we have that the maxterms of
Fare x'+y' +z, x"+y+2z,x+y + 2,
x+y+z andx+y+z
Therefore
CPS(F)=(x+y+2)(x+y+zH)x+y' +2")
x'+y+z2)X"+y +2)m
We can obtain CSP(F) by the properties of the Boolean
algebra as follows:
F(x,y,z) = (x +y)z'

=xz' +yz' Distributive law

= x1z' + 1yZz' Identity law
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=x(y+y)z'+ (x+x")yz' Unit property
=xyz' +xy'z' + xyz' + x'yz' Distributive law
=xyz' +xy'z' + x'yz' ldempotent law
So, CSP(F) = xyz' + xy'z' + x'yz' .
Also, We can obtain CPS(F) by the properties of the
Boolean algebra as follows:
F(x,y,z) = (x+y)z'
=x+y+0)(0+2z")
= (x+y+ (zz")((xx") + 2")
=(x+y+2)(x+y+z)x+ 2" +2)
=x+y+2)(x+y+z)x+0+2z)X"+0+2")
=(x+y+2)(x+y+z)x+yy +z)Hx"+yy
+ z")
=(x+y+2)(x+y+z)x+yy +z2)HX"+yy
+ z")
=(x+y+2)(x+y+z2)x+y+2DN+y +2)(
+y+z2)"+y +2")
=(x+y+2)(x+y+z)x+y +z2HX"+y
+z)(x'+y + 2"
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Note
e The CSP(F) is unique (except ordering of the
minterms).
e The CPS(F) is unique (except ordering of maxterms).
e\We can obtained CPS by giving the CSP for the
complement of the function, and we take the complement
of the CSP give the CPS.

CPS(F) = (CSP(F"))’
olf CSP(F") = my + m, + -+ + my, then
CPS(F) =m;'m," ..my".
So, we can obtain CPS(F) from CSP(F) as illustrated in
the following example:
Example.
Use CSP (F') to find CPS (F) for the Boolean function
f(x,y,z) = xy + xz.
Solution.
We use the identities of the Boolean Algebra to find
CPS(F) by obtaining CSP(F") algebraically:
F(x,y,z) =xy+x'z
F'(x,y,z) = (xy + x'z)’
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= (xy)' (x'z)’ De Morgan's

=& +y)((x") +z") DeMorgan's

="' +y)x+2z")

=x'x+x'z +xy'+y'7

=0+x'"(y+y)z' +xy'(z+2")+ (x+x")y'Z

[N I~ 7

=x'yz' +x'y'z' +xy'z+xy'z +xy'z' + x'y'z

[ |

=x'yz' +x'y'z' + xy'z+ xy'7

Therefore

CSP(F) =x"yz' + x'y'z' + xy'z + xy'Z’

and

CPS(F)=(x+y +2)x+y+2)(x"+y+2")

x'+y+2z)m

- 473 -



7.3 Logic Gates

eBoolean algebra is used to model the circuitry of
electronic devices.

eEach input and each output of such a device can be
thought of as a member of the set {0, 1}.

e A computer, or other electronic device, is made up of a
number of circuits.

eEach circuit can be designed using the rules of Boolean
algebra.

e The basic elements of circuits are called gates.

The three main ways of specifying the function of a
combinational logic circuit are:

eBoolean Algebra. This forms the algebraic expression
showing the operation of the logic circuit for each input
variable either True or False that results in a logic "1"
output.

e Truth Table. A truth table defines the function of a logic
gate by providing a concise list that shows all the output
states in tabular form for each possible combination of

input variable that the gate could encounter.
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el_ogic Diagram. This is a graphical representation of a
logic circuit that shows the wiring and connections of
each individual logic gate, represented by a specific
graphical symbol, that implements the logic circuit.

eThe inverter, which accepts the value of one Boolean
variable as input and produces the complement of this
value as its output.

eThe OR gate. The inputs to this gate are the values of
two or more Boolean variables. The output is the Boolean
sum of their values.

eThe AND gate. The inputs to this gate are the values of
two or more Boolean variables. The output is the Boolean
product of their values.

eThe NAND gate function is a combination of the two
separate logical functions, the AND function and the
NOT function in series.

e The NOR gate is also a combination of two separate
logic functions, Not and OR connected together to form a
single logic function which is the same as the OR

function except that the output is inverted.
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e AND gate

> C=A-B

A —
inputs
B —
A B C
0 0 0
1 0 0
0 1 0
1 1 1

o
e OR gate i) Dt
A B Cc
-> C=A+B 0| ol o
1 0 1
o | 1| 1
Buffer

e Buffer

input [: output
A
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NOT

» NOR Gate

(Inverter)
e NOT Gate A N
> B=A Al e
(0] 1
1 0
e NAND Gate s | Paly
A B C
0 1 1
1 1 0
NOR

A B c
0 0 1
1 0 0
0 1 0
1 1 0
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Combinations of Gates

Combinational circuits can be constructed using a

combination of inverters, OR gates, and AND gates.

Example.

Construct circuits that produce the following outputs:

(@) (x + y)x';

(b) x'(y + 2)";

©(x+y+ 2y 2.

Solution.
e
L

(a)

D
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;

34

g

|
Ll

eExamples of Circuits

1. A committee of three individuals decides issues for an
organization. Each individual votes either yes or no for
each proposal that arises. A proposal is passed if it
receives at least two yes votes. Design a circuit that
determines whether a proposal passes.

Solution.

Let x = 1 if the first individual votes yes, and x = 0 if
this individual votes no; let y = 1 if the second individual
votes yes, and y = 0 if this individual votes no; let z = 1
if the third individual votes yes, and z = 0 if this
individual votes no. Then a circuit must be designed that

produces the output 1 from the inputs x, y, and z when
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two or more of X, y, and z are 1. One representation of the
Boolean function that has these output values is xy +
xz + yz. The circuit that implements this function is

shown in the figure.

g J

2. Sometimes light fixtures are controlled by more than
one switch. Circuits need to be designed so that flipping
any one of the switches for the fixture turns the light on
when it is off and turns the light off when it is on. Design
circuits that accomplish this when there are two switches
and when there are three switches.

Solution.

We will begin by designing the circuit that controls the
light fixture when two different switches are used. Let

x = 1 when the first switch is closed and x = 0 when it
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Is open, and let y = 1 when the second switch is closed
and y = 0 when it is open. Let F(x,y) = 1 when the
light is on and F(x,y) = 0 when it is off. We can
arbitrarily decide that the light will be on when both
switches are closed, so that F(1,1) = 1. This determines
all the other values of F. When one of the two switches is
opened, the light goes off, so F(1,0) = F(0,1) = 0.
When the other switch is also opened, the light goes on,
so F(0,0) = 1.

_ x | v | F(x,y)
The table displays these values.

Note that F(x,y) = xy + x y.

1| 1 1

1 |0 0
This function is implemented by o1l 1 0
the circuit shown in the figure. 010 1
y—pL
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We will now design a circuit for

x|y|z|Fx,y2
three switches. Letx,y,andzbethe | || I
Boolean variables that indicate 1 é ? 8
whether each of the three switches 1{o|o I
is closed. We let x = 1 when the g : ('j ?
first switch is closed, and x =0 010]1 I
when it is open; y = 1 when the 1o ’

second switch is closed, and y = 0 when it is open;

and z = 1 when the third switch is closed, and z = 0 when
it is open. Let F(x,y,z) = 1 when the light is on and
F(x,y,z) = 0 when the light is off. We can arbitrarily
specify that the light be on when all three switches are
closed, so that F(1,1,1) = 1. This determines all other
values of F. When one switch is opened, the light goes
off, so F(1,1,0) = F(1,0,1) = F(0,1,1) = 0.
When a second switch is opened, the light goes on, so
F(1,0,0) = F(0,1,0) = F(0,0,1) = 1.Finally,
when the third switch is opened, the light goes off again,
so F(0,0,0) = 0. The table shows the values of this

function.
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The function F can be represented by its sum-of-products
expansion as

F(x,y,z) =xyz + xy'z' + x'yz’ + x"y'z'. The
circuit shown in the following figure implements this

function.

Az HyE vz +x 'y ’z"
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s»Minimization of Circuits
Example.

Represent the Boolean function by logic circuit:
F(x,y,z) =xyz+xy'z

Solution.

The sum-of-products expansion of this circuit is xyz +

xy'z. The two products in this expansion differ in exactly

one variable, namely, y. They can be combined as

xyz+xy'z=x(y+y)z=x-1-z=xz.

Hence, xz is a Boolean expression with fewer operators

that represents the circuit. We show two different

implementations of this circuit in the figure. The second

circuit uses only one gate, whereas the first circuit uses

three gates and an inverter.

= R

—»}c—»[\f
e J

This example shows that combining terms in the sum-of-

products expansion of a circuit leads to a simpler
expression for the circuit.m
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Example.

Find the Boolean algebra expression for the following

AB'+CY)

system.
A
- 0
C ) Q
|
Solution.
%\ _\ AB.C
— A (ABC)+A(B'+C")
|
B!
C!

B+C'
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Exercises set (7)

1- Find the values of these expressions
10'; 1+ 1'; 0'0; (1-0).
2- Find the values, if any, of the Boolean variable x
that satisfy these equations
x.1=0, x+x=0, x.1=x, x.x' = 1.
3- Use a table to express the values of each of these
Boolean functions
F(x,y,z) =x"y,F(x,y,z) =x + yz
F(x,y,z) = xy" + (xyz)',
F(x,y,2) = x(yz + (yz)").
4- Find the duals of these Boolean expressions
x+y,x'y,xyz+ (xyz)',xz' + x0 + x'
5- Find a Boolean product of the Boolean variables X, y
and z or their complements, that has the value 1 if and
only if
@x=y=0z=1;
b)x=0, y=1, z=0;
Cx=0y=z=1;
x=y=z=0.

- 486 -



6-Find the sum-of-products expressions of these
Boolean functions

Flx,y) =x"+y, F(x,y) =xy; F(x,y) = 1,
F(x,y) =y F(x,y,2) =x+y+ z;

F(x,y,z) = (x + 2)y, F(x,y,2) = x.

7-Find the products-of-sums expressions of these
Boolean functions in Exercise 6.

8-Find the output of the given circuit.

. x [
ID—’ =

—"
os

4>D0 ]
9. Construct circuits to produce these outputs:
ax+y b (x+y)x,cxyz+xyz,d. (x +2z)(y + 2).

10. Design a circuit that implements majority voting for

five individuals.
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CHAPTER (V1II

GRAPH THEORY
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Chapter (V)
Graph Theory

8.1 Introduction

Graphs are discrete structures consisting of vertices and
edges that connect these vertices. Problems in almost
every conceivable discipline can be solved using graph
models. Using graph models, we can determine whether
it is possible to walk down all the streets in a city without
going down a street twice, and we can find the number of
colors needed to color the regions of a map. Graphs can
be used to determine whether two computers are
connected by a communications link using graph modules
of computer networks. Also, graphs can be used to
determine whether a circuit can be implemented on a
planner circuit board. Graph with weights assigned to
their edges can be used to solve problems such as finding
the shortest path between two cities in a transportation

network.

This chapter will introduce the basic concepts of graph

theory and present many different graph models.
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8.2 Graphs and Graph Models
Definition.

Conceptually, a graph is formed by vertices and edges

connecting the vertices.

Formally. Let V be a non-empty set, E be another set, and
f be a mapping such that f: E - {{x,y}:x,y € V}. Then
the triple G = (V,E, f) is called a graph.

We call that V (or V(G)) the set of vertices of G and E
(or E(G)) the set of edges (lines) of G. The graph ¢ =
(V,E, f) is finite if each V and E is finite. We consider

only the finite graphs without explicitly state.
® If v € f(e), then v isan vertex for e.

® If a,b €V, then a is adjacent to b if there exists e €
E such that f(e) = {a, b}.
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® Also, a € V is adjacent to itself if there exists e € E

such that f(e) = {a} and e is called a loop at a.

® If e; e, € E are incident with a common vertex, then

we say e; and e, adjacent edges.

o®If f(e;) = f(e;) = {a, b}, then e; and e, are called a

multiple edge.

® If f(e;) = f(e,) = {v}, then e; and e, are called a

multiple loop at v.

® A graph G with no loops and no multiple edges is a
simple graph.
®© IfG=(V,E,f)isagraph and f(e) = {a, b}, then we
write e = {a, b} and so we write G = (V,E) instead of
G = (V,E,f).

We sometimes consider the following generalizations of
graphs: a multigraph is a pair (V, E) where V is a set and
E is a multiset of unordered pairs from IV . In other
words, we allow more than one edge between two
vertices. A pseudograph is a pair (V, E) where V' is

a set and E is a multiset of unordered multisets of size
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two from V . A pseudograph allows loops, namely edges

of the form {a, a} fora € V.

® In general, we visualize graphs by using points to
represent vertices and line segments, possibly curved, to
represent edges.

Definition.

The set of all neighbors of a vertex v of G = (V,E),
denoted by N(v), is called the neighborhood of v. If A is
a subset of V , we denote by N(A) the set of all vertices
in G that are adjacent to at least one vertex in A. So,
N(A) = UyeaN(v).

To keep track of how many edges are incident to a vertex,

we make the following definition.

Definition.

Let G = (V,E) be a graph and x € V. The degree of x
(denoted by d;( x)) is the number of edges incident with

it, except a loop at x contributes twice to the degree of x.
® If d;(x) = 0, then x is said to be isolated vertex.

® A vertex is pendant if and only if it has degree one.
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® A vertex with odd degree is said to be odd vertex and

one with even degree is said to be even vertex.

® The degree sequence of a graph G is the sequence of

degrees of vertices of G in non-increasing order.
Note.

We represent a graph by means of a diagram.

€2 ¢

Graph H:
Thus, in the graph H:
® The points a and b are adjacent, but a and d are not.

® The lines e; and es are adjacent but e and e; are not.
® Although the lines es and e; are intersect in the
diagram but their intersection is not a vertex of the

graph.
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® The degree sequence of the graph H is (3,3,3,3,2).
Example.
What are the degrees and what are the neighborhoods of

the vertices in the graphs G and H displayed in the given

figure?

L 3=
p o
=l
e

a f e g e d

Solution.

InG,dg(a) =2,ds(b) = dg(c) =dg(f) =4, dg(d) =
1,d;(e) = 3,and d;(g) = 0. The neighborhoods of
these verticesare N(a) = {b,f}, N(b) = {a,c, e, [},
N(c) ={b,d,e, f}, N(d) = {c}, N(e) = {b,c, [},

N(f) ={a,b,c,e},and N(g) = ¢.

InH,dy(a) = 4,dy(b) =dy(e) =6,dy(c) =1, and
dy(d) = 5. The neighborhoods of these vertices are
N(a) ={b,d,e}, N(b) ={a,b,c,d, e}, N(c) = {b},
N(d) ={a,b,e},and N(e) = {a,b,d}.m
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Example.
Consider the graph G = (V, E), where & F
V={1,2,3}and E = {{1, 2},{1, 3}}.

Then the given drawing represents this

—

graph.m

Example.
Let V = {p1, 02, D3, P4, D5, Ps } bE p "
a set of six people at a party, and

suppose that p; shook hands with

P @ N —p 1

p, and p,, ps shook hands with \

. \ -\_\\.\ .;;I_.-""
pa; Ps and pg, and ps and pg 2 ® v,

shook hands. Let G = (V, E) be the graph with edge set E
consisting of pairs of people who shook hands. Then

E = {{p1, 02}, {p1, P4}, {3, P4}, {03, P53, {03, D6}, {Ds, D6 1}
A drawing of G is given in given figure. m

Example.

Let Z denote the set of integers and let

V={(x,y) € ZXZ:0<x<20<y<2}%

Then V is just the set of points in the plane with integer

co-ordinates between 0 and 2. Now, suppose G = (V,E)
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Is the graph where E is the set of pairs of vertices of V at
distance 1 from each other. In other words, (x, y) and
(x',y") are adjacent iff (x —x )2 + (y —y')? = 1.

We check that the edge set is

E = {{(0,0)(0,1)},{(0,0)(1,0)},{(0,1)(0, 2)},
{(1,0)(2,0)}{(1,00(1, D} {1, (L, 2} {(1,1), (2, D},
{(0,1),(1,1D},{(0,2)(1,2)},{(2,0)(2, D}L{(2, 1), (2,2)},
{(1,2),(2,2)}}:

o (0,2) (1.2) (2.2)
This is a cumbersome way to

§ @

®

write the edge set of G, as

compared to the drawing of G (0,1)8 ® 9(2.1)

in the given figure, which is

much easier to absorb. The 0 & 0
(0,0) (1,0 (2,0)

graph is called grid graph. =

Example.

Let V be the set of binary strings of length three, so

v ={000,001,010,100,011,101,110,111}:

Then let E be the set of pairs of strings which differ in
one position. Then

E = {{000,001},{010, 000}, {100,000}, ...,{111,101},
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{111,110}, {111,011}}:

The reader should fill in the rest of the edges as an
exercise. Once again, this graph actually has a very nice
drawing (which explains why it is sometimes called the

cube graph).

101 111

100 AN

v ®
000 010

Example.

Consider the graph G = (V, E), where the vertex set is

V = {v{,v,,v3,1,, Vs, Vs, U7} and the edge set is

E = {vy,v4},{v1,v7},{v2, v3}, {v2, 6}, {v2, V7],

{vs, v}, {vs, 5}, {vs, v7 1, {va, s} {va, v6}, {vs, v},

{vs, v7}}:

In the following figure, two drawings of G are shown (the

reader should verify that they are both drawings of G)
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Example.

Let G = (V,E) beagraph, whereV ={a,b,c,d, g}, E =
{e1,ez,e3,e4,e5,66} = {{a}, {a,b},{a,c},{a c}{b c},
{c,d}}

1. Represent the graph G;

2. Find the degree of each vertex and isolated vertices;

3. Find multiple edges and loops;

4. Is G asimple graph? Why?

Solution.
1.
b d
ez e5 €6
a
EJG & 9
ey < £

Graph &
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2. dG(a) = 5, dG(b) = 2, dG(C) = 4, dG(d) = 1,
d;(g) = 0. Therefore the degree sequence is
(5,4,2,1,0). Since d;(g) = 0 then g is the only

iIsolated vertex.

3. Since e; = e, = {a,c}, e3 and e, are multiple edges
and hence G is a multiple graph. Also, since e; = {a},
then e is a loop.

4. G is not a simple graph. It is a pseudograph as it
contains multiple edges and a loop. =

Example.

If G = (V,E, f) is the graph given by the following

diagram

FindV,E, f.
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Solution.
Itis clearthat V = {vy,v,, V3,14, Vs, Vg}. and E =
{eq,e5,e3,6e,, 65,60, €7, €5, €9, €10}

The following table represents the function f:

E eq e, €3 e, ec

fe) | {vy, v} | {vo,v3} | {vs,va} | {va} | {va}

E € €7 €g €9 €10
f@) | {va,vs} | {vs, v} | {vy,vs} | {vi,vs} | {v1,v6}
o
Definition.

We write §(G) = min{d;(v):v € V}and A(G) =
max{d;(v): v € V} for the minimum degree and

maximum degree of G, respectively.
Note.

The graphs we have introduced are undirected graphs.
Their edges are also said to be undirected. To construct a
graph model, we may find it is necessary to assign

direction to the edges of a graph.
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Definition.

A directed graph (or digraph) G = (V,E, f) consists of
a non-empty set of vertices V and set of directed edges
(or arcs) with the map f: E - {(x,y):x,y € V},i.e., each
directed edge is associated with an ordered pair of
vertices. The directed edge associated with the ordered
pair (u,v) is said to start at u and end at v. If f(e;) =
f(e,) in digraph, then e; and e, are multiple edges. If a
digraph G contains no multiple edges or graph loops,

then it a directed simple graph.

Example.

G is a simple directed graph while H and K are not.

Note:

(@) If e = (u, v) is an edge of a digraph G, then u is the

initial vertex and v is the terminal vertex for the edge e.
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(b) In a digraph G, let N*(v) and N~ (v) denote the sets
of vertices adjacent from v and to v, respectively. These
are the out-neighborhood of v and the in-neighborhood
of v respectively. Thus N*(v) = {u: (v,u) € E} and
N~ (v) = {u: (u,v) € E}. For example, in the digraph

drawn below, N*(x) = {u,v,w}and N~ (x) = {v}.

o ur

»
L

A

U &£

(c) A graph with both directed and undirected edge is

called a mixed graph.

Graph Terminology.

Type Edges Multiple Edges Allowed? Loops Allowed ?
Simple graph Undirected No No
Multigraph Undirected Yes No
Pseudograph Undirected Yes Yes
Simple directed graph Directed No No
Directed multigraph Directed Yes Yes
Mixed graph Directed and undirected Yes Yes
Definition.

In a graph with directed edge the in-degree of a vertex v,

denoted by (or d; (v)) is the number of edges with v as
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their terminal vertex. The out-degree of a vertex v
denoted by (or df (v))) is the number of edges with v as
their initial vertex. A loop at v contributes one to the in-

degree and one to the out-degree of v. In other words,
dg (v) = IN~(v)| and dg(v) = INT(v)I.
Example.

Find the in-degree and out-degree of each vertex in the

digraph G Shown in the following diagram.

a) (b)
@G =)
|' i
- o\
G [
Solution.

The following tables gives the out-degree and in-degree
of each vertex in Graphs G-(a), G-(b) and G-(c),

respectively.

G-(a): G-(b):

' a/b|c |d a |b Jc |d
dz(v) |31 1 2 13

di(w) |1]2 |13 2 14 |1 |1
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G-(c):

\ a|b Jc |d e
d;(v) |6 |1 |2 |4 o
di(w) |14 |5 |2 |o
Example.

Find the in-degree and out-degree of each vertex in the

graph G with directed edges shown in the given Figure.

Solution.

The in-degreesin G are d; (a) = 2,d;(b) = 2,

dz(c) = 3,d;(d) = 2,d;(e) = 3,andd;(f) = 0.
The out-degrees are df (a) = 4,d}(b) = 1,d}(c) =
2,df(d) = 2,df(e) = 3,anddf(f) = 0. m
Because each edge has an initial vertex and a terminal
vertex, the sum of the in-degrees and the sum of the out-

degrees of all vertices in a graph with directed edges are
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the same. Both of these sums are the number of edges in

the graph. This result is stated as the following theorem.

The following theorem is called Handshaking Theorem.
It describes the relation between the number of edges of a
graph and the degrees of its vertices.

Theorem.

Let G = (V,E) be agraph such that V = {x4, ..., x,, }.
Then

(8) Tk, dg () =2|E|;

(b) The number of odd vertices in G is even;

(c) Inadigraph G, XL, dj (x;) = Tiq dE(x) = |E|.
Proof.

(a) We compute the number of times that edges of G are
incident with its vertices by two different ways.

First, each edge is incident with vertices twice, i. e., the
desired number is 2|E|. In other words, each vertex is
incident with edges (d;(x)) once. Therefore, The desired
number is X't dg(x;). Thus Y7 dg (x;) = 2|E]|.
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(b) Let V; and V, de the set of vertices of even degree and
set of vertices of odd degree, respectively, in G. Then
V=V,uV,and V; NV, = @. Therefore

iz1d(x) = Yxer, dg(X) + Xxey, dg(x) = 2|E|.
Since both 2|Efand X,ey, dg(x) are even, then
Yxev, dg(x) is even. Since all terms in this sum is odd,
then there must be an even number of such terms. Thus
there is an even number of vertices of odd degree.
(c) Since each edge has an initial vertex and a terminal
vertex, then the sum of the in-degrees and the sum of the
out-degrees of all vertices in a graph with directed edges
are the same. Both sums are the number of edges |E| in
the graph.m
Example.
Consider the grid graph. The degree sequence of this
graphis (4, 3, 3, 3, 3, 2, 2, 2, 2). Therefore by the
handshaking theorem, the number of edges in the grid

graphis:%(4+3+3+3+3+2+2+2+2)=12.

A manual count of the edges in the grid graph confirms

this. The reader should check how many edges the n by n
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grid graph has (the vertex setisV = {(x,y) € ZX Z:

0 < x <n,0<y<n}and the edge set is the set of pairs
of vertices at distance 1 from each other.) =

Example.

1. How many edges are there in a graph with 10 vertices
each of degree six?

2. Is there a graph the sequence of degrees of its vertices
is (5,4,3, 3,2)?

Solution.

1. Since the degrees of the vertices is 6 X 10 = 60 =
2|E|, then |E| = 60/2 = 30.

2.Since 5+4+3+3+2 =17 is an odd number, by
the handshaking theorem, there is no graph with these
vertices. Or, since the number of the odd vertices is 3,
then there is no graph with these vertices by the same
theorem.m
Example.
The n-cube, denoted Q,,, is the graph whose vertex set is
the set of binary strings of length n, and whose edge set

consists of all pairs of strings differing in one position.
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The cube graph Q5 in introduced in this section is the 3-
cube. Let us see how many edges Q,, has as a formula in
n. Since there are 2™ binary strings of length n, there are
2™ vertices in Q,,. Now each vertex v is adjacent to n
other vertices - namely flip one position in the string v to
get each string adjacent to v, and there are n possible
positions in which to do a flip. So every vertex of the n-
cube has degree n, and so the number of edges in Q,, is

1261 (v) =1-2"-n=nZ"_1
2Ly O 2

nev

A manual count of the edges confirms this for the 4-cube

Q, which is drawn below:
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8.3 Subgraph

Definition.

A subgraph ofagraph G = (V,E) isagraph H =
(W,F),where W € Vand F < E. The subgraph H of
the graph G is spanning thegraph G if W =V. If
{x1, ..., x,} € V inthe graph ¢ = (V, E), we obtain the
subgraph G — {x4, ..., x,,} by deleting the vertices

X1, ..., Xy and all fallen edges. If {e;,...,e,} € E in the
graph G = (V, E), then we get the subgraph G —

{eq, ..., e} by deleting the edges ey, ..., ex (without

deleting the vertices).

Example.

Let G be the following graph.

gy _"\ ey
o / -?;'-.._ /-;_1_
vy _______"#3 - _
POy
g

The following three graphs all subgraphs of G:
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&
Ve (-2 ]
. e / \\ —
/ - 01\ _ _) | / e \l‘"-. /e4
- T s
PN
Sgh

The following is the subgraphs H = G — {e4, e, €3, U4}

and K=G-— {91, 96,174}.

-
L ]
|
|
|
| ,.
o -
u;'r
|
|

Definition.

The union of two simple graphs ¢, = (V;, E;) and G, =
(V,, E,) is the simple graph with vertex set I; UV, and
edge set E; UE, . The union of G, and G, is denoted by
G, UG, .

E] b a b a b
e R
s—} ) ) %
c d c d c d
I II
a b c a b £ d o c
d e d f d e |
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Example.
Find the union of the following graphs.

¥q

.y

Solution.

The vertex set of the union G;UG, is the union of the
two vertex sets, namely {vy, vy, V3, Uy, Vs, Vg, , U7 }. The
edge set of G, UG, is the union of the two edge sets,
namely {e;, e,, e3, e4, €5, €¢, e, }. The union is displayed

in following figure.
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8.4 Special Graphs
Definition.

Let G = (V,E) be agraph and r > 0 be an integer. The
graph G is said to be r-reqular graph if d;(x) = r for
each x € V. For instance, the graph Q5 is 3-regular (all

the degrees are 3). Sometimes, 3-regular graphs are also

referred to as cubic graphs.

Example.
. a ______.f?
/ |'II I
O
\ ' 1 |'-- — __::- -\
d o\ _J
4 - regular graph 5 - regular graph
Theorem.

If G = (V,E) is r-regular graph with |V| = n, |E| = %

Proof.
Since Y, ey ds(x) = 2|E|, Then Y, ey 7 = 2|E|.

Therefore nr = 2|E| or |E| = %.l
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Definition.

The complete graph with n vertices, denoted by K,, is the
simple graph that contains exactly one edge between

every pair of distinct vertices.

K,
K K 3 K, Ks K

Theorem.

n(n-1)

If K, = (V,E),then |E| =

Proof.

n(n-1) =

Ky is (n — 1)-regular graph. Therefore |E| = —

Definition. (Cycles).
The cycle C,,,n = 3 consists of n vertices vy, ..., v, and

edges {vy, v2}, {v2, V3, },.. .. { V1, v} and { vy, v4 3.

ADQQ

The Cycles C3, Cy4, Cs, and Cg.
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Definition. Wheels.

We obtain the wheel W, when we add an additional
vertex to the cycle C,, , for n = 3 and connect this new
vertex to each of the n vertices in C,, by new edges.

In the following figure, the wheel graphs W, with n

vertices are shown for4 <n < 11.

W, Ws

// \\\
/ \\
%/,/‘\\\&. \ 3
W, W, Wi
AN 'a A

Definition.

A simple graph ¢ = (V, E) is said to be bipartite graph
iIf its vertices can be partitioned into two disjoint sets 1/;
and V, such that every edge in the graph connects a
vertex in V; and a vertex in V, (so that no edge in G
connects either two vertices in V/; or two vertices in V, ).
When this condition holds, we call the pair (V; ,V,) a

bipartition of the vertex set IV of G.

-514 -



Note that partition means that V; = ¢,V, = ¢,V NV, =
¢ and V =V, UV,. Inthis case we use the symbol (V; U
V,,E) instead of (V,E).

Example.

The graph G in (i) can be redrawn as shown in (ii). From
the drawing in (ii), you can see that G is bipartite with

mutually disjoint vertex sets {v,, v3, vs} and {v,, v4, v¢}.

(i) vz (ii) TN v .
A U] el sy |
1 - = 3

v ey | ] !
vge ey
vs
Definition.
let G = (V; UV, E) be abipartite graph. G is said to be
complete bipartite graph if every vertex in V; is adjacent
to every vertex in V,. If |V;| = m and |V, | = n, then this
graph is denoted by K, .
Example.

The following graphs are complete bipartite graphs.
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Theorem.

If Kipn = (V1 UV, E) such that [Vi| = mand |V,]| =

n, then |E| = mn.

Proof.

Since Yxep, d(x) + Xxev, d(x) = 2|E|, then Yyep, n +
Yxev, m = 2|E|. Thus mn + nm = 2|E| .

Therefore, |E| = mn. m

Definition.

Let G = (V, E) be a simple graph. The complement of the
graph G is defined to be the graph G = (V,E) where for

every x,y € V and x = y we have {x,y} € E if and only
if {x,y} ¢ E.

Example.

The following diagram is the graph and its complement.
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Remark.

If G is r-regular simple graph with n vertices, then G is
(n —r — 1) — regular simple graph.

Exercise.

Give an example of a r- regular simple graph with 6

vertices, where 0 < r < 5.
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8.5 Representation of Graphs

We will represent graphs using matrices.

The Adjacency Matrix

Definition.

LetV = {x4,x,,...,x,}and G = (V, E) be a simple graph
The adjacency matrix of the graphs G is the zero - one
matrix A = [a;;], where a;; = {(1) gzz% Z Z:
Example.

The adjacency matrix for the given graphs G is:

Xl A2
0100 17 N
10011
A=|00011
01101
1111 0 s O »
Example.

Draw the graph with the adjacency matrix:
0110

O R =
RO

o R
O R -

*H

with respect to the ordering of vertices a, b, ¢, d.
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Solution,
The graph with this adjacency matrix is

a b
®:

Remark.
1. The adjacency matrix depends on the ordering of
vertices so there exists n ! adjacency matrices for a

simple graph with n vertices.

2. The adjacency matrix A of a simple graph G is
symmetric, i.e., A = AT, where AT is the transpose of A.
3. Since the simple graph contains no loops, then a;; =
foreveryi € {1, ...,n}, i.e, The diameter elements in the
adjacency matrix are zeros.

4. We can consider the elements a;; belong to the

Boolean algebra B, = {0,1}.
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Definition.
Let G = (V, E) be a simple digraph (directed graph),
where = {x,, ..., x,} . Then the adjacency matrix for the
graph G is the matrix A = [a;;] , where
1, (xl-,xj) €EE

4j = {0, (xl-,xj) ¢ E
In this case, A may not be symmetric as it is possible that
(xi,x;) € E but (x;,x;) € E .
Definition.
We can define the adjacency matrix of the multi-graph as
every loop {x;} participates by one in a;; and every edge
{x;,x;},i # j , also, participates by one in a;; . Therefore
the elements a;; is not elements of B, = {0,1}.
Definition.
Adjacency matrices can also be used to represent
undirected graphs with loops and with multiple edges. A
loop at the vertex v; is represented by a 1 at the (i, i)™
position of the adjacency matrix. When multiple edges

connecting the same pair of vertices v; and v;, or multiple

loops at the same vertex, are present, the adjacency
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matrix is no longer a zero-one matrix, because the (i, i)™
entry of this matrix equals the number of edges that are
associated to {v;, v;}. All undirected graphs, including
multigraphs and pseudographs, have symmetric
adjacency matrices..

Example.

Here the simple digraph G and its adjacency matrix A.

0 1 1 1 1
0O 0 0 0 O
A=[1 0 0 0 1
0O 0 0 0 O
0 1 1 1 0

Example.

The two directed digraphs shown below differ only in the

ordering of their vertices. Find their adjacency matrices.

T E5 A B

t'| iﬂr. | t'? 1# f
' €2 €y -":_-'; \ N2 €3 -~ - i

e ey

(a) i(b)
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Solution.

Since both graphs have three vertices, both adjacency
matrices are 3 X 3 matrices. For (a), all entries in the
first row are 0 since there are no arrows from v, to any
other vertex. For (b), the first two entries in the first row
are 1 and the third entry is 0 since from v, there are

single arrows to v; and to v, and no arrows to v;.

Continuing the analysis in this way, you obtain the
following two adjacency matrices:

B i

(a) (b)
«If you are given a square matrix with nonnegative

oo =
—_—— T
o= o0 5
5 = —
o O = 3
e R o e BN

integer entries, you can construct a directed graph with
that matrix as its adjacency matrix. However, the matrix
does not tell you how to label the edges, so the directed
graph is not uniquely determined.

Example.

Draw a directed graph that has A as its adjacency matrix.

-522 -



N O O
_ O = =
O PRrO K
S RN O

Solution.

Let G be the graph corresponding to A, and v4, vy, U3, U,
be the vertices of ¢. Label A across the top and down the
left side with these vertex names, as shown below.

|
i 0
A= |
0

==Ll 6 I ==

0 1
1
0 0
2 1
Then, for instance, the 2 in the fourth row and the first
column means that there are two arrows from v, to v, .
The 0 in the first row and the fourth column means that
there is no arrow from v, to v,. A corresponding directed
graph is shown on the next page (without edge labels

because the matrix does not determine those). =
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Example.

The adjacency matrix of the given multi-graph is the

shown matrix.

a b c d
a (0 3 0 2
bl13 0 0 1
c|{0 0 1 2
d\2 1 2 0

We used the ordering of vertices a, b,c,d.m

Example.

The adjacency matrix A for the given multi-digraph G is

as follows:

() ] ()

U] V2 U3
U 1 0 O
A=»n |1l 1 2
vs |1 0 0
Directed Graph G Adjacency Matrix
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Incidence matrices

Definition.

Another common way to represent graphs is to use
incidence matrices. Let G = (V, E) be an undirected
graph. Suppose that v4,v,, ..., v, are the vertices and
eq,ey,..., e, are the edges of G. Then the incidence
matrix with respect to this ordering of V and E is the
n X mmatrix M = [m;;], where

— {1 when edge e; is incident with v;,
Y 0 otherwise.

Example.
Represent the graph shown in
the given figure with an

incidence matrix.

Solution.

The incidence matrix is:

€ €2 €3 €4 €5 €4

vi|ll 1 0 0 0O O
vw|O0O 0 1 1 0 1
vy 0O 0 O O 1 1
vl 1 O 1 0 0 O
vs | O 1 O 1 1 0O
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Incidence matrices can also be used to represent multiple
edges and loops. Multiple edges are represented in the
incidence matrix using columns with identical entries,
because these edges are incident with the same pair of
vertices. Loops are represented using a column with
exactly one entry equal to 1, corresponding to the vertex
that is incident with this loop.

Example.

Represent the pseudograph

shown in the given figure

using an incidence matrix.

Solution.

The incidence matrix for this graph is
€1 € €3 €4 €5 e €7 ey

vi| 11 1 0 O 0 0 0
wl|lO0 1T 1T 1 0 1 1 0
v | O O O T 1 O 0 O
vy | O 0 O O O O 1 1
vs | O O O O 1T 1 0 0
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8.6 Isomorphism of Graphs

Definition.

LetG = (V(G),E(G))and H = (V(H),E(H)) betwo
simple graphs and f:V(G) — V(H) be a map. We say
that f is isomorphism from G to H if it satisfies the
following:

(a) f is one-to-one correspondence i. e., f is bijective.

(b) f:V(G) — V(H) Preserves adjacency i. e., for every
x,y € V(G) then {x,y} € E(G) if and only if

{f (x), f(y} € E(H) on the other words, x, y are adjacent
in G ifand only if f(x), f(y) are adjacent in H . In this
case we say that G and H are isomorphic and we write
G=H.

Example.

Show that the following graphs ¢ = (V,E) and H =

(W, F) are isomorphic.

Iy 15 vy Va
" - -

g Iy V3 L
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Solution.

We define the mapping f:V(G) - V(H) as follows:

V Uy | Us Uz | Uy
fV) | v V2 Vy | V3
It is obvious that f is one - to - one correspondence.To

see that this correspondence preserves adjacency, note
that adjacent vertices in G are u;and u, , u; and us , u,
and u, , uz and u, , and each of the pair f(u,) = v, and
fuz) = vy, f(uy) =viand f(uz) = vy, f(uz) = v,
and f(u,) = v3 and f(u3) = vyand f(u,) = vy are
adjacent in H. Therefore the graphs ¢ = (V,E) and

H = (W,F) are isomorphic.m

Example.

Determine whether the following graphs are isomorphic

or not? Explain your answer?

A
b z "

- 528 -



Solution.
We define the map f:V(G) —» V(H) as follows:

v a b c d

f(w) X y Z t

It easy to see that f is an isomorphism. Consequently
G=H.nm

Note that in the above example H is the complement of
G. So, we have the following definition:

Definition.

A simple graph G is said to be self-complementary if

G =G.

Example.

The following diagram is for a self-complementary
Graph G (why:)

b a
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It is often difficult to determine whether two simple
graphs are isomorphic. However, we can use invariant
with respect to isomorphism.

Definition.

We say that a property P is invariant with respect to
isomorphism (isomorphism invariant) if the following
condition is satisfied:

For every two simple graphs G and H, if ¢ = H and G
has the property P, then H has the property P.

The following theorem gives us some isomorphism
invariants. We can use them to discover non- isomorphic
graphs.

Theorem 1. Let G and H be two simple graphs and
f:V(G) —» V(H) be an isomorphism. Then

) [V(&)| = [v(H)| and |E(G)] = [E(H)I;

(i) d(x) = d(f (x)) forevery x € V(G) ;

(iii) The number of vertices with degree m in G equals

the number of vertices with degree m in H.
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Proof : We accept (i) and (iii) , and prove only (ii) ,

(if) Let x € V(G) with d(x) = m. Then there exist

X1, ., Xm € V(G) such that x; # x; forevery i # j and
x; 1S adjacent to x for every i. Since f is one-to-one
correspondence and preserves adjacency, then

f(x)), ..., f(x,;,) € V(H) are different vertices and each
of them is adjacent to f(x) . Therefore d(f( x)) > m.
Since f is subjective and preserves non- adjacency then
the only vertices which are adjacency to the vertex f(x)
inHare f(x;), ..., f(x). Therefore d(f(x)) =m. m
Example.

Show that the graphs
displayed in the figure

are not isomorphic.

Solution. | )
Both ¢ and H have five vertices and six edges. However,
H has a vertex of degree one, namely, e, whereas G has

no vertices of degree one. It follows that G and H are not

isomorphic. m
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Example.

Determine whether the graphs shown in the following

figure are isomorphic,

a b 5 t

Solution.

The graphs G and H both have 8 vertices and 10 edges.
They also both have 4 vertices of degree 2 and 4 of
degree 3. Because these invariants all agree, it is still
conceivable that these graphs are isomorphic.

However, G and H are not isomorphic. To see this, note
that because d;(a) = 2, a must correspond to either
t,u,x, or y in H, because these are the vertices of degree
two in H.

However, each of these four vertices in H is adjacent to
another vertex of degree 2 in H, which is not true for a in
G.
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Example.

The following two graphs are not isomorphic because

dy(u,) = 3 and there is no vertex in G with degree 3.

a b 1 15

c G d
Example.

Determine whether the graphs G and H displayed in the

following figure are isomorphic.

“l i~ 1'| 1'_1.

Vs Vi

Solution.

Both G and H have six vertices and seven edges. Both
have four vertices of degree two and two vertices of
degree three. Because G and H agree with respect to these

invariants, it is reasonable to find an isomorphism f.
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We now will define a function f and then determine
whether it is an isomorphism. Because d;(u;) = 2
and because u, is not adjacent to any other vertex of
degree two, the image of u; must be either v, or v, the
only vertices of degree two in H not adjacent to a vertex
of degree two. We arbitrarily set f(u,) = vg. [If we
found that this choice did not lead to isomorphism,
we would then try f(u;) = v,.] Because u, is adjacent to
uq,, the possible images of u, are vy and vg. We
arbitrarily set f(u,) = v3. Continuing in this way, using
adjacency of vertices and degrees as a guide, we set
f(uz) = vy, f(ug) =vs, f(us) = vy, and f(ug) = v,.
We now have a one-to-one correspondence between the
vertex set of G and the vertex set of H. To see whether f

preserves edges, we examine the adjacency matrix of G,

[

.
—

Ur» W3 U4 U5 Ug

up | 0O 1 0 ] 0 0
u» |10 1 0 0 1
Ag = uz | 0O 1 0 1 0 0
14 ] 0 1 0 1 0
us | 0 0 0 1 0 1
ue L. O 1 0 O 1 0 |
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and the adjacency matrix of H with the rows and columns

labeled by the images of the corresponding vertices in G,

—
d

Ve VI V4 Vs V]

wl O 1 0 1 0 0]
wm|l 1 0 1 0 0 1
Ay=[0 1 0 1 0 0
ws| 1 0 1 0 1 0
mwl0o 0 0 1 0 1
ml0O 1 0 0 1 0|

Because AG = AH , it follows that f preserves edges.
We conclude that f is an isomorphism, so G and H are

iIsomorphic. m
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8.7 Connected Graphs

Definition.

Let G = (V,E) beagraph,a,b € Vandn = 1 be an
integer. If vy eq, v, €5, ..., €41, v, IS @ sequence of
vertices and edges such that v; = a,v,, = b, e; =
{v;,v;+1} for all i, then the sequence is called a path
from a to b. A path of length nfromatobisa
sequence of n edges. A path is a circuit (closed path) if
v; = vp. A path or circuit is simple : if e; # e; for all

[ #+ j,i.e., it does not contain the same edge more than
one . When the graph is simple, we denote the path or the
circuit by its vertices sequence vy vy, ...., v,. A simple
circuit in which if v; # v; forall i # j, exceptv; = v,
is called a cycle.

Example 1.

In the simple graph.

a b c

d e I

- 536 -



1.a,d,c, f isasimple path of length 3.

2.d,e,c, b isnot apath since {e, c} is not edge.
3.b,c¢,f,e, b is circuit of length 4. Also, it is a cycle.
4.The path a, d, e, d, a, b which of length 5, is not simple
since it contains the edge {a, d} twice.

Definition.

An undirected graph is connected if there is a path
between every pair of distinct vertices of the graph. We
say it is disconnected if itis not connected.

Example.

Which of the following graphs are connected?

hl
U4 v Vs Vg v,

- 8 . e 2
Uy _ M U4 Wi $

1| * . . A L | .- . 1 "vs
(a) (b) (c)

Solution.

The graph represented in (a) is connected, whereas those

of (b) and (c) are not. To understand why (c) is not

connected, recall that in a drawing of a graph, two edges

may cross at a point that is not a vertex. Thus, the graph

in (c) can be redrawn as follows:
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vy

Theorem,

There is a simple path between every pair of distinct
vertices of a connected undirected graph.

Definition.

A graph that is not connected is the union of two or more
connected subgraphs, each pair of which has no vertex in
common. These disjoint connected subgraphs are called

the connected components of the graph.

Vo

G G
The components of G are G, G,, G5 and G,4.
Definition.

A connected component of a graph G is a connected
subgraph of G that is not a proper subgraph of another

connected subgraph of G. That is, a connected
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component of a graph G is a maximal connected
subgraph of G. A graph G that is not connected has two
or more connected components that are disjoint and have
G as their union.

Example.

What are the connected ';'J d e ;

components of given the

graph H.

Solution.

The graph H is the union of three disjoint connected
subgraphs H;, H,, and Hs, shown in the following figure.
These three subgraphs are the connected components of

H.
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Theorem.

Each connected graph with n vertices has m edges where
m=n-—1.

Theorem.

In a simple graph G either G or G is connected.

Definition.

Sometimes the removal of a vertex and all edges incident
with it produces a subgraph with more connected
components than in the original graph such vertices are
called cut vertices. The removal of a cut vertex from a
connected graph produces a subgraph that is not
connected.

Analogously, an edge whose removal produces a graph
with more connected components than the original graph
iIs called a cut edges or bridge.

Example.

Find the cut vertices and cut edges in the following graph.

a d f g
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Solution.

The cut vertices are b, ¢, and e. The removal of one of
these vertices (and its adjacent edges) disconnects the
graph. The cut edges are {a, b} and {c, e}. Removing
either one of these edges disconnects. m

Theorem,

Let A = [a;;] be the adjacency matrix for the graph G =
(V,E) suchthat V = {v;,v,, ..., v,}. Let A* = [b;;] such
that k = 1. Then the number of different paths from v; to
v; with length k is equal b;;.

Example.

Find the number of paths of length 4 from v, to v for

the following graph:

f.}l

U,
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Solution.

The adjacency matrix is

010 1 07 9 3 11 1 6
10101 3 15 7 11 8
A=|01011| and A*=|11 7 15 3 8
10100 1 11 3 9 6
0110 0 .6 8 8 6 8

Hence bys = bsy, = 6.

The number of paths from v, to v¢ is 6 and the paths are:
V4€4€4€3€5 Vs, Vgs€38383C0 Vs, Us€s€1€2€0 Vs, VyC3€5€6€C6 s,
V4€3€6€C5€5Vs, Uy€367€,6Vc. B

Example.

Find the number of paths of length 3 |
from v, to v5 and find the paths for the ___/'54
given graph. Y.
Solution. 5

The adjacency matrix of the given graph is :

020 0 16 4
A=120 2]. Then A3 =116 4 18
021 4 18 9

The number of paths of length 3 between v; and v; is 4:
The paths are
X1€1€3€5X3,X1€1€465X3,X1€2€3E65X3,X1€2€64E5X3. M
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Theorem.
The simple graph G is bipartite graph if G has no odd
cycle.

Example.

Petersen graph above conations cycle with length 5. So,

it is not bipartite graph. m

Example.
- - ] o
] -
P . ) e
. . -
. * ] L
L L * ®

The above graphs contain no odd cycles. Therefore, they

are bipartite graphs. m
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8.8 Planar graph

Definition.

A graph is called planar if it can be drawn in the plane
without any edges crossing.

Example.

Although the complete graph K4 is usually pictured with
crossing edges as in figure (a), it can also be drawn with
no crossing edges as in figure (b). Thus k4 is a planar
graph. Also, Qs in (c) and (d). Therefore, Qs is a planar
graph. Such a drawing is called a planar representation

of the graph.
(a) (b)

(©) (d)
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A planar representation of a graph divides the plane. For
instance, consider the connected planar graph given in the

following Figure

(1 e 1 b
/f 10 . ®
u Q‘ i es
Co— & E7 ®
. i g

It is clear that the graph divides the plane into five
regions. All regions are bordered except R:.

The border of each one is as follows

R, bordered by the closed path ue;yaegheque; te;;u.

R, is bordered by the cycle ae;begge;hega .

R5 is bordered by the closed path be,ces;de,descesgegb.
R, is bordered by de,d.

R: is bordered inside by the cycle
aeibe,cesge,heque pa.

By the degree of a region R, written d(R) , we mean the

length of the cycle or closed simple path border R. =
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Theorem.

The sum of degrees of the regions of a planar
representation of a graph is twice the number of edges.
We note that each edge either borders two regions or is
contained in a region and will occur twice in any simple
path along the border of the region.

Example.

The degrees of the regions of the above figure are

d(Ry) =5,d(R;) = 4,d(R3) = 6,d(Ry) = 1,d(Rs5) =
6.

The sum of the degrees is 22 which is twice the number
of edges, as expected.=

The Regions of the Planar Representation of a Graph.
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& Euler's formula.

A planar representation of a graph splits the plane into
regions, including an unbounded region.
For instance, the planar representation of the graph shown

in the following figure splits the plane into six regions.

Euler's formula connects the number of vertices v , the

number of edges e and the number of regions r of any

connected simple planar graph G. Euler's formula is:
v—e+r=2

Euler's formula is special for connected simple planar

graph. If G is a planar graph with K components, then

one can deduce that: v—e+r =K + 1.

Example.

Suppose that a connected planar simple graph has 20

vertices, each of degree 3. How many regions does a

representation of this planar graph split the plane?
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Solution.

This graph has 20 vertices, each of degree 3, so v = 20.

Because the sum of the degrees of the vertices,

3v = 3-20 = 60, is equal to twice the number of edges,

2e, we have 2e = 60, 0r e = 30. Consequently, from

Euler’s formula, the number of regions is
r=e—v+2=30-20+2 = 12.=

Theorem.

(@) Let G be a connected planar simple graph such that

v = 3,thene < 3v — 6;

(b) Ks is nota planar graph.

Proof.

Since G is connected and v > 3, we have e > 2. Hence

2 < 3(3) — 6 = 3 and the inequality is true. Now,

suppose e = 3. Since the Sam of the degrees of the

regions is 2e. But each region has degree three or more.

Because at least 3 edges border one region. Therefore,

3r < 2e. But from Euler's formulav — e +r = 2. Then

3[2— v+ e] =3r < 2e. Therefore e < 3v — 6.
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(b) Suppose that Ks is a planar graph. We know that v =
5, e =10. Since K5 is a simple connected graph, then
from (a) above we have 10 < 3(5) — 6 = 9, which isa
contradiction. Therefore K5 is not a planar graph.m

Theorem.

(a) Let G be a connected planar simple graph with v > 3
and G has no cycle of length 3. Then e < 2v — 4.

(b) K3 3 is not a planar graph.

Proof.

(@) Since G is connected and v = 3, then e > 2. Since
the sum of degrees of the regions is 2e. But each region
has degree 4 or more because G has no cycle of length 3,
,e, at least 4 edges border one region. Hence 4r < 2e.
By Euler's formula we have r = 2 — v 4+ e. Hence

42 — v + e] < 2e. Therefore e < 2v — 4.

(b) Suppose Kj 3 is a planar graph. We know that v = 6,
e = 9. Since K3 5 is a connected planar simple graph and
has no cycle of length 3,then9 <2x 6 -4 =8, a

contradiction. Therefore K3 5 is not a planar graph. m
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% Graph coloring

Each map in the plane can be represented by a planar a
graph, where each region of the map is represented by a
vertex. Edges connect two vertices if the region
represented by these vertices has a common border. Two
regions that touch at only one point are not considered
adjacent. The resulting graph is called the dual graph of
the map. Let M be a map and G = (V,E) be a planar
graph represents the map M (the dual graph). Where V is
the regions in the map and {x,y} € E if and only if the

two regions x and y are adjacent:

The dual graphs of the given maps.
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Definition.

A coloring of a simple graph is the assignment of a color
to each vertex of the graph so that no two adjacent
vertices are assigned the same color. The least number of
colors need to color the graph G is called chromatic
number x(G).

Four colors problem:

" Is it possible to color a map with at most 4 colors so that
no adjacent regions have the same color"” or equivalently
"If G is a simple planar graph, then y(G) < 4 "?
Example.

What are the chromatic numbers of the graphs G and H

shown in the following figure?

Solution.

The chromatic number of G is at least three, because the
vertices a, b, and ¢ must be assigned different colors. To
see if G can be colored with three colors, assign red to a,
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blue to b, and green to c. Then, d can (and must) be
colored red because it is adjacent to b and c.
Furthermore, e can (and must) be colored green because
it is adjacent only to vertices colored red and blue, and f
can (and must) be colored blue because it is adjacent only
to vertices colored red and green. Finally, g can (and
must) be colored red because it is adjacent only to

vertices colored blue and green. This produces a coloring

of G using exactly three 3 Blue £ Gireen
colors. The given figure

a d M Red g Red
displays such a coloring.

¢ Green FBlue
The graph H is made up of the graph ¢ with an edge
connecting a and g. Any attempt to color H using three
colors must follow the same reasoning as that used to
color G, except at the last

stage, when all vertices other bBlue  Greene

than g have been colored.

. . a d X Red g
Then, because g is adjacent Red Brown

(in H) to vertices colored red, CGeen  fBlue

blue, and green, a fourth color, say brown, needs to be
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used. Hence, H has a chromatic number equal to 4. A
coloring of H is shown in the given figure. =

Example.

Itis clear that if G = (V, E) is a simple graph with |V| =
n, then y(G) < n. If H is a subgraph of G. then y(H) <

G . a Red b Blue
In K,,, d(x) = n — 1 for every /><\
x€V. T_herefore x(Ky) =n B_\ /. Green
and y(K,) = 1. For example, \\//
d Yellow
K 5. &
Example.

If C,, is acycle with length n, then xy(C,,)) = 2 if nis even
and y(C,) = 3ifnisodd.

Solution.

let x4, ..., x,, be the vertices of C,,. If we colored x; by
color 1, then x, should take different color (say color 2).
Thus x5 can take color 1. So, if n is odd then we need a
third color 3 to color x,, , but, if n is even, then x,,

colored by color 2. m
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a B
a b py -

/ Red Blue x

Red Blue ™,
A%
A !
N Y
fa Blue Red wc /o
/ e Yellow Red »c
™,
“ Red Blue/ Blue
e d d
Example.

Calculate y(Ws), when Ws is the wheel graph shown the
following diagram.

Solution.

Since Wy — x = Cs , then we need 3

colors to color Cs. Since x is adjacent to

all vertices in Ws , then we need another

color to color it. Consequently, y(Ws) = 4. =
Example.

Calculate y(G), for the given graph.

a
b

@k
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Solution.

Note that G — {g, h} = C, and y(C¢) = 2 . But g is
adjacent to all vertices of Cg, and then we need a third
color (3) for g. Hence, we can choose color (3) to h,
Therefore y(G) = 3.m

Theorem.

x(G) = 2 ifand only if G is a bipartite graph.

Proof.

Let G be a bipartite graph and V =V, U V,. It is enough
to color V; by only one color and V, by another one. So
x(G) = 2.

Conversely, suppose y(G) = 2 and V; be the set colored
by first color and V, be the set colored by the second one.
There is no adjacent two vertices of V;(orV,). So any
edge in G should connect a vertex in V; and a vertex in

V,. Hence G is bipartite graph.m
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Corollary.
x(G) = 3 ifand only if G contains an odd cycle.
Example.
Show that y(G) = 3, where G is Petersen graph.
Solution.
Since G contains a cycle of
length 5, then y(G) = 3.
Only 3 colors are enough as

shown in the Figure. m

Graph coloring has a variety of applications to problems
involving scheduling and assignments. The following

example is one of these applications.

Example.

How can the final exams at a university be scheduled so
that no student has two exams at the same time?

Solution.

This scheduling problem can be solved using a graph
model, with vertices representing courses and with an
edge between two vertices if there is a common student in

the courses they represent. Each time slot for a final exam
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Is represented by a different color. A scheduling of the
exams corresponds to a coloring of the associated
graph.m

See the following example
Example.

Suppose there are seven finals to be scheduled. Suppose
the courses are numbered 1 through 7. Suppose that there
IS one student or more scheduled in each of: (1, 2), (1, 3),
(1,4),(1,7),(2,3), (2,4, (2,5), (2,7), (3,4), (3,6),
(3,7), (4,5), (4,6), (5,6), (5,7), (6,7).

Use graph coloring to schedule the final exams so that no
student has two exams at the same time and we have the
least time slots.

Solution.

Let G be the graph with vertices representing courses and
{x,y} € E if and only if a student or more are scheduled
in the courses x and y. The following diagrams shows the
coloring graph.

A scheduling consists of a coloring of this graph. We
need four colors to color this graph (x(G) = 4). So we

need 4 time slots as shown in the table:
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| Red

Brown 7 2 Blue
Time Period Courses
| 1.6
1 2
11 35
Red 6 3 Green Y 4,7

FIGURE " Using a Coloring
S Green 4 Brown to Schedule Final Exams.
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 Euler paths

Pregl River divide m %?C
Konigsberg city in
Germany into 4 parts zl = :§

included two islands 4

and D and two regions B and C. There are seven bridges
connected these sections.

The seven bridges problem say that:

" Is it possible to start at some location in the town travel
across all the bridges without crossing any bridge twice,
and return to the starting point?"

The Swiss mathematician Euler studied this problem
using the multi-graph obtained when the four regions are

represented by vertices and bridges by edges.

Aggeon The question become : Is there
Q\ a simple circuit in this multi-

graph that contains every edge?

The answer was no.
D
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Definition.

1. An Euler circuit in a graph G is a simple circuit
containing every edge in G. In this case G is called Euler
graph.

2. An Euler path in G is a simple path containing every
edge in G. In this case G is called half Euler graph.
Theorem.

A connected multi-graph has an Euler circuit if and only
if each of its vertices has an even degree.

Theorem.

A connected multi-graph has an Euler path if and only if
it has only two odd vertices.

We can now solve the seven bridges problem. Since the
multi-graph representing these bridges has four vertices
of odd degree, it does not have an Euler circuit.
Example.

Which of the undirected graphs in the figure have an

Euler circuit? Which have an Euler path?
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Solution.

The graph G; has an Euler circuit. (Connected graph with
even vertices), for example a,g,c,d,g,b,a.

Neither G, nor G5 has an Euler circuit. However, G5 has
an Euler path (connected graph with two odd vertices),
namely a,c,d,g,b,d,a,b.

G, does not have an Euler path. =

Example.

Which graphs shown in the following figure have an

Euler path?

b a g f e a b

d c b c d e d

Solution.

G, contains exactly two vertices of odd degree, namely, b
and d. Hence, it has an Euler path that must have b and d

as its endpoints. One such Euler pathis d, a, b, c,d, b.
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Similarly, G, has exactly two vertices of odd degree,
namely, b and d. So it has an Euler path that must have

b and d as endpoints. One such Euler path is
b,a,g,f,ed,c,g,b,c, f,d. G3 has no Euler path because
it has six vertices of odd degree. =

Example.

Is the following graph shown in the following figure have

an Euler circuit? If yes find it.

d e e

be

% ‘I / :‘.' '..l

Solution.

Hence all vertices have even degree. Also, the graph is

connected. Thus, the graph has an Euler circuit. It is:
a,b,c,de f,he g hjid,a.

Then the Euler circuit is represented by the labeled edges

shown below as it includes every edge of the graph exact

once.m

13 d _ - - - .
ae———— — - rall

1Y A3 4

ho— 5
2 c 8 ™
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Exercises Set (8)

1.LetG = (V,E, f) be agraph, where V = {a,b,c},E =

{e1, e5,e3,e,} and f represented by the following table:

e e e, es ey

f(e) {a.b} |{a,b} |{a.,b} |{b,c}
a. Represent the graph G ;

b. Find the degrees of vertices ;

c. Find loops and multi-edges ;

d. Is G simple graph ?Why ;

e. Find the adjacency matrix and the incidence matrix of
G.

2.Findf,E,V,where G = (V,E,f)is:

3. Give an example of a simple graph with odd vertices

and other with even vertices.
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4. Find the number of edges of a graph ¢ = (V, E), where
the sum of its vertices degrees is 48.
5. Is there a graph the sequence of vertices degrees is :
a.5,5,5,3,2,2,1;(b) 3,3,3,3,3.
6. Let A4, A,, ...., A, be sets. The graph of their
intersections is the simple graph whose vertices is
Ay, Ay, ..., Ay and A; is adjacent to A; if A; N A; # @.
Find the graph if :

a. A; ={0,2,4,6,8}, 4, ={0,1,2,3,4} A; ={1,3,5,7,9},
A4, {5,6,7,8,9}, A; = {0,1,8,9}.

b. 4y = (=,0),4; = (=1,0),45 = (0,1),

Ay =(-11),45 = (—1,),4, =R
7. Represent K¢, K7, K1 g, Ky 4.
8. Find the number of edges of a graph, the sequence of
its vertices is 2, 2, 3, 3, 4 and represent it.
9. Is there a simple graph the sequence of its vertices
6,4,3,2,2,1.
10. Is there a graph the number of its vertices is 10 and
the number of its edges is 50?
11. Give an example of 2-regular bipartite graph with 6
vertices
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12. Give an example of 3-regular bipartite graph with 8
vertices

13. Suppose that G = (V, E) is a simple graph with n
vertices and |E| > nTZ . Prove that G is not complete
bipartite graph.

14. Let G = (V, E) be a simple 4-regular graph with 10
edges. Compute its vertices.

15. Determine whether the following graph is bipartite

graph or not? Give a suitable partition for each bipartite

one.

g t . +
a b b
. — h
N e -
~ T — // P \
T T aw” % c
e B4
- e .
S T -
o — -
S TTw - \
e d fﬂ P o
o .///

16. Schedule the final exams for Math115, Math116,
Math185, Math195, CS101, CS102, CS273 and CS473
using the fewest number of different time slots, if there
are no students taking both Math115 and CS473, both
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Math116 and CS473, both Math195 and CS101, both
Math195 and CS102, both Math115 and Math116, both
Math115 and Math185 and both Math185 and Math195
but there are student in every other combination of

courses.

17. Show that a simple graph with a chromatic number of

2 is bipartite.

18. Show that a connected bipartite graph has a chromatic
number of 2.

19. Show that m < 2n — 4 for a planar bipartite graph

of n vertices and m.

20. Show that every planar graph contains a vertex of

degree at most five.

21. Determine the number of vertices and edges and find

the in-degree and out-degree of each vertex and find the

adjacency matrix for the given directed multigraph.

a D I —
— = = ==
T ||I Y II | - {

LI}
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CHAPTER (1X)

TGEES
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CHAPTER (I1X)

Trees

9.1 Tree

-~ k¥

In mathematics, and more specifically in graph theory, a
tree is an undirected graph in which any two vertices are
connected by exactly one simple path. In other words, any
connected graph without simple cycles is a tree. The
various kinds of data structures referred to as trees in
computer science are equivalent as undirected graphs to
trees in graph theory, although such data structures are
generally rooted trees, thus in fact being directed graphs,

and may also have additional ordering of branches.
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Definition.

e A tree is an undirected simple graph G that satisfies
any of the following equivalent conditions:

1. G is connected and has no cycles.

2. G has no cycles, and a simple cycle is formed if any
edge is added to G.

3. G is connected, but is not connected if any single edge
Is removed from G.

4. G i1s connected and the 3-vertex complete graph Ks is
not a minor of G.

5. Any two vertices in G can be connected by a unique
simple path.

If G has finitely many vertices, say n of them, then the
above statements are also equivalent to any of the
following conditions:

6. G is connected and hasn — 1 edges.

7. G has no simple cycles and has n — 1 edges.

Example.

All the graphs shown in the following figure are trees.
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Example.

All the graphs shown in the following figure are not trees.

n._‘ ’ ._.‘. - .
. | ol .-
. \ . \ /
| %, . ] ] . -
v rd | &, ol - '.' e
M, o | s
o / .
", ||' .
\ L -
o (b) © @
)

The graphs in (a), (b), and (c) all have circuits, and the
graph in (d) is not connected. =

Example.

Which of the graphs shown in the following figure are

trees?

-570 -



Ly

Solution.

G, and G, are trees, because both are connected graphs
with no simple circuits. Gz isnotatreease,b,a,d,eis a
simple circuit in this graph. Finally, G, is not a tree
because it is not connected. =

Definition.

Let T be atree. If T has at least two vertices, then a
vertex of degree 1 in T is called a leaf (or a terminal
vertex), and a vertex of degree greater than 1 in T is
called an internal vertex (or a branch vertex). The
unique vertex in a trivial tree is also called a leaf or
terminal vertex.

Example.

Find all leaves (or terminal vertices) and all internal (or
branch) vertices in the following tree:
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Solution.

The leaves (or terminal vertices) are v, v,, vy, Vs, V-,
and vg. The internal (or branch) vertices are v,, v, and
V. W

Example.

A graph G has ten vertices and twelve edges. Is it a tree?
Solution.

No. Since any tree with n vertices has n — 1 edges, then
any tree with ten vertices has nine edges, not twelve. =
Theorem.

For any positive integer n, if G is a connected graph with
n vertices and n — 1 edges, then G is a tree.

Example.

Give an example of a graph with five vertices and four

edges that is not a tree.
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Solution.

By the above theorem, such a graph cannot be connected.
One example of such an unconnected graph is shown

below.

9.2 Examples of Trees
e Forest
Definition.

A forest is an undirected graph, all of whose connected
components are trees; in other words, the graph consists
of a disjoint union of trees. Equivalently, a forest is an
undirected cycle-free graph. As special cases, an empty
graph, a single tree, and the discrete graph on a set of
vertices (that is, the graph with these vertices that has no

edges), all are examples of forests.
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Example.

The following figure displays a forest.

This is one graph with three connected components.

A
1L K

e A rooted tree

Definition.

A rooted tree is a tree in which there is one vertex that is
distinguished from the others and is called the root. The
level of a vertex is the number of edges along the unique
path between it and the root. The height of a rooted tree
Is the maximum level of any vertex of the tree. Given the
root or any internal vertex v of a rooted tree, the children
of v are all those vertices that are adjacent to v and are
one level farther away from the root than v. If wis a
child of v, then v is called the parent of w, and two

distinct vertices that are both children of the same parent
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are called siblings. Given two distinct vertices v and w, if
v lies on the unique path between w and the root, then v
Is an ancestor of w and w is a descendant of v.

These terms are illustrated in the following figure.

Root I e i Level 0
v 1s a child of u. “,F{_ _______ ;’T ________ =¢-———Level |
. . A VAN
u 1s the parent of v. e 7 AN V4 N\
v and w are siblings. ) — = l.l_ VA VU ———TLevel 2
. :.r / \\ ll
! N
e ,ﬂ(—— —— - —f —————————————————— Level 3
i // AN { /N
r’r /’ AN " / N\
e -———— dm—m———— e N> —— - Level 4

Vertices in the enclosed region
are descendants of u, which
1s an ancestor of each.

Example.

Consider the tree with root v, shown below.

Yy
/T\
Vs
v, q/ U, \\I\p\\l\!

3
N,
.r'r '\'\
Usm, Us e o Us
AN \
S ™, AN
./ hY 1"'-.
L ] L ] »
Uy U Wy Ulo

a. What is the level of vg?
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b. What is the level of v,?

c. What is the height of this rooted tree?
d. What are the children of v3?

e. What is the parent of v,?

f. What are the siblings of vg?

g. What are the descendants of v3?

h. How many leaves (terminal vertices) are on the tree?
Solution.

a. 2

b.0

c.3

d. vs and vg

e. Vg

f. v, and vq

g. Vs, Vg and vy

h.6.m

Example.
In the given tree, the root is vy, v, has level 1,
v, Is the child of v, and both v, and v, are

-U]

leaves (terminal vertices).
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e Spanning Tree

Definition.

A spanning tree of a graph on n vertices is a subset of

n — 1 edges that form a tree. For example, the spanning
trees of the cycle graph C, , diamond graph, and complete

graph K, are illustrated above.

—
N L RN

- 1
X TN X

The number of non-identical spanning trees of a graph G

Is equal to any cofactor of the degree matrix of G minus
the adjacency matrix of G. This result is known as the
matrix tree theorem. A tree contains a unigque spanning
tree, a cycle graph C,, contains n spanning trees, and a

complete graph K,, contains n™~2 spanning trees.
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e Star Graph

Y A}

5 54
L] — i >
55 56 5 5

The star graph S,, of order n, sometimes simply known as
an "n-star" is a tree on n nodes with one node having
vertex degree n — 1 and the other n — 1 having vertex
degree 1. The star graph S,, is therefore isomorphic to the
complete bipartite graph K; ,_; . The chromatic number

is1forn =1, and x(S,,) = 2 otherwise.
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@ Banana Tree

Definition.
An (n, k) -banana tree is a graph obtained by connecting
one leaf of each of n copies of an k-star graph with a

single root vertex that is distinct from all the stars.

B I By Bsy

VAVA A

B s B55 Bys Bss

By, By By Bs,
;' L ]
MMM :f-
\\ /
B, B4 By; B,

A A
5
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e Centered Tree
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A tree (also called a central tree) having a single node
that is a graph center. The numbers of centered trees on
n=1,2,.. nodesare1,0,1,1,2,3,7,12, 27, 55, 127,
284, 682, 1618, ...
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e Bi-centered Tree
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A tree (also called a bicentral tree) having two nodes that
are graph centers. The numbers of bicentered trees on
n=12,..nodesare0,1,0,1,1,3,4,11, 20, 51, 108 ... (

e Binary Tree

A binary tree is a tree-like structure that is rooted and in
which each vertex has at most two children and each
child of a vertex is designated as its left or right child. In
other words, unlike a proper tree, the relative position of

the children is significant.
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Dropping the requirement that left and right children are
considered unique gives a true tree known as a weakly
binary tree (in which, by convention, the root node is also

required to be adjacent to at most one graph vertex).

NS
N A KN
SN AN IO WA
INTY IR KN KY KN

The height of a binary tree is the number of levels within
the tree. The numbers of binary trees of heightn = 1,2,...
nodes are 1, 3, 21, 651, 457653, .... A recurrence equation

giving these counts is

an =a:_i+an_1(1+/4a,_1 —3)

Wlth al == 1
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The number of binary trees with n nodes are

1,2,5,14,42,... which are the Catalan number C,.

For a binary tree of height h with n nodes,
h<n<2't-1

These extremes correspond to a balanced tree (each node

except the tree leaves has a left and right child, and all

tree leaves are at the same level) and a degenerate tree

(each node has only one outgoing branch), respectively.

e Red-Black Tree
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An extended rooted binary tree satisfying the following
conditions:

1. Every node has two children, each colored either red or
black.

2. Every tree leaf node is colored black.

3. Every red node has both of its children colored black.
4. Every path from the root to a tree leaf contains the
same number (the "black-height™) of black nodes.

Let n be the number of internal nodes of a red-black tree.
Then the number of red-black trees forn = 1,2,...1s
2,2,3,8,14,20,35,64,122,....

Let T, be the generating function for the number of red-
black trees of black-height h indexed by the number of
tree leaves. Then Ty, .1 (x) = [T, (x)]? + [T, (x)]*

Where T; (x) = x + x2.

If T(x) is the generating function for the number of red-
black trees, then T(x) = x + x? + T(x?(1 + x)?)

Let rb(n) be the number of red-black trees with n tree
leaves, r(n) the number of red-rooted trees, and b(n) the
number of black-rooted trees. All three of the quantities

satisfy the recurrence relation
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= 3 ()

n/4snsn/2

Where (Z) is a binomial coefficient,

rb(1) =1,rb(2) = 2forR(n) =rb(n), r(1) =r(3) =
0,7(2) =1for R(n) =r(n),and b(1) =1 for R(n) =
b(n).
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Exercise Set (9)

1. Prove that any tree is a bipartite graph.
2. Find the number of all spanning trees in
(a) K4; (b) K2,3.

3. Find all possible spanning trees for each of the
following graphs.

a b Up vy
* ol | A—
¢l C L1} L)

4. Find a spanning tree for each of the following graphs.

. 5
as.. |\ pa A—
\ | / e |I y
8 ' - -
f ’ w

5. Which of these graphs are trees?

AT
PN
4]
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6. Which of these graphs are trees?

X P
L

7. Answer these questions about the rooted tree illustrated

a) Which vertex is the root?

b) Which vertices are internal?

c) Which vertices are leaves?

d) Which vertices are children of j?
e) Which vertex is the parent of h?
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f) Which vertices are siblings of 0?

g) Which vertices are ancestors of m?

h) Which vertices are descendants of b?

8. What is the level of each vertex of the rooted tree in
Exercise 7?

9. Draw the subtree of the tree in Exercise 7 that is rooted
at a)a. b)c. c)e.

10. How many non-isomorphic unrooted trees are there
with three vertices?

11. How many non-isomorphic unrooted trees are there
with four vertices?

12. How many edges does a tree with 10,000 vertices
have?

13. How many vertices does a full 5-ary tree with 100
internal vertices have?

14. How many edges does a full binary tree with 1000
internal vertices have?

15. How many leaves does a full 3-ary tree with 100
vertices have?

16. How many edges are there in a forest of t trees
containing a total of n vertices?
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